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Abstract. Aligning requirements and architectures is a long-standing
concern in software engineering. Alignment is crucial in the area of
systems evolution, wherein requirements and system architectures keep
changing after system deployment. We address a specific alignment prob-
lem, i.e., checking the compliance of a service-oriented architecture—
representing a composite service—with security requirements. Service-
oriented architectures are dynamic (services can be replaced on-the-fly),
and assessing compliance with security requirements is key, since non-
compliance may lead to sanctions as well as privacy violation. After mo-
tivating and describing the problem, we propose algorithms to check two
specific security requirements: non-disclosure and non-repudiation. We
illustrate the approach using a scenario about e-government.

Keywords: SOA; alignment; evolution; security requirements

1 Introduction

The alignment between requirements and software architectures (R/A align-
ment, from now on) is an age-old yet actual problem in software engineering in
general, and in requirements engineering in particular [17, 22]. This problem is
traditionally addressed at design-time in a top-down fashion [2,16], by providing
methodological guidelines to requirements engineers and system architects for
deriving an architecture that satisfies a given requirements specification.

Though useful at design-time, these approaches are only a partial solution
when considering that both requirements and architectures are subject to evo-
lution after system deployment. Requirements evolve [11] due to changes in the
stakeholders needs, in organizational policies, in norms and laws in the deploy-
ment environment, and as a result of feedback about system operation. Architec-
tural evolution [1] can be either internal—the architecture topology changes—or
external—the specification of components and interactions is altered.

Architectural evolution is driven by requirements evolution, i.e., architectures
need to evolve when they do not satisfy their requirements. Semi-automated run-
time compliance verification requires understanding and formalizing the concep-
tual relationship between requirements and architectural models. The challenge
is to relate these two artifacts, that exploit different modeling abstractions, which
refer to the problem space and the solution space, respectively.
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In this paper, we are interested in the alignment between security require-
ments and service-oriented architectures. In particular:

– security requirements are crucial, as non compliance may violate norms, e.g.,
about privacy, or usage / modification of official documents. In turn, this may
imply monetary compensations, dissatisfaction of customers, and decreasing
reputation. We specify security requirements using STS-ml [5];

– service-oriented architectures represent an inherently evolving type of ar-
chitecture, where composite services [3] may evolve—either due to designer
intervention or through self-recomposition—when services are replaced or
when the composition structure changes.

Our contribution is a semi-automated approach to support runtime align-
ment between composite services and security requirements. First, the analysts
are expected to conceptually connect the architecture specification with the se-
curity requirements, i.e., linking concepts in the requirements (goals, actors, se-
curity needs) with concepts in the composite service (activity, participant, data
flow). Second, automated algorithms check compliance at run-time, whenever
changes in the architecture or in the requirements occur. Compared to existing
approaches, ours minimizes human involvement after system deployment.

Organization. Sec. 2 presents the baseline languages for security require-
ments and composite services. Sec. 3 details the R/A alignment problem. Sec. 4
describes the conceptual link between the two models. Sec. 5 illustrates two algo-
rithms for checking security requirements: non-disclosure and non-repudiation.
Sec. 6 discusses related work and presents future directions.

2 Baseline

In Sec. 2.1 we introduce the chosen language for expressing security requirements,
while in Sec. 2.2 the language to describe the architecture of service compositions.

Example 1 (eGovernment). Land selling involves not only finding a buyer, but
also exchanging documents with governmental bodies. The municipality has to
certify that the land is residential zoning. We suppose land selling is supported by
an eGov application that sends the official contract (including the municipality’s
certification) to the ministry (who can object), and archives the contract. �

2.1 Security Requirements with STS-ml

Many security requirements modeling languages have been proposed so far. Some
extend UML—mainly abuse cases [14] and misuse cases [19]—by adding undesir-
able usage scenarios of the system. In a similar spirit, Lamsweerde [24] extends
goal modeling by adding an anti-model that describes the goals of attackers.
Differently, SI* [9] and Secure Tropos [15] aim at modeling security needs. We
choose STS-ml [5], a goal-oriented language for service-oriented settings, in which
security requirements constrain the interactions between actors.
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Fig. 1. STS-ml social view for the eGovernment example

In STS-ml, requirements models are expressed by three views: (i) the social
view describes the main actors, their rationale, goal delegations, and document
provisions (Fig. 1); (ii) the information view defines the relationship between
information and documents (Fig. 2); and (iii) the authorization view represents
the authorizations about information that actors grant one to another (Fig. 3).

Social view. Two types of actors are modeled: agents—concrete entities that are
known at design-time (e.g., eGov application)—and roles—that can be played
by different agents at runtime (e.g., Seller). An actor’s rationale is an AND/OR
goal tree (e.g., the root goal of the Seller is to have her Land sold). To achieve
their goals, actors need, modify, and produce documents (e.g., Seller needs docu-
ment Contract draft to achieve goal Contract finalized). Two social relationships
link couples of actors: goal delegation and document provision. Goal delegations
can be subject to security needs (e.g., non-repudiation, no-delegation, redun-
dancy, . . . ). In Fig. 1, the Seller delegates goal Government notified to the eGov
application, requesting the delegatee not to repudiate the delegation.

Information view. Documents and information are linked one to another. The
“Tangible by” relation indicates that an information is represented by a docu-
ment. In Fig. 2, Sale information is made tangible by documents Official con-
tract and Contract draft. The “Part of” relation defines sub-information and
sub-documents. Ownership relates an actor to the information that she owns.
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Fig. 2. STS-ml information view for the eGovernment example

Authorization view. It represents the permissions on information that actors
grant one to another. An authorization is indicated as an arrow connecting two
actors with a middle box. Such box details the granted permissions (Use, Modify,
Produce, Distribute) on documents representing specific information. Authoriza-
tions can be limited by defining a scope: one or more goals for whose fulfillment
the permissions are granted. In Fig. 3, the Seller authorizes the Municipality to
use Sale information in the scope of goal Approval provided.
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Fig. 3. STS-ml authorization view for the eGovernment example

Starting from the three views that constitute an STS-ml model, a Security
Requirements Specification (SRS) is derived using the STS-tool1. The specifica-
tion details the security requirements—social commitments between couples of
actors—, as well as a knowledge base, that makes the SRS self-contained.

A social commitment is a quaternary relation C(x,y,p,q), where a debtor ac-
tor x commits to a creditor actor y that, if the proposition p is brought about,
then the proposition q will be brought about [20]. STS-ml supports a special-
ized version of commitments to express security requirements; in particular, the
consequent q is about the satisfaction of a security need.

1 http://www.sts-tool.eu
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Table 1. Part of the security requirements specification for the scenario in Figures 1-3

Security requirements:
C1: C(eGov application, Seller, D=delegation(Seller, eGov application, Government noti-

fied), non-rep(D)),
C2: C(e-Gov application, Seller, >, non-disc(Municipal approval∧Sale information),
C3: C(Municipality, Seller, >, non-discl(Sale information), . . .
Knowledge base:
part-of(Land details, Sale information), part-of(Price, Sale information), . . .
tangible-by(Sale information, Official contract), tangible-by(Sale information, Contract
draft), . . .
owns(Seller, Sale information), . . .

Table 1 is a partial SRS for the eGovernment scenario. C1 is a security re-
quirement about non-repudiation: the eGov application commits to the Seller
that, if goal Government notified is delegated, such delegation will not be repu-
diated. Both C2 and C3 concern non-disclosure. In C3, the Municipality commits
to the Seller that Sale information will not be disclosed. The knowledge base
describes relations that enable the understanding of the relationships related
to information. For example, it describes the information parts that Sale infor-
mation is composed of, it details the documents that enable exchanging Sale
information, and information owners.

2.2 BPMN with security extensions

We describe the architecture of services composition—i.e., the way services are
interconnected—by using an extended version of the Business Process Modeling
Notation (BPMN) with support for security annotations (inspired by [18]). The
notation we use in this paper can be easily adopted by existing tools, provided
that they include support for representing the data flow between activities and
enable the definition of custom security-related activities.

Create 
contract 

draft

Examine 
draft

Insert 
approval ID

Add duty 
stamp

Send copy 
to ministry

Check copy

Scan 
contract

Archive 
contract 

copy

Review 
contract

[Athens REA] [Athens Munic.] [Athens REA] [Athens REA]

[Athens REA] [Greek ministry]
[eGov]

[eGov][Storage]

V1 V2

V3V3

Add duty 
stamp

Send copy 
to ministry

[eGov][Athens REA]

ACK: Send 
copy to 
ministry

[eGov]

... ...

Fig. 4. Security-extended BPMN for the eGovernment example
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Fig. 4 shows a security-extended BPMN model for the eGovernment scenario.
Such model is a set of activities (e.g., Create contract draft) carried out by
different performers (e.g., Athens REA) following the specified control flow (solid
arrows, exclusive and parallel gates). For example, after the real estate company
Athens REA has completed activity Create contract draft, the municipality of
Athens has to examine the draft. The model also represents the information
flow through labeled dashed arrows, whose label indicates the variable that is
transferred between two performers. So as to determine how an activity uses a
variable, we consider the incoming and outgoing arrows related to that variable:

– Create contract draft produces V1, as it has an outgoing arrow labeled V1
but no incoming arrow;

– Examine draft uses V1, as there is only an incoming arrow labeled V1 ;
– Send copy to ministry may modify V3, as there are both incoming and

outgoing arrows labeled V3.

3 The R/A alignment problem

We motivate and illustrate the evolution of requirements and architectures, and
show its implications on R/A alignment. We refer to specific requirements spec-
ifications (business processes) with the labels SRS1, . . . , SRSn (BP1, . . . , BPn).
After illustrating the problem in Sec. 3.1, we analyze the evolution of security
requirements and service compositions in Sec. 3.2 and Sec. 3.3, respectively.

3.1 The R/A alignment problem explained

Fig. 5 shows some possible evolutions of requirements and architectures, and
emphasizes their impact on R/A alignment. At design-time, the service compo-
sition BP1 meets the initial security requirements specification SRS1. When the
composition self-reconfigures at runtime, and is replaced by another composition
BP2, alignment with SRS1 is lost. The requirements analyst relaxes some secu-
rity requirements of secondary importance to the stakeholders. This leads to a
new specification SRS2 which guarantees R/A alignment. Later, stricter privacy
laws are introduced. The analyst revises the requirements models, leading to a
new specification SRS3. BP2 is now non-aligned with SRS3. Then, the system
architect defines a new composition BP3 that is aligned with SRS3.

Non-compliance with security requirements has severe consequences [4]. Loss
of privacy and unauthorized disclosure of data are serious threats, especially
when loss of confidentiality can potentially open the doors to world-wide access
to personal information through the Internet. Another consequence is data in-
tegrity: imagine what would happen if the price for a land sale were changed by
an unauthorized user! Compliance with organizational processes and standards is
also at risk: take the case, for instance, if binding-of-duties, separation-of-duties,
and redundancy are not provided as expected. In general, security requirements
violations have consequences from an economical perspective [6], lead to penal-
ties imposed by laws, and decrease the reputation of involved organizations.
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Fig. 5. R/A alignment threatened by the evolution of requirements and architecture

3.2 Security requirements evolution

The effect of the evolution of security requirements is that a new specification
SRS2 replaces the previously valid specification SRS1, and the two differ in at
least one element. Since our considered security requirements specification is
derived from an STS-ml model, changes in SRS are triggered by changes in the
social, resource, and authorization views of the corresponding STS-ml model.

The effects of requirements evolution may turn a compliant architecture into
a non-compliant one, or vice-versa. These effects arise due to the occurrence of
specific events that cause the evolution of security requirements:

– Revised security needs: the stakeholders change their desires about security,
or the organizational policies are revised. For example, in the eGovernment
scenario, the municipality may establish that the seller cannot transfer its
authorization on documents representing the municipal approval;

– Broadened analysis scope: the requirements analyst may realize that the con-
ducted analysis does not cover all the important stakeholders. For example,
the requirements analyst may realize that the STS-ml models do not include
any actor representing the competent ministry. In turn, this will lead to
further security requirements about confidentiality;

– Evolution of norms: the security norms in the legal environment where the
service composition is deployed change. New laws imposing stricter security
could be introduced, existing norms could be strengthened, weakened, and
abrogated. For example, consider a new municipal law stating that the prices
of land transactions shall not be notified to governmental bodies;

– Legal context switching : the actors participating in security requirements
are not always located in the same legal context. If the actor is a role,
in particular, different agents—in different locations—may adopt such role;
depending on the location, a different set of laws applies. For instance, a
Spanish buyer would have to comply both with Greek and Spanish laws.
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3.3 Service composition evolution

The architecture of a secure composite service BP2 evolves a previous architec-
ture BP1 if they differ in either: (i) the activities—including the security-related
activities—they are composed of; (ii) the control flow between activities; (iii) the
information flow between activities; or (iv) the performers assigned to activities.

A service composition may evolve either autonomously, or due to human in-
tervention. Manual redesign occurs when a designer defines an alternative com-
position to better satisfy her needs. Self-recomposition occurs when, based on
the monitored runtime data, a workflow engine replaces the composition.

Diverse reasons may trigger the evolution of a composition, among which:

– No available or no trustworthy service: there is no available service for a
specific activity, or existing providers are not sufficiently trustworthy. For
example, if no employee were available to add the duty stamp, a web service
that uses a electronic duty stamp could be introduced;

– Functional failure or under-performance: the service composition does not
deliver the expected outcome, or its performance is not adequate. For in-
stance, the service composition about eGovernment could be too slow for
Athens REA, who may decide to outsource the approval process chunk;

– Security failure: the service composition fails to correctly deliver the secu-
rity features declared at the architectural level. For example, if the service
responsible for sending a copy of the contract to the ministry publishes it—
violating the architectural information flow—confidentiality is violated;

4 Supporting R/A alignment: a methodological approach

We describe a methodological approach to support R/A alignment. It starts at
design-time by establishing initial alignment, and is continuously carried out at
runtime, so as to identify non-alignment and to re-establish alignment in case
of evolutions. The approach is semi-automated, as it includes activities to be
conducted by analysts as well as machine-executable algorithms.

Fig. 6 illustrates our approach. Initially, an analyst models and analyzes the
security requirements—e.g., using STS-ml, as explained in Sec. 2.1—and derives
the Security Requirements Specification (SRS ). As soon as a business process BP
defining the architecture a service composition is available, the analyst has to
devise a conceptual mapping between elements in SRS and elements in BP. This
step (Sec. 4.1) produces a conceptual mapping CM, which enables the automated
instantiation of the security requirements. Such activity (Sec. 4.2) interprets the
SRS—which is expressed over concepts in STS-ml such as actors and goals—
in terms of the concepts that characterize service composition at hand—such
as performers and activities—and produces an Instantiated SRS (ISRS ). This
document and the BP feed alignment checking, a set of automated algorithms
(some described in Sec. 5) that compute the actual R/A alignment. Based on
the alignment status, different paths are followed:
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Fig. 6. Our method for supporting R/A alignment in presence of evolution

– Non-alignment : the analyst has to revise either the composition, the SRS,
or both. While the basic case involves the analyst in a redesign activity, an
interesting option is to trigger an automated service re-composition. The
applied revisions require the conceptual mapping to be adjusted; then, in-
stantiation and checking are executed on the revised artifacts;

– Alignment : our framework waits for the next event to happen. If the event
is the occurrence of an evolutionary action, the process re-starts from the
conceptual mapping; if the composition terminates, the process ends.

In this paper, we detail the activities in the upper part of Fig. 6, which
constitute our basic framework. We leave to future work the activities concerned
with fixing non-compliance and repeating the check when an artifact evolves.

4.1 Conceptual mapping R/A

This activity is carried out by an analyst to define a conceptual mapping CM
between the SRS and the BP. The creation of CM is necessary because the
architectural model is at a different level of abstraction from the requirements
specification. Therefore, the skills of a human analyst to reconcile these abstrac-
tion level gap are required. CM consists of a set of relations between BP and
SRS elements:

– Participants to actors: for each participant in BP, the analyst identifies links
with the actors appearing in SRS as debtor or creditor. To do so, BP par-
ticipants shall be specialized into agents or roles. Two possible relationships
are possible: (i) is-a relates one or more BP roles (agents) to one SRS role
(agent); (ii) plays links one or more BP agents to one or more SRS roles;
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– Activities to goals: all activities in BP shall be linked to relevant goals in SRS
(if any relevant goal exists). The relationship we support is called relates-to,
and indicates that the activity is performed in order to achieve a goal. An
activity may be related to several goals, and a goal to several activities;

– Variables to documents: each variable appearing in BP is linked to zero
or one documents in SRS via a represents relationship, indicating that the
variable represents a document.

Table 2. R/A conceptual mapping for the eGovernment scenario

plays(Athens REA, Seller), plays(Athens Munic., Municipality), is-a(eGov,eGov ap-
plication), is-a(Storage, eGov application)

relates-to(Create contract draft, Draft prepared), relates-to(Review draft, Draft
prepared), relates-to(Examine draft, Resid zone checked), relates-to(Insert ap-
proval ID, Approval provided), relates-to(Add duty stamp, Contract finalized),
relates-to(Send copy to ministry, Government notified), relates-to(Scan contract,
Government notified), relates-to(Archive contract copy, Government notified)

represents(V1, Contract draft), represents(V2, Building approval), repre-
sents(V3, Official contract)

Table 2 shows a possible CM between the SRS in Table 1 and the BP in
Fig. 4. There are two BP participants (eGov and Storage) which are linked (by
an is-a relation) to the agent eGov application in SRS. The BP participant
Greek ministry is not linked to any actor in SRS. Among the mapped activities,
both Create contract draft and Review draft are related to goal Draft prepared.

Security requirements are not directly mapped to security activities. These
requirements correspond to patterns and anti-patterns which will be checked
using algorithms like the ones described in Sec. 5.

4.2 Security requirements instantiation

The conceptual mapping CM enables to instantiate SRS on the service compo-
sition BP, i.e., understanding these requirements in terms of BP concepts (e.g.,
participant, activity, variable). Instantiation of security requirements comprises
two main steps: (i) instantiation of debtors and creditors of security require-
ments, according to CM, into participants in BP (see Sec. 4.2; and (ii) instanti-
ating the security needs, originally expressed on SRS actors, to BP participants
(see Sec. 4.2). As a result, these steps return an instantiated specification ISRS.

Debtor and creditor instantiation. Each commitment in SRS is instan-
tiated, based on CM, by checking the corresponding BP performers associated
with the debtor and creditor of that commitment. If CM says that a debtor actor
in an SRS commitment is linked to two BP performers, that commitment will
be instantiated twice, as each performer has to create a commitment instance.
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Algorithm 1 Debtor instantiation for a commitment

InstantiateDebtor(C(deb,cred,p,q), CM)
1 instCommitments ← ∅
2 if TypeOf(deb) = role then
3 bpPerformersdeb.Add(CM.Search(plays(*, deb)))
4 bpPerformersdeb.Add(CM.Search(is-a(*, deb)))
5 for each perf ∈ bpPerformersdeb do
6 instCommitments.Add(c(perf, cred, p, q))
7 return instCommitments

Algorithm 1 (function InstantiateDebtor) explains how the debtor in-
stantiation is performed, and returns an instantiated set of commitments inst-
Commitments. If the debtor is a role (lines 2-3), the CM is searched for, in order
to identify all performers who play that role. These performers are added to
the set bpPerformersdeb. Then (line 4), is-a relationships involving the debtor
are searched for, and the set bpPerformersdeb is enriched. For each of these per-
formers (lines 5-6), an instance of the original commitment is created with that
performer as debtor; the commitment instance is added to instCommitments.

The returned set of commitments is processed to instantiate the creditor. The
algorithm for the creditor is analogous to Algorithm 1, with the only difference
that the creditor is replaced (instead of the debtor).

Example 2 (Actors instantiation). Consider commitment C1:C(eGov application,
Seller, non-discl(Sale information)) from Table 1, and the mapping in Table 2.
The SRS role eGov application is linked to two participants: eGov and Storage.
The instantiation of C1 creates two commitments:

C1.1:C(eGov, Athens REA, non-discl(Sale information))
C1.2:C(Storage, Athens REA, non-discl(Sale information))

The debtor and creditor of these commitments are now referring to BP. �

Security need instantiation. After the commitments have been instantiated
with respect to debtor and creditor, they are instantiated with respect to the se-
curity need in the consequent. The general form of a consequent is a parametric
predicate: sec-need(par1,. . . ,parn). Unlike the previous instantiation activities,
we cannot devise a generic algorithm for security needs. We detail specific algo-
rithms in Sec. 5. Here, we illustrate the problem on two security need types:

– Separation of duties: C(Seller, Municipality, SoD(Approval provided, Draft pre-
pared)). The instantiation algorithm will create n×m commitments, where
n is the number of activities that relate to Approval provided and m the
number of activities that relate to Draft prepared ;

– Need-to-know: C(Seller, municipality, NtK(Municipal approval, Draft prepared)).
Even if there are p activities related to the goal (p > 1), a single commit-
ment is created. In our example, the instance will contain the set of activities
{Create contract draft, Review draft}.
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5 Compliance checking

We detail two algorithms to check R/A alignment—to execute alignment check-
ing in Fig. 6—for two security requirements types in STS-ml: non-disclosure of
information (Sec. 5.1) and non-repudiation of a delegation (Sec. 5.2).

These algorithms need the conceptual mapping CM, the security require-
ments specification SRS (and its instantiated version ISRS ), and the business
process of a composition BP. The result is the compliance status of BP. A pos-
sible extension could return also the cause for non-compliance.

The service composition architecture BP is a BPMN model extended with
security-related activities. Typically, BP would be defined by enriching a regu-
lar business process model. The security activities are special types of activities
meant to guarantee security and reliability; for instance, sending an acknowledge-
ment, encrypting some data, replicating stored data, etc. In [18], these activities
are graphically represented as annotations on regular activities.

In general, a security requirement is satisfied if BP exhibits a specific struc-
tural pattern, either in terms of the sequencing of activities (the control flow),
the information flow, the included security activities, and the assigned perform-
ers. Our algorithms enable verifying the presence (absence) of specific patterns
(anti-patterns). Our ultimate objective is to build a repository of algorithms to
allow checking all the security requirements supported by STS-ml.

5.1 Non-disclosure

In STS-ml, a non-disclosure security requirement is a commitment C(deb, cred,
>, non-discl(info)), where actor deb commits to actor cred that information info
will not be distributed to other actors than cred or the owner of info.

Algorithm 2 Non-Disclosure instantiation

InstantiateND(C(deb, cred, >, non-discl(info)), CM, SRS)
1 instCommitments← ∅
2 documents← SRS.Search(tangible-by(info, *))
3 for each doc ∈ documents
4 do bpVariables← CM.Search(represents(*, doc))
5 for each var ∈ bpVariables
6 do instCommitments.Add(C(deb, cred, >, non-discl(var)))
7 return instCommitments

Algorithm 2 (InstantiateND) takes in input a non-disclosure requirement,
CM, and SRS (after debtor and creditor instantiation). It searches SRS for all
the documents that make tangible the information (line 2). For each document
(lines 3-6), CM is searched for variables representing that document (line 4). A
non-disclosure commitment instance is created (line 6) for each of those variables.
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Algorithm 3 Non-Disclosure Verification

VerifyND(C(deb, cred, >, non-discl(var)), BP, SRS, CM)
1 actByDeb← BP.ActivitiesBy(deb)
2 actByCred← BP.ActivitiesBy(cred)
3 actUsingVar← BP.ActivitiesUsing(var)
4 doc← CM.Search(represents(var, *))
5 if doc 6= null

6 then info← SRS.Search(tangible-by(*, doc))
7 for each i ∈ info
8 do own← SRS.Search(owns(*, i))
9 actByOwner.Add(BP.ActivitiesBy(own))

10 actByOthers← actUsingVar \ actByDeb \ actByCred \ actByOwner
11 for each ai ∈ actByDeb
12 do for each aj ∈ actByOthers
13 do if var ∈ output(ai) ∩ input(aj)
14 then return non-compliant

15 return compliant

The commitments returned by Algorithm 2 feed Algorithm 3, which checks
whether that commitment is satisfied or not by BP. If any commitment is not
satisfied, R/A alignment does not hold. Given a commitment instance C(deb,
cred, >, non-discl(var)) and the process BP, Algorithm 3 determines whether
there is at least one activity, performed by the debtor deb, that transfers variable
var to an activity executed by a performer that differs from the variable owner
or the creditor cred. In order to check this, a number of sets of activities are
defined in the algorithm by querying BP (e.g., actByDeb indicates all activities
performed by deb), CM (e.g., doc is the document that the variable represents, if
any) , and SRS (e.g., info is the set of information the document makes tangible).

Example 3 (Checking non-disclosure). Suppose an evolution of the security re-
quirements occurs. Take BP as in Fig. 4, CM as in Table 2, and the evolved
requirement C3:C(eGov application, Seller, >, non-discl(Sale information)). By ex-
ecuting the instantiation algorithms for debtor (Algorithm 1), creditor, and se-
curity need (Algorithm 2), we obtain the following four commitment instances:

C3.1:C(eGov, Athens REA, >, non-discl(V1))
C3.2:C(eGov, Athens REA, >, non-discl(V3))
C3.3:C(Storage, Athens REA, >, non-discl(V1))
C3.4:C(Storage, Athens REA, >, non-discl(V3))

By running Algorithm 3 on the four commitments, it returns compliance for C3.1,
C3.3, and C3.4, while it returns non-compliance for C3.2. Indeed, eGov ’s activity
“Send copy to ministry” transfers V3 to activity “Check copy” performed by
the Greek ministry, who is neither the owner of V3 nor the creditor of C3.2.
In order to re-establish R/A alignment, either BP is re-designed so that V3
is not transferred to the Greek ministry, or the non-disclosure requirement is
relaxed, by allowing sale information to be re-distributed. �



14

5.2 Non-repudiation

Non-repudiation in STS-ml is defined as a commitment C(d, c, del=delegate(c,d,g),
non-rep(del)), where actor d commits to actor c that the delegator (c) will be
provided with a proof that the delegation of goal g is acknowledged by d (so that
d cannot able repudiate the delegation later on).

Algorithm 4 Non-Repudiation instantiation

InstantiateNR(C(d, c, del=delegate(c,d,g), non-rep(del)), CM)
1 instCommitments← ∅
2 activities← CM.Search(relates-to(*, g))
3 for each act ∈ activities
4 do inst← C(d, c, del=delegate(c,d,act), non-rep(del))
5 instCommitments.Add(inst)
6 return instCommitments

Function InstantiateNR (Algorithm 4) takes in input a non-repudiation
commitment and CM. CM is searched for all activities that are linked to the
delegated goal g via a relates-to relationship. For each of these activities (lines
3-5), a commitment instance is created where the debtor d commits not to
repudiate the delegation of that activity.

Algorithm 5 Non-repudiation verification

VerifyNR(actNR, perf, actCurr, found, visited)
1 switch TypeOf(actCurr)
2 case ack :
3 if (actCurr ∈ AckFor(actNR) ∧ Perf(actCurr) = perf)
4 then return true

5 case end :
6 return not found
7 case default :
8 if (actCurr = actNR)
9 then found← true

10 next← NextActivities(actCurr) \ visited
11 if next = ∅ then return true

12 switch TypeOf(NextElement(actCurr))
13 case gway-excl :
14 return

∧
a∈next VerifyNR(actNR, perf, a, found, visited ∪ actCurr)

15 case gway-incl :
16 return

∨
a∈next VerifyNR(actNR, perf, a, found, visited ∪ actCurr)

17 case activity :
18 VerifyNR(actNR, perf, GetFirst(next), found, visited ∪ actCurr)
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Each instantiated non-repudiation commitment—which refers to a specific
activity actNR—is verified on BP by the recursive function VerifyNR (Algo-
rithm 5). The commitment is satisfied when, for each path from start to end in
BP that includes that activity, there is an acknowledge for actNR made by the
executor of actNR. The performer of the acknowledge activity certifies the dele-
gator that the delegation has taken place. A possible implementation is notifying
a workflow engine about the delegation acceptance.

The parameters of VerifyNR are the activity for which an ack is needed
(actNR); the debtor in the non-repudiation commitment (perf ); the currently
examined activity in BP (actCurr); a boolean variable indicating if, in the path
the algorithm is exploring, actNR was encountered (found); and the set of activ-
ities the algorithm has already encountered (visited). This last variable enables
dealing with cycles in BP. Given a commitment for the non-repudiation of act,
in which the debtor is deb, the algorithm is initially invoked as VerifyNR(act,
deb, start, false, {start}).

If the current activity is an ack for the searched activity executed by perf,
it returns true (lines 2-4). If it is the end activity, the algorithm returns false if
the activity was found but the ack was not found, while it returns true if the
activity was not found (lines 5-6). If the current activity is the searched one, then
the variable found is set to true: an ack is required (lines 7-9). If there are no
subsequent activities, this means the algorithm has reached the end of a cycle;
since cycles are supported only via exclusive gateways, the algorithm returns
true, as such value does not affect the computation of compliance (lines 10-11).
The recursive calls of the algorithm depend on the type of the next encountered
element (line 12). If an exclusive gate is found, the algorithm is recursively called
for all subsequent activities, and the compliance results are conjuncted, as com-
pliance is needed in all paths (lines 13-14). If a parallel gateway is encountered,
all outgoing paths are followed, and the results are disjuncted, as one ack suffices
(lines 15-16). In case of an activity, the algorithm examines it (lines 17-18).

Example 4 (Checking non-repudiation). Suppose the architecture of the compos-
ite service evolves. We check the evolved BP in Fig. 4 with the non-repudiation
commitment C1:C(eGov application, Seller, D=delegate(Seller, eGov application,
Government notified), non-rep(D)). The instantiation process—which includes Al-
gorithm 4—returns the following commitments:

C1.1:C(eGov, Athens REA, non-rep(Send copy to ministry))
C1.2:C(eGov, Athens REA, non-rep(Scan contract))
C1.3:C(eGov, Athens REA, non-rep(Archive contract copy))
C1.4:C(Storage, Athens REA, non-rep(Send copy to ministry))
C1.5:C(Storage, Athens REA, non-rep(Scan contract))
C1.6:C(Storage, Athens REA, non-rep(Archive contract copy))

By running Algorithm 5 on all the commitments, it returns that C1.3, C1.4,
and C1.5 are compliant: the debtor is not the performer of the activity, thus
no acknowledge is required. C1.1, C1.2, and C1.6 are not compliant: the activity
specified in the commitment is executed but there is no corresponding acknowl-
edge. To align the BP with C1.1, C1.2 and C1.6, either BP is modified adding
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the needed acknowledge activities, or security requirement C1 is removed. A con-
crete solution is to add an acknowledge activity Send copy to ministry between
Add duty stamp and Send copy to ministry.

6 Discussion

We have proposed a methodological and semi-automated approach to align
service-oriented architectures—specifically, service compositions—with security
requirements specifications—in particular, social commitments in STS-ml. While
our approach addresses the entire R/A alignment problem, this paper focuses on
checking alignment. Such activity is key in the era of software evolution, where
both requirements and software systems are subject to unpredicted changes.

Our approach includes three steps: (i) an analyst creates a conceptual map-
ping between requirements and architecture—e.g., the activities that relate to a
certain goal; (ii) algorithms are executed to check R/A alignment; and (iii) in
case of non-alignment, evolutionary actions are taken by the analysts—or the
system itself—to revise either the architecture or the requirements.

We have provided algorithms to check R/A alignment for two security re-
quirements types: non-disclosure of information and non-repudiation of delega-
tions. We have already investigated other types (need-to-know, fall-back and
true redundancy) which were not shown due to space limitations.

Our approach complements methods to derive architectures from require-
ments (e.g. [2,10,16,23]), which can be applied at design-time to define a suitable
architecture for a given set of requirements. Our approach provides a continu-
ous on-line alignment checking, which enables coping with evolution of both
requirements and architecture.

Compliance is a hot topic in information security [12]. The effects of non-
compliance are well known and existing empirical studies have investigated [21]
how compliance is perceived by employees in organizations.

However, only recently the compliance between requirements and business
processes has lead to concrete research efforts. Liu et al [13] describe how to
check the compliance between a set of formally expressed regulatory require-
ments and business processes. They created a tool which transforms (i) business
process models, expressed with Business process Execution language (BPEL),
in pi-calculus; (ii) regulatory requirements, expressed with Business Property
Specification Language (BPSL), in linear temporal logic. This tool verifies the
business process against these compliance rules by means of model-checking tech-
nology. Our approach takes a different yet orthogonal standpoint as it considers
security requirements over interactions.

Ghose and Koliadis [8] enrich BPMN with annotations, then transform mod-
els created using such language into Semantic Process Network (SPNets). This
allows for defining a class of proximity relations that highlight the extent to
which evolutions of an original business process deviate. Unlike us, they focus
only on the structural difference between processes, and they don’t take into
account security requirements.
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Other approaches (e.g., [7]) tackle the evolution problem from a legal per-
spective. They propose a systematic approach to help organizations align their
business processes with (privacy) laws. Unlike ours, however, their approach is
off-line and mainly design-time.

Some algorithms are implemented in the Security Requirements Compli-
ance Module (SRCM) tool. It currently supports non-repudiation and several
authorization-related requirements: non-modification, non-usage, non-production
and non-disclosure. Future versions of the module will support other require-
ments such as redundancy, separation of duties, binding of duties, integrity, etc.
The tool takes as input three XML files: a specific version of BP, the SRS, and
the CM. SRCM returns another XML file which contains the SRS commitments
grouped in three sets: satisfied, violated, or undecidable. SRCM is implemented
as an OSGi bundle2, so as to facilitate integration with other tools.

Our future work includes extending the framework in many ways. First, we
will devise algorithms to support different types of security requirements. Second,
we will provide a complete implementation of the tool to support the analyst
in the mapping phase as well as to check R/A alignment in a continuous on-
line fashion. Third, we will investigate how service-oriented architectures can
self-evolve to guarantee R/A alignment. Fourth, we will empirically evaluate
the effectiveness of our approach on industrial case studies in the Air Traffic
Management domain (from Aniketos). Fifth, we will extend our approach to
include verifying alignment between architecture and implementation. We plan
to use techniques such as bytecode verification to determine whether the security
properties in the business process are correctly implemented.
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