
Modelling Security Requirements
in Socio-Technical Systems with STS-Tool

Elda Paja, Fabiano Dalpiaz, Mauro Poggianella, Pierluigi Roberti and Paolo Giorgini

Department of Information Engineering and Computer Science,
University of Trento, Italy

{paja,dalpiaz,poggianella,roberti,giorgini}@disi.unitn.it

Abstract. Security Requirements Engineering (SRE) deals with the specification
of security requirements for the system-to-be starting with the analysis of security
issues as soon as in the early requirements phase. STS-ml is an actor- and goal-
oriented requirements modelling language for Socio-Technical Systems (STSs),
which represents the security needs the stakeholders express as constraints over
the interactions between actors. In this paper, we present STS-Tool, the secu-
rity requirements engineering tool that supports STS-ml. STS-Tool allows for
modelling a socio-technical system at a high level of abstraction, expressing con-
straints (security needs) over the interactions between the actors in the STS, and
deriving security requirements in terms of social commitments (promises with
contractual validity). It offers multi-view modelling, allowing designers to focus
on a different perspective at a time, while promoting modularity.

1 Introduction

Socio-Technical Systems (STSs) are complex systems in which social actors interact
with one another and with technical components to fulfil their goals. Each participant is
autonomous, and the system is defined in terms of the interactions among actors, which
may be: social reliance, actors rely on others to achieve their goals, and information
exchange, actors exchange relevant information. In such systems, many security issues
arise from the interaction between actors, and on how the exchanged information is
manipulated. Therefore, social aspects are a main concern when analysing security.

The importance of considering security from a social and organisational perspective
is widely recognised in literature [4,6,7,11]. However, such approaches either rely on
high-level concepts that are hard to map to technical requirements (e.g. [4,7]), or suggest
purely technical security mechanisms (e.g. [3]). In our view, SRE should start from
high-level concerns and refine them into requirements for the system-to-be.

Goal-oriented approaches to security requirements engineering seem to be appro-
priate for designing secure STSs, since they build upon the concepts of intentional and
social actors, who have objectives to achieve and interact with others to achieve them.
Existing approaches, such as Tropos [1], Secure Tropos [8], and SI* [5], enable repre-
senting actors and their dependencies, in an organisational perspective, but they make
the assumption that actors will behave as depicted in the model. Given that the partici-
pating actors in an STS are mutually independent—thus, their behaviour is not disclosed
to others and they cannot be controlled—, we cannot make such assumption. Instead,



the best a designer can do is to allow actors to specify security constraints over their in-
teractions. We refer to these constraints as security needs to distinguish from the general
security requirements of the system-to-be.

Based upon these principles, we have previously proposed STS-ml (Socio-Technical
Security modelling language) [2], an actor- and goal-oriented modelling language that
supports the modelling and analysis of security requirements for STSs. In this paper,
we present STS-Tool 1, a security requirements engineering tool for STS-ml. The tool
offers a graphical modelling environment to allow the definition of the system in terms
of actors and their interactions.

The rest of the paper is organised as follows. Sec. 2 briefly outlines the STS-ml
language. Sec. 3 presents the main features of STS-Tool. Sec. 4 describes a possible
usage scenario. Sec. 5 presents conclusions and future work.

2 STS-ml

STS-ml builds on top of Tropos [1] and its security-oriented extension [5]. It revises the
high-level organisational concepts from Tropos, maintaining a minimal set of concepts
including actor, goal, delegation, etc., and uses the concept of social commitment among
actors, to specify security requirements.

The particularity of STS-ml is that it allows actors to express security needs over
interactions to constrain the way interaction is to take place. This is important, because
the actors are mutually independent, and it is when they enter interactions that they
might want to express their concerns regarding security. For instance, in e-commerce,
a buyer would want a seller not to disclose its credit card details to other parties, and to
use this information strictly to perform the payment of the acquired goods.

Social commitments [9] are promises with contractual validity that actors make and
get from one another, to achieve their objectives. Formally, commitments are a quater-
nary relation C(debtor, creditor, antecedent, consequent) between a debtor and a credi-
tor (both being actors), in which the debtor commits to the creditor that, if the antecedent
is brought about, the consequent will be brought about. In STS-ml, we consider com-
mitments about security-related properties. This concept is used to offer a guarantee
that the debtor acknowledges the specified security need by making a commitment, and
will behave as required by the security need by bringing about the commitment. For
this, whenever a security need is specified from one actor to the other, a commitment
on the other direction is expected from the second actor to satisfy the security need. For
instance, in e-commerce, the provider commits to prospective buyers that their credit
card details will not be disclosed to other parties, and will be used only for the payment
of their acquired goods.

The outcome of STS-ml is a security requirements specification expressed in terms
of commitments, in which the debtor actor is responsible for the satisfaction of the se-
curity requirement, whereas the creditor actor is the requestor. Fig. 1 outlines STS-ml:
the specifications of security requirements for the system-to-be are derived once the
modelling is done and the security needs imposed by the actors are expressed. STS-ml

1 STS-Tool is available for download at http://www.sts-tool.eu

http://www.sts-tool.eu


supports multi-view modelling: interactions among actors can be represented by focus-
ing on orthogonal views. As shown in Fig. 1, STS-ml consists of three different views:
social, authorisation, and information. The security needs are expressed in the opera-
tional view (Fig. 1), which consists of the three aforementioned views. The operational
view is automatically mapped to the specification security requirements for the system-
to-be, which supports the security needs expressed in the operational view.

Social 
View

Authorisation 
View

Information 
View

Operational View

STS-Tool

Security 
Requirements

derive 
automatically

Designer

express 
security needs

Fig. 1: From the operational view to security requirements

The social view represents actors as intentional and social entities. Actors are inten-
tional as they have goals they want to achieve, and they are social, because they interact
with others to get things done, mainly by delegating goals. Actors may possess docu-
ments, they may use, modify, or produce documents while achieving their goals, and
they may distribute documents through document provision to other actors.

The information view gives a structured representation of the information and doc-
uments in the given setting. Information can be represented by one or more documents
(made tangible by), and on the other hand one or more informations can be part of
some document. It is important to keep track of how information and documents are in-
terconnected, to be able to identify which information actors manipulate, while using,
modifying, producing, or distributing documents for achieving their goals.

The authorisation view shows the permission flow from actor to actor, that is, the
authorisations actors grant to others about information, specifying the operations ac-
tors can perform on the given information, namely use, modify, produce, and distribute.
Apart from granting authority on performing operations, we consider also whether au-
thority to further give authorisations is granted.

Following our intuition of relating security to interactions, we allow stakeholders to
express their security needs over goal delegations and authorisations regarding infor-
mation. Once the modelling is done, and all the security needs are specified, the list of
of security requirements can be automatically derived from the operational view.

3 STS-Tool

STS-Tool is a modelling tool for STS-ml. It is a standalone application written in Java,
and its core is based on Eclipse RCP Engine. It is distributed as a compressed archive for



multiple platforms (Windows 32 and 64 bits, Mac OS X, Linux), and is freely available
for download. STS-Tool has the following features:

– Supports specification of projects: the socio-technical security models are created
within the scope of project containers. A project contains a set of models. Each
project refers to a certain scenario. Typical operations on projects are supported:
create, save, load, modify, rename.

– Diagrammatic: the tool enables the creation (drawing) of diagrams. Diagrams are
created only within a project. Apart from typical create/modify/save/load opera-
tions, the following is also supported:
• Export diagram to different file formats (png, pdf, etc.);
• Provide different views on a diagram, specifically: social view, information

view, authorisation view. Each view shows specific elements and hides others,
while keeping always visible elements that serve as connection points between
the views (e.g. roles and agents). Inter-view consistency is ensured by for in-
stance propagating insertion/deletion of certain elements to all views.

– Consistency checking: the tool helps to create diagrams that follow the semantics
of the modelling language, thus improving consistency and validity.

– Generating requirements documents: the tool allows the generation of requirements
documents that contain the list of security requirements derived from the model
in terms of social commitments. Moreover, this document contains information
describing the models, which is customisable by the designer. The designer can
select which concepts or relations he wants more information about.

4 Modelling with STS-Tool

We will demonstrate the features of STS-Tool by modelling an illustrative example
from a case study on e-Government.

Example 1 (e-Government). Land selling involves not only finding a trustworthy buyer,
but also exchanging several documents with various governmental bodies. The seller
needs the municipality to certify that the land is residential zoning. The land selling
process we consider is supported by an eGov application, through which the official
contract (including the municipalitys certification) is sent to the ministry (who has the
right to object) and is archived.

Fig. 2 shows the three orthogonal views supported by the tool, namely social, infor-
mation, and authorisation view, together with the list of derived security requirements
(commitments view). We present here the steps to follow for performing the modelling
of our e-Government example to show how the tool facilitates and supports the mod-
elling process:

1. Building the Social View: we start the modelling with the representation of the roles
and agents present in the scenario. For this, we switch to Social View (Fig. 2a), and
select these concepts from the Palette. In our example, we represent the Munici-
pality, and the Seller as roles, whereas the eGov application as agent. When first
created, roles and agents come together with their rationale (open compartment), so



(a) Social view

(b) Information view (c) Authorisation view

Fig. 2: Multi-view modelling for the eGovernment scenario

that we can specify goals or documents they have. The rationales can be hidden or
expanded, to give the possibility to focus on some role/agent at a time. Actors want
to achieve one or more goals. We place actor goals within their rationale: the seller
has goal Land sold. Goals are refined by AND/OR-decompositions obtaining goal
trees: Land sold is the root goal to be fulfilled. The tool facilitates a correct mod-
elling of goal trees, by not allowing goal cycles.For some goals, actors need to rely
on others through goal delegation. When drawing a delegation, the tool makes sure
that the actor does have a goal before allowing to draw the goal delegation relation-
ship. Then, the delegated goal is automatically created within the compartment of
the delegatee. If a role/agent is delegated the same goal from different roles/actors,
the tool maintains one copy of the goal within the delegatee’s rationale. Following
the semantics of the language, once a goal delegation is drawn from a delegator to



a delegatee, the tool does not allow a delegation (or delegation chain) that ends up
to the delegator, that is, delegation cycles are also not allowed in the tool.

2. Are there any Security Needs?: the designer analyses delegations, to see if any of
the supported security needs applies over goal delegations. In Fig. 2a, the Seller
requests eGov application not to repudiate the delegation of goal Government no-
tified. To specify this using the tool, the designer clicks on the delegated goal, to
have a drop down list of security needs and selects the desired ones. Some of the se-
curity needs are mutually exclusive; for these, the tool allows the selection of only
one security need. Once the security need is selected, a locker appears on the goal
to show that security needs have been specified, and the list of specified security
needs appears below the goal, represented with distinguishable labels and different
colours.

3. Refining the Social View: to achieve their goals, actors need, modify, and produce
documents. For instance, the Seller needs document Contract draft to achieve goal
Contract finalised (Fig. 2a). To model this, we choose the concept Document from
the palette, name it Contract draft and then select the relation Need from the Palette
and connect the goal with the document. The tool helps the designer by allowing
this relation to be drawn only starting from the goal to the resource, not vice-versa.

4. Analyse information: we switch to Information View and represent informations
and documents, relating them together. The tool inherits the roles/agents together
with the documents from the social view, so the designer needs just specify how the
different documents are interconnected (PartOf) and what information they repre-
sent (TangibleBy). For instance, Official contract and Contract draft contain (make
tangible) Sale information (Fig. 2b). The tool allows TangibleBy to be drawn only
from informations to documents, whereas PartOf to be drawn only between infor-
mations or documents respectively. Cycles of PartOfs are not allowed by the tool.

5. Further refine the Social View: the designer switches back to the Social View to rep-
resent information exchange. The tool allows to draw document provisions starting
only from an actor that produces the document or is in possession of that document.
In Fig. 2a, the Seller produces document Official contract and provides it to the
eGov application, which needs this document to achieve goal Contract archived.
Similarly, the designer represents the other interactions with Municipality.

6. Model ownerships: switch to the Authorisation View and define who are the owners
of the different informations. The tool inherits roles/agents from the other views
and the informations from the information view, so the designer just needs to link
the roles/agents with the information, using the Own relation from the Palette. In
our example, the Seller is the owner of Sale information.

7. Model authorisations: starting from information owners, we draw the authorisa-
tions they grant to other actors. For this, the relation Authorisation is selected from
the Palette and is drawn starting from one actor to another. This action creates on
the canvas an authorisation box that includes labels for the four supported opera-
tions (use-U, modify-M, produce-P,distribute-D), which the designer can select by
clicking on the label. Below, there are two boxes, which specify that the designer
should double click to respectively add a set of informations, and a set of goals.
In our example, the Seller authorises the Municipality to use Sale information in
the scope of goal Approval provided (Fig. 2c). Security needs over authorisations



are specified implicitly from the granted authorisation, so the designer needs not do
anything, apart from specifying authorisations. For instance, the Seller requires the
Municipality not to disclose Sale information, since the label ’D’ for the operation
distribute is not selected.

This modelling process (steps 1–7) is iterative. The views can be further refined,
depending on the level of detail that is needed. The changes in one view have effects on
other views. As described above, the different roles/agents are maintained throughout
the views, so the addition/deletion of some role/agent would affect the other views.
However, even in these cases, the tool provides support by checking that a role/agent is
deleted only when it does not have any interactions with other roles/agents.

Once the modelling is done, and all security needs have been expressed, the tool
allows the automatic derivation of security requirements. The security requirements
are listed and they can be sorted or filtered according to their different attributes: Re-
sponsible, Requirement, and Requestor (Fig. 3). For instance, filtering the security re-
quirements with respect to the Responsible actor, gives an idea of who are the actors
responsible to satisfy the requirements, while filtering them according to the Require-
ment, groups together requirements that refer to the same type of security need. Finally,
a textual Description is provided for every selected security requirement.

Fig. 3: Security requirements via commitments

At the end of this process, the tool allows designers to export models and generate
automatically a security requirements document, which helps them communicate with
stakeholders. This document is customisable: designers can choose among a number of
model features to include in the report (e.g., including only subset of the actors).

5 Conclusion and future work

Our work on the STS-ml and tool is ongoing as part of the European research project
Aniketos2. We are iteratively evaluating our language and tool on case studies from
different domains, namely, telecommunications, air traffic management control, and

2 http://www.aniketos.eu/

http://www.aniketos.eu/


e-Government. These case studies offer different complexities, sizes and operational
environments, so they prove suitable for our needs. The current version of the tool is a
result of an iterative development process, where the release of internal versions of the
tool has been followed by evaluation activities [10].

Future work about STS-Tool includes (i) embedding automated reasoning capabili-
ties to identify inconsistencies and conflicts between requirements; and (ii) implement-
ing a plugin management system that allows for adding functionalities to STS-Tool.

Acknowledgments

The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant no 257930 (Aniketos)
and 256980 (NESSoS).

References

1. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

2. Fabiano Dalpiaz, Elda Paja, and Paolo Giorgini. Security Requirements Engineering via
Commitments. In Proceedings of the First Workshop on Socio-Technical Aspects in Security
and Trust (STAST’11), pages 1–8, 2011.

3. Donald G. Firesmith. Security Use Cases. Journal of Object Technology, 2(3):53–64, 2003.
4. Paolo Giorgini, Fabio Massacci, and John Mylopoulos. Requirement Engineering meets Se-

curity: A Case Study on Modelling Secure Electronic Transactions by VISA and Mastercard.
In Proceedings of the 22nd International Conference on Conceptual Modeling (ER 2003),
volume 2813 of LNCS, pages 263–276. Springer, 2003.

5. Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modeling Security
Requirements through Ownership, Permission and Delegation. In Proceedings of the 13th
IEEE International Conference on Requirements Engineering (RE 2005), pages 167–176.
IEEE Computer Society, 2005.

6. C.B. Haley, R. Laney, J.D. Moffett, and B. Nuseibeh. Security Requirements Engineering: A
Framework for Representation and Analysis. IEEE Transactions on Software Engineering,
34(1):133–153, 2008.

7. Lin Liu, Eric Yu, and John Mylopoulos. Security and Privacy Requirements Analysis within
a Social Setting. In Proceedings of the 11th IEEE International Conference on Requirements
Engineering (RE 2003), pages 151–161. IEEE Computer Society, 2003.

8. Haralambos Mouratidis and Paolo Giorgini. Secure Tropos: A Security-Oriented Extension
of the Tropos methodology. International Journal of Software Engineering and Knowledge
Engineering, 17(2):285–309, 2007.

9. Munindar P. Singh. An Ontology for Commitments in Multiagent Systems: Toward a Unifi-
cation of Normative Concepts. Artificial Intelligence and Law, 7:97–113, 1999.

10. Sandra Trösterer, Elke Beck, Fabiano Dalpiaz, Elda Paja, Paolo Giorgini, and Manfred
Tscheligi. Formative User-Centered Evaluation of Security Modeling: Results from a Case
Study. International Journal of Secure Software Engineering, 3(1):1–19, 2012.

11. Axel van Lamsweerde. Elaborating Security Requirements by Construction of Intentional
Anti-Models. In Proceedings of the 26th International Conference on Software Engineering
(ICSE 2004), pages 148–157. IEEE Computer Society, 2004.


	Modelling Security Requirements in Socio-Technical Systems with STS-Tool

