
Software Self-Reconfiguration: a BDI-based approach

(Extended Abstract)
Fabiano Dalpiaz

DISI - University of Trento
38100 Trento, Italy

dalpiaz@disi.unitn.it

Paolo Giorgini
DISI - University of Trento

38100 Trento, Italy
pgiorgio@disi.unitn.it

John Mylopoulos
DISI - University of Trento

38100 Trento, Italy
jm@disi.unitn.it

ABSTRACT
Software self-reconfiguration is the capability of software
systems to change autonomously their current configuration
to a better one. This is a more and more requested fea-
ture, particularly for software systems that operate in criti-
cal domains when human intervention is not possible or not
convenient. The Belief-Desire-Intention (BDI) architecture
proposes a structured Monitor-Diagnose-Compensate cycle
that partially meets self-reconfiguration requirements. We
propose a realization of the abstract BDI control loop and
we draw generic solutions to support the self-reconfiguration
process. We aim at supporting traceability and runtime
monitoring of requirements and we base our solution on Tro-
pos goal models to structure agents’ internal state.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent
systems

General Terms
Algorithms, Design

Keywords
BDI, self-reconfiguration, Multi-Agent Systems

1. INTRODUCTION
Modern software systems are an interplay of several inter-

acting subsystems characterized by a high level of computa-
tional complexity. As a consequence, their development and
management is getting more and more difficult for system
developers and administrators.

Coping with complexity is not trivial, and the problem
cannot be completely solved at design time. The high level
of integration prevents designers from anticipating all the
possible interactions between system’s components. Errors
and failures not addressed at design-time should be handled
through runtime reconfiguration, either by system admin-
istrators or the system itself. The second solution – self-
reconfiguration – is the only possible option to reduce the
workload of system administrators.

Cite as: Software Self-Reconfiguration: a BDI-based approach (Short
Paper), Fabiano Dalpiaz, Paolo Giorgini and John Mylopoulos, Proc.
of 8th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The Belief-Desire-Intention (BDI) paradigm [5] is a natu-
ral solution for the development of multi-agent systems with
self-reconfiguring capabilities. A BDI agent cyclically (i)
updates its beliefs according to sensed events; (ii) identi-
fies a set of options that react to events; (iii) selects plans to
achieve the options and creates new intentions; (iv) executes
a step of an intention; and (v) revises its intentions.

We introduce a realization of the BDI abstract interpreter
[7] to support the execution of self-reconfiguring systems, ex-
ploiting well established techniques from Requirements En-
gineering and Databases. We provide an elaborate goal spec-
ification using the Tropos [2] goal-oriented modeling frame-
work, perform monitoring and problem determination on the
basis of Wang’s approach [6], enact failure handling taking
inspiration from Sagas (Molina [3]). We have tested the fea-
sibility of our approach through an implementation on the
agent platform Jason [1].

2. A BDI CONTROL LOOP FOR SELF-RE-
CONFIGURATION

We introduce a revised version of the BDI control loop
aimed at fully supporting self-reconfiguration. We model
agent goals as goal trees, in which top-level goals are and/or-
decomposed into sub-goals. The leaves of a goal tree are
plans, and they are linked to goals by means-end decomposi-
tion. Some goals and plans are enriched with a compensation
plan, which defines the reaction to failures in terms of (i) a
failure handling plan and (ii) a reconfiguration of the sys-
tem by selecting an alternative option. Failures are detected
only when compensation plans are defined, otherwise they
are propagated bottom-up in the goal tree. Soft-goals, intro-
duced by the Non-Functional Requirements (NFR) frame-
work [4] to represent non-functional requirements, are used
here as the criteria to select alternatives.

We have revised the BDI agent control [7] as follows:

• Intentions filtering bases on policy compliance to ver-
ify if a desire is eligible to become an intention, and
explicitly deals with delegations from other agents, cre-
ating a new intention only if the delegatee agrees to
carry out the service on behalf of the delegator;

• Planning handles three different types of intentions:
new top-level goals to be achieved, goal failures, and
messages to be sent. Planning for top-level goals re-
quires to explore the goal tree checking for the appli-
cable plan that better contributes to softgoals. Goal
failures are handled by compensating the failure and



choosing the best alternative plan, as shown in Algo-
rithm 1. Messages are simply forwarded to the re-
cipient, sending a specific response no-plan when no
applicable plan is available for a delegated goal.

• Reconsideration is required in three cases: (i) a plan
failed; (ii) the plans to achieve a goal ended but the
goal is not achieved (declarative goal); (iii) a plan is
performing below a minimum threshold (e.g., current
contribution to soft-goals is not sufficient).

Algorithm 1 Reconfiguration algorithm

reconfigure(i : intent)
1 g ← i.trigger
2 π ← evtBestReact(g)
3 if π 6= nil
4 then return π
5 while not done
6 do if i = nil
7 then done← true
8 else i← pop(i)
9 gc ← i.trigger

10 π ← evtBestReact(gc)
11 if π = nil
12 then continue
13 P ← startedToCompensate(gc)
14 πc ← nil
15 for each pl ∈ P
16 do if pl.compens 6= NIL
17 then πc ← πc + pl.compens
18 return (πc + π)
19 return nil

We describe now Algorithm 1, which defines the self-re-
configuration process enacted by an agent. First, it searches
for a same-depth alternative to the failed goal/plan g (lines
1-2). If an alternative is found, reconfigure returns the
identified plan (lines 3-4). Otherwise (while cycle in lines 5-
18) backtracking is performed, searching for an alternative
bottom-up in the goal tree. The cycle is repeated until the
intention is empty (lines 6-7). We apply a pop operation to
the intention for backtracking (line 8), and we seek an al-
ternative at that depth (lines 9-10). If an alternative is not
found we backtrack another level (lines 11-12). Otherwise
(an alternative is found), we assign to P the set of plans
started but not compensated yet (line 13), we create a plan
πc to compensate all these plans (lines 14-17), and we return
the concatenation of the compensation and the reconfigura-
tion plans (line 18). If we reach the top-level goal without
finding alternatives we return NIL (line 19).

3. IMPLEMENTATION IN JASON
We implemented the major features of our approach on

top of Jason [1], extending the class Agent to define self-
reconfiguring agents compliant with our framework. We
override a number of methods: initAg to initialize data
structures, selectEvent to perform planning, and selec-

tOption to choose the best alternative. Each agent con-
tains a Java data structure associated to each top-level goal
instance, fundamental to monitor the execution of the goal-
driven agent and to enact compensation/self-reconfiguration.

We keep Jason’s syntax, and exploit plan labels and anno-
tations to represent goals that belong to goal trees. Code 1
shows a simple example of the mapping to Jason. We use
predicates to define soft-goals and their relative weight (the
sum of all weights must be 1): in line 1, s1 is declared as
a soft-goal with weight 1. The contribution from plans to
soft-goals is expressed through prolog-like rules: lines 2 and
3 define the contribution of p1 and p2 to s1. The annota-
tion [tgoal] (line 4) represents top-level goals triggering
softgoal-based planning over goal trees, [goal] identifies
other goals (line 5), and [plan] represents plans (line 7).
The pre-condition of top-level goals is used to evaluate the
contributions to soft-goals before planning.

Code 1 Goal models for self-reconfiguration in Jason.

1 softgoal(s1,1.0).
2 contrib(p1,s1,V) :- V=0.7.
3 contrib(p2,s1,V) :- V=0.3.
4 @g[tgoal] +!g :
contrib(p1,s1,V_p1_s1) &
contrib(p2,s1,V_p2_s1)
<- !g1; !g2.

5 @g1a[goal] +!g1 : true <- !g3.
6 @g1b[goal] +!g1 : true <- !g4.
7 @p1[plan] +!g3 : true <- act1; act2.
8 @p2[plan] +!g4 : true <- act3.
9 -!g3 : true <- compens1.

Currently, failure handling mechanism based on goal mod-
els and compensation techniques are fully implemented, and
the revised BDI control loop is supported by the Jason rea-
soning cycle and the extended Agent class. Other feature
of our framework are not completely supported: we are cur-
rently working to define the policy engine supporting fine-
grained meta-level reasoning, handle goal delegation through
interaction protocols, and checking under-performance.

4. REFERENCES
[1] R. H. Bordini, M. Wooldridge, and J. F. Hübner.

Programming Multi-Agent Systems in AgentSpeak using
Jason. John Wiley & Sons, 2007.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos. Tropos: An agent-oriented software
development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

[3] H. Molina and K. Salem. Sagas. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, 1987.

[4] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: a
process-oriented approach. 18(6):483–497, 1992.

[5] A. Rao and M. Georgeff. An abstract architecture for
rational agents. Proceedings of Knowledge
Representation and Reasoning (KR&R-92), pages
439–449, 1992.

[6] Y. Wang, S. McIlraith, Y. Yu, and J. Mylopoulos. An
automated approach to monitoring and diagnosing
requirements. Proceedings of the 22nd IEEE/ACM
international conference on Automated software
engineering, pages 293–302, 2007.

[7] M. Wooldridge. Reasoning About Rational Agents. MIT
Press, 2000.


