
Requirements as Goals and Commitments too

Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini and
Munindar P. Singh

Abstract In traditional software engineering research and practice, requirements
are classified either as functional or non-functional. Functional requirements con-
sist of all functions the system-to-be ought to support, and have been modeled in
terms of box-and-arrow diagrams in the spirit of SADT. Non-functional require-
ments include desired software qualities for the system-to-be and have been de-
scribed either in natural language or in terms of metrics. This orthodoxy was chal-
lenged in the mid-90s by a host of proposals that had a common theme: all
requirements are initially stakeholder goals and ought to be elicited, modeled and
analyzed as such. Through systematic processes, these goals can be refined into
specifications of functions the system-to-be needs to deliver, while actions as-
signed to external actors need to be executed. This view is dominating Require-
ments Engineering (RE) research and is beginning to have an impact on RE prac-
tice. We propose a next step along this line of research, by adopting the concept of
conditional commitment as companion concept to that of goal. Goals are inten-
tional entities that capture the needs and wants of stakeholders. Commitments, on
the other hand, are social concepts that define the willingness and capability of an
actor A to fulfill a predicate ϕ for the benefit of actor B, provided B (in return) ful-
fills predicate ψ for the benefit of actor A. In our conceptualization, goals are
mapped to collections of commitments rather than functions, qualities, or actor as-
signments. We motivate the importance of the concept of commitment for RE
through examples and discussion. We also contrast our proposal with state-of-the-
art requirements modeling and analysis frameworks, such as KAOS, MAP, i* and
Tropos.

1 Introduction

Colette Rolland is an eminent researcher, mentor and leader in the Information
Systems community thanks to a distinguished career that spans more than three
decades. Her plethora of contributions include novel concepts, methods and tools
for building information systems, as well as dozens of young researchers who will
carry the torch of her ideas for years to come. One of those ideas that has had tre-
mendous impact on the field is the notion that system requirements are stakeholder

2 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

goals—rather than system functions—and ought to be elicited, modeled and ana-
lyzed accordingly [21, 27, 28]. In this paper, we take this idea one small step far-
ther.

In traditional software engineering research and practice, requirements are clas-
sified either as functional or nonfunctional. Functional requirements consist of all
functions the system-to-be ought to support, and have been modeled and analyzed
in terms of box-and-arrow diagrams in the spirit of SADT [32]. Nonfunctional re-
quirements include desired software qualities for the system-to-be and have been
described either in natural language or in terms of metrics. This orthodoxy was
challenged in the mid-90s by a host of proposals that had a common theme: all re-
quirements—functional and non-functional—are initially stakeholder goals, rather
than functions. Through systematic processes, these goals can be refined into spe-
cifications of functions the system-to-be needs to deliver, whereas actions as-
signed to external actors need to be executed. This view is dominating Require-
ments Engineering (RE) research and is beginning to have an impact on RE
practice.

The main objective of this paper is to propose a next step along this line of re-
search, by adding the concept of conditional commitment as companion concept to
that of goal. Goals are intentional entities that capture the needs and wants of
stakeholders. Commitments, on the other hand, are social concepts that define the
willingness and capability of actors to contribute to the fulfillment of require-
ments. Specifically, a conditional commitment involves two actors A and B,
where A has committed to fulfill a predicate φ for the benefit of actor B, provided
B (in return) fulfills ψ for the benefit A. In our conceptualization, goals are
mapped to collections of commitments rather than functions, qualities, and actor
assignments.

Our work is motivated by RE frameworks such as i* [43] which are founded on
the notion of actor and social dependencies between pairs of actors; also on
Agent-Oriented Software Engineering (AOSE) frameworks such as Tropos [4],
where design begins with stakeholder goals and proceeds through a refinement
process to identify and characterize alternative designs (plans) that can fulfill these
goals. The Tropos framework has been formalized for goals and their refinements
[18], but not for goal fulfillment in a multiagent setting where commitments form
the primary vehicle for goal fulfillment. We have striven to keep our proposal ge-
neric so that it applies not only to Tropos but also other frameworks where there is
a need to reason with a collection of agents along with their goals and commit-
ments.

We motivate the importance of the concept of commitment for RE through ex-
amples and discussion. We also contrast our proposal with state-of-the-art re-
quirements modeling and analysis frameworks, such as KAOS [10], MAP [29], i*
and Tropos.

Our proposal is intended primarily for the development of socio-technical sys-
tems. Unlike their traditional computer-based cousins, such systems include in
their architecture and operation organizational and human actors along with soft-
ware ones, and are regulated and constrained by internal organizational rules,

Requirements as Goals and Commitments too 3

business processes, external laws and regulations [15, 31]. Among the challenging
problems related to the analysis and design of a socio-technical system is the prob-
lem of understanding the requirements of its software components, the ways tech-
nology can support human and organizational activities, and the way in which the
structure of these activities is influenced by introducing technology. In particular,
in a socio-technical system, human, organizational and software actors rely heav-
ily on each other in order to fulfill their respective objectives. Not surprisingly, an
important element in the design of a socio-technical system is the identification of
a set of dependencies among actors which, if respected by all parties, will fulfill
all stakeholder goals, the requirements of the socio-technical system.

This paper is structured as follows. Section 2 provides a comprehensive over-
view on commitments, specifically on their usage in multiagent systems. Section 3
illustrates how commitments can be used with goals to specify requirements, and
introduces some reasoning principles. Section 4 exemplifies how the reasoning
may be applied in a travel agency setting. Section 5 compares our model to related
work. Finally, Section 6 concludes with a summary of our approach.

2 Commitments in Multiagent Systems

The concept of commitment spans many disciplines, from Philosophy of Mind, to
Psychology, Sociology and Economics. A review of the literature suggests that the
concept has only been studied in the later half of the last century (it is true: Aris-
totle did not discover everything!).

Commitments as a computational abstraction have a long history in Computer
Science. Bratman [3] and Cohen and Levesque [9] formulated the notion of an
agent’s commitment to his intentions. Singh [33] labeled commitments of this na-
ture as psychological commitments, and instead stressed the notion of social
commitment, that is, commitments among agents. In particular, Singh showed that
social commitments are key to modeling communication among agents [34], and
consequently to the development of large systems consisting of autonomous, in-
teracting entities—in other words, multiagent systems. In the following, the term
commitment is used solely in the sense of a social commitment.

Singh [35] also elucidated the key ontological aspects of commitments. Since
then, commitments have been applied as a basis for flexible interaction among
agents [41, 42]; towards the formulation of agent communication languages [17],
as an abstraction for business process design [11, 14]; towards a type theory for
protocols [6, 24]; towards understanding interoperability among agents [6, 7]; and
towards formulating a service-oriented architecture [38]. Aspects related to rea-
soning about commitments have been addressed in [7, 13, 16, 36]. Commitments
have also been recently applied in requirements engineering [39], and for monitor-
ing in conjunction with goals [26].

Below, we characterize multiagent systems especially emphasizing the value of
commitments.

4 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

2.1 Multiagent Systems

Multiagent Systems (MAS) are open systems: autonomous and heterogeneous en-
tities known as agents participate in multiagent systems. An agent’s autonomy
means that no agent has control over it. An agent’s heterogeneity means that an
agent’s internal construction is inaccessible to other agents. An agent may be a
human, organization, or some stakeholder projected into the system as software. It
is worth emphasizing that socio-technical systems are, first and foremost, multi-
agent systems.

The purpose of the system, specifically, is to provide a basis for coherent inter-
actions among agents in spite of their autonomy. Indeed, the system may be speci-
fied independently of the agents [37]. The system itself serves as the specification,
from a global perspective, of the legitimate expectations that agents adopting roles
in the system would have of each other. In other words, the system is the protocol
(MAS terminology), or specification (RE terminology).

We specify expectations in terms of commitments. An agent that does not ful-
fill its commitments to others is noncompliant. Compliance balances autonomy.
An agent may do as it pleases, but from the system’s perspective it may be non-
compliant. Example 1 illustrates these concepts.

Example 1. A housing contract is a system that specifies the commitments that
govern interaction between a tenant and the landlord, both agents. For example,
the contract may say that the tenant may not accommodate other persons on the
property unless he seeks permission from the landlord. However, the tenant, in
noncompliance with the clause, may on occasion host visiting family members. It
does not matter whether the landlord knows of the violation; what matters is that
from the system perspective, there is a violation.

The question of the basis of compliance goes to the heart of multiagent systems
research. The answer lies in how systems (protocols) are specified. Systems speci-
fied in terms of control and data flow impose strong ordering and synchronization
constraints on interaction; compliance for such specifications amounts to not vio-
lating such constraints, as Example 2 shows.

Example 2. Consider a scenario where Alice wants to buy a book from the book-
seller EBook. The protocol (the system) they employ specifies that the delivery of
the book must precede payment. If Alice pays first, she would be noncompliant
with the protocol.

Systems specified in terms of intentional abstractions such as goals and beliefs
are brittle because they lead to strong assumptions about an agent’s construction
[34].

By contrast, system specification approaches based on commitments hit the
right balance between over-abstraction (exemplified by goal-oriented approaches)
and under-abstraction (exemplified by process-oriented ones). Goal-oriented ap-
proaches model desired states of the world without saying who is responsible for

Requirements as Goals and Commitments too 5

doing what in achieving them. Process-oriented approaches, on the other hand,
specify specific courses of action that are often violated by the actual actions un-
dertaken by relevant agents. Commitments specify interaction at a high level of
abstraction. They signify social relationships between agents and can be inferred
solely from the observable communication between agents. Moreover, compliance
for an agent simply means satisfying the commitments he has toward others [34].
We elaborate on commitments in the following.

2.2 The Concept of Commitment

A commitment is of the form C(debtor, creditor, antecedent, consequent), where
debtor and creditor are agents, and antecedent and consequent are propositions. A
commitment C(x, y, r, u) means that x is committed to y that if r holds, then it will
bring about u. If r holds, then C(x, y, r, u) is detached, and the commitment C(x, y,
T, u) holds (T being the constant for truth). If u holds, then the commitment is dis-
charged and doesn’t hold any longer. All commitments are conditional; an uncon-
ditional commitment is merely a special case where the antecedent equals T. Ex-
amples 3–5 illustrate these concepts. In the examples, EBook is a bookseller, and
Alice is a customer; let BNW and $12 refer to the propositions Brave New World
has been delivered and payment of $12 has been made, respectively.

Example 3. (Commitment) C(EBook, Alice, $12, BNW) means that EBook
commits to Alice that if she pays $12, then EBook will send her the book Brave
New World.

Example 4. (Detach) If Alice makes the payment, that is, if $12 holds, then
C(EBook, Alice, $12, BNW) is detached. In other words, C(EBook, Alice, $12,
BNW) ∧ $12 ⇒ C(EBook, Alice, T, BNW).

Example 5. (Discharge) If EBook sends the book (if BNW holds), then both
C(EBook, Alice, $12, BNW) and C(EBook, Alice, T, BNW) are discharged. That

is to say, BNW ⇒￢C(EBook, Alice, T, BNW) ∧ ￢C(EBook, Alice, $12, BNW).

Importantly, an agent can manipulate commitments by performing certain op-
erations (technically, speech acts). The commitment operations are reproduced be-
low (from [35]). Create, Cancel, and Release are two-party operations, whereas
Delegate and Assign are three-party operations.

• Create(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to hold.
• Cancel(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to not hold.
• Release(x, y, r, u) is performed by y, and it causes C(x, y, r, u) to not hold.
• Delegate(x, y, z, r, u) is performed by x, and it causes C(z, y, r, u) to hold.
• Assign(x, y, z, r, u) is performed by y, and it causes C(x, z, r, u) to hold.

We introduce Declare(x, y, r) as an operation performed by x to inform y that r
holds. This is not a commitment operation, but may indirectly affect commitments

6 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

by causing detaches and discharges. In relation to Example 4, when Alice informs
EBook of the payment by performing Declare(Alice, EBook, $12), then the propo-
sition $12 holds, and causes a detach of C(EBook, Alice, $12, BNW).

A deductive strength relation can be defined between commitments [7]: C(x, y,
r, u) is stronger than C(x, y, s, v) if and only if s entails r and u entails v. So, for
instance, a detached commitment C(x, y, T, u) is stronger than the commitment be-
fore detachment C(x, y, r, u).

A commitment arises in a social or legal context. The context defines the rules
of encounter among the interacting parties, and often serves as an arbiter in dis-
putes and imposes penalties on parties that violate their commitments. For exam-
ple, eBay is the context of all auctions that take place through their service; if a
bidder does not honor a payment obligation for an auction that it has won, eBay
may suspend the bidder’s account.

2.2 System Specification: Protocols

Traditional approaches describe a protocol in terms of the occurrence and relative
order of specific messages.

The protocol of Fig. 1 begins with EBook sending Alice an offer. Alice may ei-
ther accept or reject the offer. If she rejects it, the protocol ends; if she accepts it,
EBook sends her the book. Next, Alice sends EBook the payment. Because an
FSM ignores the meanings of the messages, it defines compliance based on low-
level considerations, such as the order in which commitments are fulfilled. More-
over, this type of specification is often inflexible. As illustrated in Example 2, Al-
ice fails to comply if she sends the payment before she receives the book. Note
that this drawback applies to all process-oriented specification languages used for
specifying rich social concepts such as business processes (e.g. BPMN [2] and
BPEL [1]).

Fig. 1. A purchase protocol as a finite state machine, taken from [7]. Each message is tagged
with its sender and receiver (here and below, E is EBook; A is Alice).

In contrast, we build on commitment protocols [42], which describe messages
along with their business meanings. Commitment operations are realized in dis-
tributed systems by the corresponding messages. Commitment protocols are there-

Requirements as Goals and Commitments too 7

fore defined in terms of the operations introduced above: Create, Cancel, Release,
Delegate, Assign, and Declare. We introduce an abbreviation. Let c = C(x, y, r, u).
Then, we Create(c) abbreviates Create(x, y, r, u).

Table 1 shows an alternative purchase protocol specified in terms of commit-
ments. The semantics of domain-specific messages are explained in terms of
commitment operations. For example, an Offer message is interpreted as a Create
operation, whereas a Reject message releases the debtor from the commitment.

Table 1 A purchase protocol expressed in terms of commitments

Domain-Specific Message Commitment-Oriented Message

Offer(E,A, $12, BNW) Create(E, A, $12, BNW)

Accept(A,E,BNW, $12) Create(A, E, BNW, $12)

Reject(E,A, $12,BNW) Release(E, A, $12, BNW)

Deliver(E,A,BNW) Declare(E, A, BNW)

Pay(A,E, $12) Declare(A, E, $12)

Table 2 introduces the commitments used in Fig. 2 and Fig. 3.

Table 2. Commitments used as running examples in this paper

Name Commitment

cA C(Alice, EBook, BNW, $12)

cB C(EBook, Alice, $12, BNW)

cUA C(Alice, EBook, T, $12)

cUB C(EBook, Alice, T, BNW)

Let us walk through the interaction of Fig. 2, which shows a possible enactment
of the protocol described in Table 1. Upon sending Create(cB), EBook infers cB;
upon receiving the message Alice infers cB. Upon sending Declare($12), Alice in-
fers that $12 holds. Consequently, she infers that cB is detached, yielding cUB.
When EBook receives Declare ($12), it infers cUB. EBook finally sends Declare
(BNW), thus concluding that its commitment is discharged. When Alice receives
Declare(BNW), she draws the same inference.

Fig. 2. An enactment of the protocol of Table 1 in terms of (A) domain-specific messages and
(B) commitments. We show only the strongest commitments at each point. For example, because
cUB is stronger than cB, cUB is sufficient.

8 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

Notice that Table 1 does not specify any ordering constraints on messages. In
effect, each party can send messages in any order. Fig. 3 shows some additional
enactments of the purchase protocol of Table 1. Neither the enactments of Fig.
3(B) and Fig. 3(C) nor the one in Fig. 2 are legal according to the FSM in Fig. 1.

Fig. 3. Three possible enactments of the protocol of Table 1.

So when is an agent compliant with a protocol? The answer is simple: an agent
complies if its commitments are discharged, no matter if delegated or otherwise
manipulated. Traditional approaches force a tradeoff: checking compliance is sim-
ple with rigid automaton-based representations and difficult with flexible reason-
ing. Protocols specified using commitments find the golden mean, promoting flex-
ibility by constraining interactions at the business level, yet providing a rigorous
notion of compliance.

2.4 Architecture, Interoperability, and Middleware

In the discussion above, we used examples where the commitments are defined
over specific agents (for example, Alice and EBook). General protocols can be de-
fined by stating the commitments among roles instead of agents. For example, we
can replace Alice with Customer and EBook with Vendor and use the commit-
ments of the previous sections to specify a general protocol for commercial trans-
actions. These generic protocols can then be used in a specific context by binding
a specific agent to each role of the protocol.

Protocols are architectural specifications: they specify the interconnections be-
tween agents (via roles). Commitment protocols abstract away from considera-
tions of control and data flow, instead focusing on the contractual relationships
among agents. This affords agents flexibility in protocol enactment. However,
flexibility poses challenges for interoperability: if an agent may send any message
at any time, how do we ensure that they will come to the same conclusion about
their commitments towards each other? Example 6 illustrates a case of misalign-
ment.

Example 6. Assume both Alice and EBook infer cB. Subsequently, Alice’s pay-
ment for the book and EBook’s cancellation of the offer cB cross in transit (we are

Requirements as Goals and Commitments too 9

dealing with distributed systems). When Alice receives EBook’s cancellation, she
considers it as having arrived too late; EBook considers Alice’s payment late.
Thus, Alice concludes cUB, whereas EBook does not—they are misaligned.

Interoperability concerns are addressed in [6, 7] via the notion of commitment
alignment. Alignment expresses the intuition that whenever a creditor computes
(that is, infers) a commitment, the presumed debtor also computes the same com-
mitment. If agents get misaligned, their interaction will potentially break down.
Traditionally, interoperability among services has been captured in terms of
whether agents can send and receive messages in a compatible manner—for ex-
ample, in terms of (the absence of) deadlocks. Such formalizations of interopera-
bility are useful, but work at a lower level than commitments. Two agents may be
aligned commitment-wise, but deadlocked because they are both waiting for the
other to act. Conversely, agents may be live, but misaligned.

Alignment motivates a middleware that maintains and monitors commitments,
and transparently takes necessary actions to maintain alignment [8]. For example,
the middleware would transparently notify the debtors when an event occurs that
detaches a commitment; otherwise, in a distributed system where different agents
have likely observed different events, agents could get easily misaligned. Compare
this to what traditional middleware, for example, reliable message queues, do.
They send acknowledgments, store messages until they are consumed, maintain
message order, and so on, in other words, do the bookkeeping to maintain interop-
erability. A commitment-oriented middleware would do the bookkeeping at a high
level, relegating messages queues to a lower level.

The middleware would ideally be able to monitor goals and commitments, rea-
son about compliance and interoperability, and support adaptations. In essence,
the middleware would encode a business semantics and form a common substrate
for all kinds of business applications. The middleware would offer a new pro-
gramming model: it will support writing services directly in terms of goals and
commitments, and will alleviate greatly the burden of writing agents.

3 From Goals to Commitments

Let us begin by summarizing the above discussion about commitments.

• Commitments abstract over data and control flow.
• Commitments are a social abstraction—being grounded in interaction, they en-

code publicly verifiable relationships among agents.
• Commitments support a notion of compliance that enables an agent to act flex-

ibly.
• Protocols, and thus systems, may be specified as the commitments that may

arise among the agents participating in the system.
• Commitments may be supported in middleware: this includes monitoring and

reasoning for the purposes of compliance and interoperability.

10 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

The parallel with the notion of goals as studied in RE may already be obvious.

• Goals abstract over data and control flow specifications.
• Goals represent the particular states of the world an agent wants to achieve.
• Goals are also used in reasoning about flexibility and adaptability, especially in

terms of the variants supported by a goal model.
• Agents may be specified in terms of abstractions such as goals, capabilities,

and so on.
• Goals may also be supported in middleware: an agent can monitor its goals and

act in order to achieve them.

Goals and commitments are complementary. An agent has certain goals that it
wants to satisfy, and in doing so it typically must make (to others) or get (from
others) commitments about certain goals. Alternatively, an agent has commit-
ments to others (and a goal to comply), and it then adopts specific goals in order to
discharge its commitments.

Thus, there are two things that an agent designer or the agent itself, by intro-
spection at runtime, may do.

First, an agent may induce a protocol—the set of commitments—that are nec-
essary to supports the goals it wants to achieve. The agent would additionally pub-
lish the protocol along with the role it has adopted in the protocol, and possibly
invite others to adopt the other roles in the protocol or just wait to be discovered.
Example 7 illustrates this method.

Example 7. Alice has the goal BNW. Alice figures that to get the book, it must in-
teract with a bookseller and pay the bookseller for the book. So Alice induces a
protocol with two roles, customer and merchant, with the commitment
C(customer, merchant, BNW, payment). She adopts customer, and publishes the
protocol as her interface. Eventually, a seller may sell BNW to Alice by playing
role merchant.

Second, an agent may select a protocol from a repository. This recognizes the
fact that protocols are reusable specifications of interaction [14]. Indeed, this is the
case with many standardized protocols such as for financial transactions [12]. An
agent would naturally want to verify if a protocol selected from some repository
were suitable for the achievement of the agent’s goals. The agent would also want
to verify that if he makes a certain commitment, then his goals support fulfillment
of the commitment.

The notion of compliance with a protocol helps decouple one agent’s specifica-
tion from another agent’s. For example, a merchant would only care (perhaps
modulo other properties deriving from interaction such as trust and reputation)
that Alice is committed to payment for the book, irrespective of whether Alice ac-
tually intends to pay. In other words, if an agent commits to another for some-
thing, from the perspective of the latter, it does not matter much what the former’s
goals are or how the former will act to bring about the goal he committed to.

We now sketch some elements of the reasoning one can perform with goals and
commitments. Given some role in a protocol and some goal that the agent wants to

Requirements as Goals and Commitments too 11

achieve, goal support verifies whether an agent can potentially achieve his goal by
playing that role. Commitment support checks if an agent playing a role is poten-
tially able to honor the commitments he may make as part of playing the role.

Note the usage of the words support and potentially. Goal (commitment) sup-
port is a weaker notion than fulfillment; support gives no guarantee about fulfill-
ment at runtime. And yet, it is a more pragmatic notion for open systems, where it
is not possible to make such guarantees anyway. For instance, a commitment that
an agent depends upon to fulfill his goal may be violated.

Goal support We illustrate the basic intuitions with examples.

An agent’s goal is supported if the agent has a capability for it (Example 8).

Example 8. Consider Alice’s goal payment. Alice supports the goal if she has a
capability for it.

An agent’s goal is supported if it can get an appropriate commitment from some
other agent about the state of affairs that the goal represents (Example 9).

Example 9. Consider Alice’s goal BNW. The commitment C(merchant, Alice,
payment, BNW) from some merchant supports the goal, but only if Alice supports
payment. The intuition is that Alice won’t be able to exploit the merchant’s com-
mitment unless she pays.

An agent’s goal is supported if it can make a commitment to some other agent for
some state of affairs (presumably one that the latter would be interested in) if the
latter brings about the state of affairs that the goal represents (Example 10).

Example 10. Consider EBook’s goal payment. He can support this goal by mak-
ing an offer to some customer, that is, by creating C(EBook, customer, payment,
BNW).

The intuitions may be applied recursively for decomposition in goal trees. Thus
for example, if an agent wants to support g, and g is and-composed into g0 and g1,
then the agent would want to verify support for both g0 and g1, and so on.

Commitment support It makes sense to check whether an agent will be able to
support the commitments it undertakes towards others.

Commitment support reduces to goal support for the commitment consequent (Ex-
ample 11).

Example 11. Consider that C(EBook, customer, payment, BNW) holds. EBook
supports his goal payment by the commitment; however, if he does not support
BNW, then if the customer pays, he risks being noncompliant.

We consider goal and commitment support as separate notions. A reckless or
malicious agent may only care that his goals are supported regardless of whether
his commitments are supported; a prudent agent on the other hand would ensure
that the commitments are also supported.

12 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

Reasoning for support as described above offers interesting possibilities. Some
examples: (i) [chaining] x can reason that C(x, y, g0, g1) is supported by C(z, x, g2,
g1) if x supports g2; (ii) [division of labor] x can support a conjunctive goal g0 ∧
g1 by getting commitments for g0 and g1 from two different agents; (iii) [redun-
dancy] to support g, x may get commitments for g from two different agents; and
so on.

4 Applying Goals and Commitments

We show how the conceptual model and the reasoning techniques can be used to
represent and analyze a setting concerning flight tickets purchase via a travel
agency. Four main roles participate in this protocol: travel agency, customer, air-
line, and shipper. Customers are interested in purchasing flight tickets for some
reason (e.g. holidays or business trips), travel agencies provide a tickets-selling
service to customers by booking flight tickets from airlines, shippers offer a ticket
delivery service.

Fig. 4. Role model for the travel agency scenario. Commitments are rectangles that connect (via
directed arrow) a debtor to a creditor

Fig. 4 describes the protocol in the travel agency scenario. The protocol is de-
fined as a set of roles (circles) connected via commitments; the commitments are
labeled (Ci). Table 3 explains the commitments.

Fig. 5 shows the situation where agent Fly has adopted the role travel agency in
the protocol of Fig. 4; the other roles are not bound to agents. Fly has one top-level
goal: selling tickets (ticketsSold). In order to support it, three sub-goals should be
supported: tickets should be obtained, tickets should be delivered to the customer,
and the service should be paid. Tickets can be obtained if the tickets are reserved
and they have been paid. Fly is capable of goal ticketsPaid. There are two ways to
deliver tickets: either electronic tickets are e-mailed or tickets are posted. In order
to send tickets via mail, Fly has to ship the tickets and pay for the shipping. Fly is
capable of eticketsEmailed. E-mailing tickets contributes positively (++S) [18] to
softgoal costsKeptLow, whereas sending via shipping contributes negatively (--S)
to such softgoal.

Requirements as Goals and Commitments too 13

Table 3. Commitments in the travel agency protocol

Label Description

C1 shipper to travel agency: if the shipping cost have been paid, the flight tickets
will be shipped

C2 travel agency to customer: if the booking service has been paid, the electronic
tickets will be e-mailed

C3 travel agency to customer: if the booking service and the shipping cost have
been paid, flight tickets will be shipped

C4 airline to travel agency: if flight tickets have been paid, tickets will be reserved

C5 airline to customer: if tickets have been shown, flight boarding will be allowed

Fig. 5. Visual representation of Fly’s travel agency-bound specification

We present now some queries concerning goal and commitment support that
can be run against the specification of Fig. 5.

Query 1 Can Fly support goal ticketsSold?

The answer to this query is yes. Fly can support ticketsObtained by using its ca-
pability for ticketsPaid and getting C4 from some airline. Fly supports ticketsDeliv-
ered via its capability for eticketsEmailed. Fly can support servicePaid by making
C2 to some customer.

An alternative solution involves sending tickets via shipping. Fly could support
ticketsShipped and shippingPaid if it makes C3 to a customer (which supports ser-
vicePaid and shippingPaid) and get C1 from some shipper (to support tick-
etsShipped).

Another solution includes supporting both eticketsEmailed and ticketsSent:
both C2 and C3 are made to the customer.

14 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

Query 2 Can Fly support goals ticketsSold and costsKeptLow?

This query adds an additional constraint to Query 1: supporting softgoal cost-
sKeptLow. The only solution is when tickets are e-mailed: eticketsEmailed con-
tributes positively to costsKeptLow and the softgoal gets no negative contribution.
Posting tickets does not work: ticketsSent contributes negatively to costsKeptLow.

Query 3 Can Fly support commitment C3 to customer?

As observed before, commitment support reduces to goal support. Thus, let’s
check whether Fly can support ticketsShipped if the antecedent of C3 (servicePaid
and shippingPaid) holds. Given the goal tree hierarchy of Fig. 5, the three goals
that relate to C3 are children of the top-level goal ticketsSold. The second solution
of Query 1 tells us that Fly can support C3 as it contains all such goals.

5 Discussion

Goal-oriented requirements engineering methodologies have been conceived with
a traditional view of software in mind. They are adequate to design systems where
stakeholders cooperate in a fully specified environment, but they are not thought
for open systems composed of autonomous and heterogeneous participants.

The MAP approach [29] is describes processes in terms of intentions and
strategies: a map is a directed graph where nodes are intentions and directed ar-
rows represent strategies. A strategy explains how to achieve one intention starting
from another intention. Maps have been recently used to define the concept of In-
tentional Services Oriented Architecture (ISOA) [30], where the authors conceive
services in terms of intentional abstractions such as goals. In our approach, we
model agents as goal-driven entities. However, we place emphasis on the model-
ing of the system itself via the social abstraction of commitments.

The i* framework [43] starts from the identification of the stakeholders in the
analyzed organizational setting and model these stakeholders—actors—in terms of
their own goals and the dependencies between them. However, as concerns open
settings such as socio-technical systems, i* suffers from two primary drawbacks.

One, dependencies do not capture business relationships as commitments do.
Guizzardi et al. [20] and Telang and Singh [39] highlight the advantages of com-
mitments over dependencies for capturing relationships between roles. Both Te-
lang and Singh and Gordijn et al. [19] especially note that dependencies do not
capture the reciprocal nature of a business transaction.

Two, the strategic rationale model violates the heterogeneity principle by mak-
ing assumptions about the goals of others actors. Commitments, by contrast, obvi-
ate looking inside an actor; as mentioned above, they completely decouple agents.

i* has been recently used to describe services [23]; this approach violates
agents heterogeneity by making assumptions about other participants’ internals.
Commitment protocols are more reusable than the goal models of actors [14].

Requirements as Goals and Commitments too 15

Tropos [4] builds on top of i* and adds models and concepts to be used in the
development phases that follow requirements engineering. Being a derivative of
i* , Tropos suffers of the same problem concerning dependencies. Tropos provides
an architectural model for the agents to develop, but exploits a weak notion of
agency. Agents are designed and implemented under the assumption that they will
cooperate with others. Our proposal differs in that cooperation is guaranteed by
mutual interest in a commitment: the agents playing debtor and creditor have their
own reasons to interact via commitments, but they don’t (and can’t) know the oth-
er party’s motivations. Penserini et al. [25] have extended Tropos to design web
services that support the stakeholders’ goals. The main limitation of this approach
is that it assumes that requirements engineers have a global view on all the actors.

KAOS [10] exploits a system-oriented perspective to specify requirements.
Stakeholders are essential to gather system goals, but they are not explicitly repre-
sented in KAOS models. Leaf level goals are assigned to agents on the basis of a
responsibility principle; van Lamsweerde has also discussed how KAOS require-
ments models can be mapped to software architecture [40]. KAOS is effective for
the development of traditional software systems, but lacks of the proper abstrac-
tions to design autonomous and heterogeneous agents in open systems.

Gordijn et al. [19] combine i* goal modeling with profitability modeling for the
various stakeholders to design e-services. In such a way, the authors consider not
only the intentions of the agents, but also the economic value of a service. Their
approach is less generic than ours: economic value exchanges are a very important
criteria but not the only one; moreover, they assume a monolithic system-
development point of view which does not suit well in open systems.

Liu et al. [22] propose an i* extension intended for the design of open systems,
and propose some reasoning techniques that can be executed against these models.
The authors formalize commitments in a weaker sense—as a relation between an
actor and a service, not between actors, as is done in our approach.

Bryl et al. [5] use a planning-based approach to design socio-technical systems.
The main intuition behind this work is to explore the space of possible alternatives
for satisfying some goal. However, unlike us, they follow goal dependencies in-
side the dependee actors, thus violating heterogeneity.

6 Conclusions

The power of any technique for eliciting, modeling and analyzing requirements
rests on the primitive concepts used to conceptualize them. The advent of goal-
orientation in RE twenty years ago brought about a shift from a functional to an
intentional view of software systems. The implications of this shift are still being
worked out.

This paper advocates a further shift from an intentional to a social view of re-
quirements for socio-technical systems. The proposal continues along a path orig-
inally defined by i* in Eric Yu’s PhD thesis. Our new proposal is founded on the

16 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

concept of commitment and related social concepts; it calls for a new form of sys-
tem specification that prescribes a system’s course of action more concretely than
goal-oriented techniques, but more abstractly than process-oriented ones. We see
this proposal as yet another step towards an agent-oriented view of socio-technical
systems, their conceptualization, design, and evolution.

References

1. BPEL: Business process execution language for web services, version 1.1 (May 2003) www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

2. BPMN: Business process modeling notation, v1.1 (January 2008) http://www.bpmn.org/.
3. Bratman ME (1987) Intention, Plans, and Practical Reason. Harvard University Press, Cam-

bridge, MA
4. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3): 203–236

5. Bryl V, Giorgini P, Mylopoulos J (2009) Designing socio-technical systems: From stake-
holder goals to social networks. Requirements Engineering 14(1): 47–70

6. Chopra AK, Singh MP (2008) Constitutive interoperability. In: Proceedings of the Seventh
International Conference on Autonomous Agents and Multiagent Systems, pp.797–804

7. Chopra AK, SinghMP (2009) Multiagent commitment alignment. In: Proceedings of the
Eighth International Conference on Autonomous Agents and MultiAgent Systems, pp.937–
944

8. Chopra AK, Singh MP (2009) An architecture for multiagent systems: An approach based on
commitments. In: Proceedings of the Seventh international Workshop on Programming Mul-
ti-Agent Systems

9. Cohen PR, Levesque HJ (1990) Intention is choice with commitment. Artificial Intelligence
42: 213–261

10. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition.
Science of Computer Programming 20(1–2): 3–50

11. Desai N, Mallya AU, Chopra AK, Singh MP (2005) Interaction protocols as design abstrac-
tions for business processes. IEEE Transactions on Software Engineering 31(12): 1015–1027

12. Desai N, Chopra AK, Arrott M, Specht B, Singh MP (2007) Engineering foreign exchange
processes via commitment protocols. In: Proceedings of the 4th IEEE International Confer-
ence on Services Computing, Los Alamitos, IEEE Computer Society Press, pp.514–521

13. Desai N, Chopra AK, Singh MP (2007) Representing and reasoning about commitments in
business processes. In: Proceedings of the 22nd Conference on Artificial Intelligence.
pp.1328–1333

14. Desai N, Chopra AK, Singh MP (2010) Amoeba: A methodology for modeling and evolution
of cross-organizational business processes. ACM Transactions on Software Engineering and
Methodology 19(2)

15. Emery FE (1959) Characteristics of sociotechnical systems. London: Travistock Institute of
Human Relations

16. Fornara N, Colombetti M (2002) Operational specification of a commitment-based agent
communication language. In: Proceedings of the 1st International Joint Conference on Auto-
nomous Agents and Multiagent Systems (AAMAS), ACM Press, pp.535–542

17. Fornara N, Colombetti M (2004) A commitment-based approach to agent communication.
Applied Artificial Intelligence 18(9-10): 853–866

18. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2003) Reasoning with goal models.
In: Conceptual Modeling—ER 2002. LNCS pp.167–181, Springer

Requirements as Goals and Commitments too 17

19. Gordijn J, Yu E, van der Raadt B (2006) E-service design using i* and e3value modeling.
IEEE Software 23(3): 26–33

20. Guizzardi RSS, Guizzardi G, Perini A, Mylopoulos J (2007) Towards an ontological account
of agent-oriented goals. In: Software Engineering for Multi-Agent Systems V. LNCS 4408,
pp.148–164, Springer

21. Kaabi RS, Souveyet C, Rolland C (2004) Eliciting service composition in a goal driven man-
ner. In: Proceedings of the 2nd International Conference on Service Oriented Computing,
pp.308–315

22. Liu L, Liu Q, Chi CH, Jin Z, Yu E (2008) Towards a service requirements modelling ontol-
ogy based on agent knowledge and intentions. International Journal of Agent-Oriented Soft-
ware Engineering 2(3): 324–349

23. Lo A, Yu E (2007) From business models to service-oriented design: A reference catalog ap-
proach. In: Proceedings of the 26th International Conference on Conceptual Modeling (ER
2007), pp.87–101

24. Mallya AU, Singh MP (2007) An algebra for commitment protocols. Journal of Autonomous
Agents and Multi-Agent Systems 14(2): 143–163

25. Penserini L, Perini A, Susi A, Mylopoulos J (2006) From stakeholder needs to service re-
quirements. In: Workshop on Service-Oriented Computing: Consequences for Engineering
Requirements (SOCCER’06)

26. Robinson WN, Purao S (2009) Specifying and monitoring interactions and commitments in
open business processes. IEEE Software 26(2):72–79

27. Rolland C, Souveyet C, Achour CB (1998) Guiding goal modeling using scenarios. IEEE
Transactions on Software Engineering 24(12):1055–1071

28. Rolland C, Grosz G, Kla R (1999) Experience with goal-scenario coupling in requirements
engineering. In: Proceedings of the IEEE International Symposium on Requirements Engi-
neering

29. Rolland C, Prakash N, Benjamen A (1999) A multi-model view of process modelling. Re-
quirements Engineering 4(4): 169–187

30. Rolland C, Kaabi RS, Kraïem N (2007) On ISOA: Intentional services oriented architecture.
In: Proceedings of the 19th International Conference on Advanced Information Systems En-
gineering, (CAiSE 2007), pp.158–172

31. Ropohl G (1999) Philosophy of socio-technical systems. Society for Philosophy and Tech-
nology 4(3):55–71

32 Ross DT (1977) Structured analysis (SA): A language for communicating ideas. IEEE Trans-
actions on Software Engineering 3(1): 16–34

33. Singh MP (1991) Social and psychological commitments in multiagent systems. In: AAAI
Fall Symposium on Knowledge and Action at Social and Organizational Levels, pp.104–106

34. Singh MP (1998) Agent communication languages: Rethinking the principles. IEEE Com-
puter 31(12): 40–47

35. Singh MP (1999) An ontology for commitments in multiagent systems: Toward a unification
of normative concepts. Artificial Intelligence and Law 7, pp.97–113

36. Singh MP (2008) Semantical considerations on dialectical and practical commitments. In:
Proceedings of the 23rd Conference on Artificial Intelligence, pp.176–181

37. Singh MP, Chopra AK (2009) Programming multiagent systems without programming
agents. In: Proceedings of the 7th International Workshop on Programming Multiagent Sys-
tems, (ProMAS 2009), invited paper

38. Singh MP, Chopra AK, Desai N (2009) Commitment-based service-oriented architecture.
IEEE Computer 42(11): 72–79

39. Telang PR, Singh MP (2009) Enhancing Tropos with commitments: A business metamodel
and methodology. In Borgida A, Chaudhri V, Giorgini P, Yu E 8eds) Conceptual Modeling:
Foundations and Applications. LNCS 5600, pp. 417–435, Springer

40. van Lamsweerde A (2003) From system goals to software architecture. In: Formal Methods
for Software Architectures. LNCS 2804, pp. 25–43, Springer

18 Amit K. Chopra, John Mylopoulos, Fabiano Dalpiaz, Paolo Giorgini, Munindar P. Singh

41. Winikoff M, Liu W, Harland J (2005) Enhancing commitment machines. In: Proceedings of
the 2nd International Workshop on Declarative Agent Languages and Technologies (DALT).
LNAI 3476, pp.198–220, Springer

42. Yolum P, Singh MP (2002) Flexible protocol specification and execution: Applying event
calculus planning using commitments. In: Proceedings of the 1st International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems, ACM Press, pp.527–534

43. Yu ES (1997) Towards modelling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the Third IEEE International Symposium on Requirements Engi-
neering, pp.226–235

