
Master Thesis

A Simulation Framework for
Self-Reconfigurable

Socio-Technical Systems

Minh Sang Tran Le

Supervisors

Prof. Gerhard Lakemeyer
RWTH Aachen University

Germany

Prof. Paolo Giorgini
University of Trento

Italy

European Master in Informatics
October 16, 2009

i

Abstract

Software systems are becoming an integral part of everyday life influencing
organizational and social activities. This aggravates the need for a socio-
technical perspective for requirements engineering, which allows for modeling
and analyzing the composition and interaction of hardware and software com-
ponents with human and organizational actors.

Socio-technical systems (STS), as opposed to the traditional technical com-
puter base systems, include human agents as an integral part of their struc-
ture. One important aspect of an STS is its dynamicity: an STS operates
in a continuous evolving environment and, accordingly, its structure changes
dynamically. Unlike the technical based system, an STS has the knowledge
of how the system should be used to achieve some organizational objectives,
and is normally regulated and constrained by internal organizational rules,
external laws and regulations.

In this setting, the thesis aims at developing a framework supporting a
system able to self-configure, which is to evolve dynamically in response to
changes in its environment. A runtime reconfiguration mechanism will be
based on AI planning for generating possible system configurations. In par-
ticular, the thesis task is to provide a framework that takes an initial orga-
nizational structure, and explores the organizational solution space with the
help of AI planning technique. Found candidate solutions are simulated with
respect to user-defined set of events to evaluate how these solutions adapt to
environment changes. Moreover, these solutions are assessed by quantitative
evaluators which are accompanied with the framework as well as user-defined
ones. Assessment results are visualized to end-user in tree-structure, table,
chart to help for a wise decision.

ii

Acknowledgements

I would like to thank all of the people who have provided guidance to me in
this thesis work. Particularly, special thank to my supervisors in Trento (Dr.
Giorgini), and Aachen (Prof. Lakemeyer), for giving insight on the workings of
my project, and for the main discussions on the topic, especially for providing
the flexibility to modify the directions when needed. Thanks to Yudis Asnar for
his instruction; to Vohla Bryl for dedicating time to answer all my questions;
to Fabiano Dalpiaz for his interest, feedback and discussion. Finally, thanks
to those who encouraged me along the way.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text, and
that this work has not been submitted for any other degree or professional
qualification except as specified.

Minh Sang Tran Le

iv

Contents

1 Introduction 1

2 Background 4

2.1 Goal-Oriented Methodology 4

2.2 PDDL . 6

3 Related Work 12

4 Self Reconfigurable Socio-Technical Systems 15

4.1 Socio-Technical Systems Design 15

4.2 STS: Self-Reconfiguration at Runtime 16

5 Framework Architecture 19

5.1 Organizational Model Manager and Editor 20

5.2 Solution Generator . 21

5.3 Solution Simulation, Assessment and Visualization 22

6 Organizational Descriptor Model 24

6.1 Potential Organizational Model 24

6.2 Evaluation model . 26

6.3 Event Model . 27

v

CONTENTS vi

7 Socio-Network Planning Problem 29

7.1 Organizational level planning 29

7.1.1 Formalized input from ODM 29

7.1.2 Planning problem . 31

7.2 Instance level planning . 32

7.2.1 Indirect instance level planning 34

7.2.2 Direct instance level planning 36

8 Solution Assessment 37

8.1 Simulation Engine . 39

8.1.1 Plain Simulator . 39

8.1.2 Simulation event . 42

8.1.3 Event-based simulator 44

8.2 Simple Evaluators . 47

8.2.1 Overall Benefit/Cost Quotient 47

8.2.2 Actor criticality analysis 50

8.3 Simulating-base Evaluators . 53

8.3.1 Solution execution time 53

8.4 Early Evaluators . 54

8.4.1 Local Gain of Benefit/Cost Quotient 54

8.4.2 Actor Budget Constraint 55

9 Implementation 56

9.1 Eclipse Modeling Framework 56

9.2 AI Planner . 57

9.3 Jasim Application . 58

9.3.1 ODM Editor . 58

9.3.2 ODM Solution Simulation 59

10 Experiment 62

10.1 Case Study: Fire fighting . 62

CONTENTS vii

10.1.1 Scenario . 62

10.1.2 Planning result . 64

10.2 Scalability . 66

11 Conclusions and Future Work 69

Bibliography 74

List of Figures

2.1 Major elements and relationships in GRL. 6

2.2 Sample problem: two alternatives 7

2.3 The PDDL domain file (a) and PDDL problem file (b) 8

4.1 Requirement analysis process: a general schema. 16

4.2 Basic settings of a centralized runtime self-reconfigurable STS. 17

5.1 The general architecture of proposed framework 19

5.2 General architecture of Solution Generator. 22

5.3 The architecture of the Solution Assessment and Visualization 23

6.1 Potential organizational model class diagram 26

6.2 Evaluation model class diagram 27

6.3 Event model class diagram . 28

8.1 IEvaluator interface. 39

8.2 Solution simulation algorithm. 41

8.3 Satisfaction Failure event . 44

8.4 The event simulation algorithm. 45

8.5 The simulation tree structure returned by the event simulator
(a) and the structure of a simulation node (b). 46

8.6 The Benefit/Cost quotient algorithm. 49

8.7 The solution execution time algorithm. 54

9.1 The MDI and dockable interface of an RCP. 57

viii

LIST OF FIGURES ix

9.2 Jasim MDI editor of ODM document 59

9.3 Jasim’s solution simulation’s views. 60

9.4 Event simulation view. 61

10.1 The scenario goal model. 63

10.2 Accomplishable solutions’ quality according to events happen. 66

10.3 Elementary goal tree (a), and actors’ relationship (b) 67

List of Tables

2.1 PDDL elements in the robot example 10

2.2 PDDL actions for planing problem in example 1 10

7.1 PDDL predicate in organizational planning domain. 30

7.2 Organizational planning actions’ logic 32

7.3 The different cases of instantiating goal to desire. 34

7.4 The number of desires regards to the static/non-static charac-
teristic of goal and request. 34

7.5 Instance level predicate (indirect approach). 35

8.1 Supported actions by the solution simulator and their execution
time. 40

8.2 Built-in event reactions . 43

10.1 The actors’ capabilities (a), and dependency relationship (b) . 63

10.2 The precedence constraints between goals 64

10.3 Eight candidate solutions for the scenario settings. 65

10.4 The evolution of solutions according to events. 65

10.5 Consumed time for each step in event-based simulation. 66

10.6 Experimental result: increasing number of elementary goal trees. 68

10.7 Experimental result: increasing level of elementary goal trees. 68

x

Chapter 1

Introduction

Traditionally, a software system falls into two categories: technical computer-
base systems and socio-technical systems [34]. Technical computer-based sys-
tems are systems that include hardware and software components but not
procedures and processes. According to the 2001 survey [23], only 28% of
industry projects are reported as successful, meanwhile 49% of these were
challenged, and 23% failed altogether. The success of a project refers to its
ability to meet stake-holder’s expectation, without going over time and bud-
get constraints. These projects failed because they do not recognize the social
and organizational complexity of the environment in which the systems are
deployed. The consequences of this are unstable requirements, poor systems
design and user interfaces that are inefficient and ineffective [2]. Also in [2],
the authors highlight socio-technical systems approaches as a solution.

Socio-technical systems (STS) include one or more technical systems but,
crucially, also include knowledge of how the system should be used to achieve
some broader objectives. The socio-technical system include in their archi-
tecture an operational organizational structure and human actors along with
software components. These factors are normally regulated and constrained
by internal organizational rules, business processes, external laws and regula-
tions [34]. This raises new challenges related to analyzing and designing of a
STS. In particular, in a STS, human, organizational and software actors rely
heavily on each other in order to fulfill their respective objectives. Hence,
one important element in the design process is to identify list of actors and
dependencies among them which, if respected by all partners, will fulfill all
stakeholder goals, a golden key to the success of the STS.

KAOS [16] is a requirement elicitation technique that starts with stake-
holder goals and derives functional requirements for a system-to-be and a set of

1

CHAPTER 1. INTRODUCTION 2

leaf-goal assignments to external actors through a systematic, tool-supported
process. However, KAOS does not explore the space of alternative assign-
ments. Consequently, designers have no option to decide what an ”optimal”
assignment is.

Recently, work in [9] has proposed an approach to fill in the gap. The
approach is inspired by Tropos [5], an agent-oriented software engineering
methodology, which uses the i* modeling framework [39] to guide and sup-
port the system development process starting from requirements analysis to
implementation. This approach constructs a space of assignment configura-
tions by employing an off-the-shelf AI planner and does evaluation on these
assignments to help identifying an optimal design. Particularly, the authors
address the following problem: given a set of actors, goals, capabilities, and
social dependencies, there is a tool generating alternative configurations which
are goal-to-actor assignments and dependencies network among actors. The
next step is to evaluate alternatives by assessing and comparing them with
respect to a number of criteria provided by the designer.

Another important aspect of an STS is its dynamicity. The continuous
evolving working environment of an STS makes its structure change dynam-
icity. This attracts a lot of effort of community to address the problem of
dynamic configuration and adaptation of software systems. In [11], the au-
thors try to adjust the existing agent-oriented methodologies. Work in [3]
aims at developing an adaptive agent framework (need more detail). Another
approach presented in [7] mixes the idea of AI planning technique with the
Tropos methodology to introduce a general architecture that supports dynamic
self-reconfiguration at runtime for STS.

We are interested in both supporting the design of STS and self-configurability
of an STS. We realize that one most important aspect of our problem is to
have a good enough solution space and a quantitative evaluator assessing the
assignment solutions so that the designers or the software systems can make
decision per se. Bryl et al [7, 9] present a framework addressing the problem.
However, there is still a gap from the theory to the reality. Inspired by the
ideas of Bryl et al, this work aims at constructing an open framework that
generates goal-to-actor assignment and dependencies configuration (hereafter
configuration or solution) and performs assessment on these solutions based
on predefined or user criteria.

Contribution The purpose of our work targets to an open framework
that supports both configuration generation and evaluation. Our framework
inherits and extends that of Bryl. Specifically, the following highlights the
difference between Bryl’s and ours:

• Early optimization criteria are embedded into the PDDL script in order

CHAPTER 1. INTRODUCTION 3

to prevent the solution space from explosion.

• Solution assessment could be extended at runtime. Users or third-party
developers can develop and use their own evaluators in just some simple
steps.

• An event-based simulation performs on each solution to assess the adap-
tation of solution at runtime with respect to a set of events. Users are
able to reuse a set of predefined events or to define their own events.

Organization This document is organized as follows:

• Chapter 1: this chapter which give introduction to our work.

• Chapter 2: presents preliminary knowledge about goal oriented method-
ology which is adopted to design socio-technical systems, and the Plan-
ning Domain Definition Language (PDDL).

• Chapter 3: give a glance view about work relevant to self-reconfiguration
STS and our framework.

• Chapter 4: discusses about the approaches of self-reconfiguration STS. It
also present the position of the framework in the general basic structure
of a centralized self-reconfiguration STS.

• Chapter 5: presents the general architecture of the framework.

• Chapter 6: provides detail information about the organizational descrip-
tor model, which is part of the architecture.

• Chapter 7: present about the planning problem in both organizational
level and instance level.

• Chapter 8: discusses about the two kinds of solution assessment, and
present some concrete evaluators used in the framework.

• Chapter 9: briefly discuss about the prototype of the framework.

• Chapter 10: presents the experiment of the framework and the prototype.

• Chapter 11: concludes the thesis and raise some future works.

Chapter 2

Background

2.1 Goal-Oriented Methodology

The notion of goal is increasingly being used in requirements engineering (RE)
methods and techniques today. Goals have been introduced into RE for a
variety of reasons - within different RE activities, and to achieve different
objectives. Goal-oriented Requirement Language (GRL) [26] is a language
for supporting goal-oriented modeling and reasoning of requirements, espe-
cially for dealing with non-functional requirements. It provides constructs
for expressing various types of concepts that are useful for supporting the
requirements and high-level design process. There are three main categories
of concepts: intentional elements, intentional relationships, and actors. GRL
elements and relationships are intentional in that they are used in models
that answer questions about intents, motivations and rationales, such as why
particular behaviors, informational and structural aspects were chosen to be
included in the system requirement, what alternatives to be considered, what
criteria were used to deliberate among alternative options, and what the rea-
sons were for choosing one alternative over others. The major elements and
relationships are depicted in figure 2.1.

The intentional elements in GRL are goal (hard goal and soft goal), task,
resource, and belief.

• Goal represents stakeholder objectives (or, requirements) for the new
system and its operating environment, for example, a library organiza-
tion has the goal of ’fulfill every book request’, or Apple Company has
the goal of ’produce 1M Mac5Gs within a year’.

4

CHAPTER 2. BACKGROUND 5

Goals are classified into hard goals and soft goals. Hard goals (or func-
tional goals, or just plain goals) have clear-cut criteria for their fulfillment
whereas soft goals (or qualities) are used to define non-functional require-
ments and do not have clear-cut criteria for their fulfillment. In GRL
notation, hard goal is represented by a rounded rectangle and soft goal
is represented by irregular curvilinear shape with the goal name inside.

• Task specifies a particular way to accomplish goal. In GRL notation
taks is a hexagon with the task name inside.

• Resource is a physical or information object that is available for use in
the task. Resource is represented in GRL as rectangle.

• Belief is used to represent assumptions and relevant conditions. This
construct is represented as ellipse in GRL notation.

The intentional relationships include decomposition, mean-ends, contribu-
tion, correlation and dependency.

• Decomposition defines sub-components, for example, a goal can be de-
composed into subgoals. There are two kinds of decomposition: AND-
decomposition and OR-decomposition. An AND-goal is satisfied if all of
its subgoals are; and OR-goal is satisfied if at least one its subgoal is.

• Mean-ends relationship shows how the goal can be achieved. For example
it can be used to connect task to a goal, meaning that it is a possible
way of achieving the goal.

• Contribution relationship describes how one element influences another
one. A contribution can be negative or positive and can be of different
extents. Accordingly, contribution types include: help (+)/ hurt (-): one
goal contributes positively/negatively towards the fulfillment of another
goal, make (++), break (–): one goal subsumes/negates another.

• Correlation relationship describes side effects of existence of one element
to others.

• Dependency relationship describes interdependences between agents.

An actor is an active entity that carries out actions to achieve its goal. In
GRL notation actor is represented as a circle with the actor name inside.

An agent is an actor with concrete, physical manifestions, such as a human
individual or a machine.

CHAPTER 2. BACKGROUND 6

Figure 2.1: Major elements and relationships in GRL.

Alternatives for Satisfying Goals. An alternative (solution) to the
fulfillment of a goal G consists of one or more leaf goals which together fulfill
the root goal. A goal model defines a space of alternatives for the fulfillment of
its root goal. Given a set of root goals and soft goals, the space of alternatives
can be large and the criteria to evaluate solutions may also differ. For example,
and alternative A1 is better than A2 in fulfilling goal G with respect to soft goal
G1, G2. . . if A1’s net contributions to G1, G2,. . . (e.g., positive minus negative
contributions) is greater than that of A2. Another example of alternative is
illustrated in figure 2.2 where A1 can decide to delegate to A2 all of G (figure
2.2(b)), or a part of it (figure 2.2(c)).

In general, goals and soft goals can be contradictory; hence, there may
not be an optimal solution but the search for good-enough solutions. As our
problem defined in section 1, our framework contributes to have a good enough
solution space and quantitative evaluator assessing the assignment solutions
so that the system designers can make decision per se.

2.2 PDDL

PDDL is an action-centered language, inspired by the well-known STRIPS
formulations of planning problems. At its core is a simple standardization of
the syntax for expressing this familiar semantics of actions, using pre- and
post-conditions to describe the applicability and effects of actions. The syntax
is inspired by Lisp; so much of the structure of a domain description is a Lisp-

CHAPTER 2. BACKGROUND 7

(a) Sample problem (b) 1st alternative

(c) 2nd alternative

Figure 2.2: Sample problem: two alternatives

like list of parenthesized expressions. A PDDL planning task is a combination
of following components:

• Objects : things in the world correlated with the planning problem.

• Predicates : properties of objects that we are interested in, which can be
true or false.

• Initial state: the state of the world that we are in.

• Goal specification: the desired objectives that we want to be true.

• Actions/Operators : ways of changing the state of the world.

Planning tasks specified in PDDL are separated into two files called domain
file and problem file. The domain file holds predicates and actions, while
problem file holds objects, initial state and goal specification. The structure of
these files are depicted in figure 2.3

Example 2.1. Let us consider a concrete planning example. There is a
robot that can move between two rooms and pick up or drop balls with either
of his two arms. Initially, all balls and the robot are in the first room. We want
the balls to be in the second room. The table 2.1 summarizes components of
this planning problem.

CHAPTER 2. BACKGROUND 8

(define (domain 〈domain− name〉)
(:requirements 〈: req1〉 . . . 〈: reqn〉)
(:types

〈subtype11〉 . . . 〈subtype1n〉 − 〈type1〉
. . .
〈subtypen1〉 . . . 〈subtypenn〉 − 〈typen〉)

(:constants 〈cons1〉 . . . 〈consn〉)
(:predicates 〈pred1〉 〈pred2〉 . . . 〈predn〉)
(:action 〈action− name1〉 〈action body〉)
. . .
(:action 〈action− name2〉 〈action body〉)

)

(a)

(define (problem 〈problem− name〉)
(:domain 〈domain− name〉)
(:objects 〈obj1〉 . . . 〈objn〉)
(:init

〈PDDL code for initial states〉
)
(:goal

〈PDDL code for goal specification〉
)

)

(b)

Figure 2.3: The PDDL domain file (a) and PDDL problem file (b)

While predicates, initial states, and goal specification can be represented
using first-order logic, the actions are described by using precondition and
effect as illustrated in table 2.2.

The following is a concrete example of the domain file and problem file
encoded in PDDL code:

(define (domain gripper-strips)
(:predicates (room ?r) (ball ?b) (gripper ?g) (at-robby ?r)

(at ?b ?r) (free ?g) (carry ?o ?g))
(:action move

:parameters (?from ?to)
:precondition (and (room ?from) (room ?to) (at-robby ?from))
:effect (and (at-robby ?to) (not (at-robby ?from))))

(:action pick

CHAPTER 2. BACKGROUND 9

:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room) (gripper ?gripper)

(at ?obj ?room) (at-robby ?room) (free ?gripper))
:effect (and (carry ?obj ?gripper) (not (at ?obj ?room))

(not (free ?gripper))))
(:action drop

:parameters (?obj ?room ?gripper)
:precondition (and (ball ?obj) (room ?room) (gripper ?gripper)

(carry ?obj ?gripper) (at-robby ?room))
:effect (and (at ?obj ?room) (free ?gripper)

(not (carry ?obj ?gripper))))
)

(define (problem strips-gripper2)
(:domain gripper-strips)
(:objects rooma roomb ball1 ball2 left right)
(:init (room rooma)

(room roomb)
(ball ball1)
(ball ball2)
(gripper left)
(gripper right)
(at-robby rooma)
(free left)
(free right)
(at ball1 rooma)
(at ball2 rooma))

(:goal (at ball1 roomb)))

�

From the very first version 1.0 in 1998, PDDL is evolved with each Inter-
national Planning Competitions. PDDL 2.1 was created in 2002 by Maria Fox
and Derek Long for IPC3, adding main features of fluents (or functions), plan
quality measures (or metrics), and durative actions. Fluents are predicates
that allow handling of numeric values and can be uses in actions preconditions
(with relational operators: >, <, <=, >=) and effects; value is given in prob-
lem file. Metrics are the use of fluents to allow defining plan quality measures
different from typical ones (time, number of actions). Actions can have a du-
ration which can be given as a numeric value, an interval, or be calculated
using fluents.

PDDL 2.2 was created by Stefan Edelkamp, Jrg Hoffmann and Michael
Littman in 2004 for IPC4. PDDL 2.2 introduced derived predicates and timed
initial literals. Derived predicates are predicates that are not affected by any
of the action available to the planner; actually it is already at PDDL 1.0 as
axioms. Timed initial literals are facts that will become true or false at time
points that are known in advance.

CHAPTER 2. BACKGROUND 10

Objects The two rooms, four balls and two robot arms
Predicates room(x) - true iff x is a room

ball(x) - true iff x is a ball
gripper(x) - true iff x is a gripper (robot arm)
at-robby(x) - true iff x is a room and the robot
is in x
at-ball(x, y) - true iff x is a ball, y is a room,
and x is in y
free(x) - true iff x is a gripper and x does not
hold a ball
carry(x, y) - true iff x is a gripper, y is a ball,
and x holds y

Initial state All balls and the robot are in the first room. All
robot arms are empty. [and so on]

Goal specification All balls must be in the second room.
Actions/Operators MOVE(x, y) - the robot moves from room x to

room y.
PICKUP(x, y, z) - the robot picks up ball x in
room y by arm z.
DROP(x, y, z) - the robot drops ball x in room y
from arm z.

Table 2.1: PDDL elements in the robot example

MOVE(x, y)
precondition: room(x) ∧ room(y) ∧ at− robby(x)
effect: at− robby(y) ∧ ¬(at− robby(x))

PICKUP(x, y, z)
precondition: ball(x)∧room(y)∧gripper(x)∧at−ball(x, y)∧at−robby(y)∧
free(z)
effect: carry(z, x) ∧ ¬(at− ball(x, y)) ∧ ¬(free(z))

DROP(x, y, z)
precondition: ball(x) ∧ room(y) ∧ gripper(z) ∧ carray(z, x) ∧ at− robby(y)
effect: at− ball(x, y) ∧ free(z) ∧ ¬(carry(z, x))

Table 2.2: PDDL actions for planing problem in example 1

CHAPTER 2. BACKGROUND 11

PDDL 3.0 was developed Alfonso Gerevini and Derek Long for IPC5 (ICAPS
2006). The motivation is to introduce goal preferences and state trajectory
contraints into PDDL, focusing on quality instead of on planning time or plan
length (new for propositional domains). State trajectory contraints express a
goal that can be seen as intermediate, i.e, goal which can be met not at the
end but at certain moments of the plan. Since both goals and constraints must
be accomplished for the plan being valid, preferences are introduced and ap-
plicable to goals or constraints. Preferences can be given a weight to establish
which is more important, and hence, lead to plan quality. For example, two
plans, one accomplishing preferences and other now, are both valid but first is
better than second.

PDDL 3.1 was introduced at IPC6 (ICAPS 2008). PDDL 3.1 introduces
state variables which are neither binary (true/false) nor numeric (real-valued),
but instead map to a finite domain. This is achieved by adding object fluents
to the language, which are analogous to the numeric fluents introduced in
PDDL 2.1. Where numeric fluents map a tuple of objects to a number, object
fluents map a tuple of objects to an object of the problem. In addition, PDDL
3.1 also introduces a new requirement for specifying numeric action costs in
language fragments that do not normally permit numerical features.

Chapter 3

Related Work

The field of socio-technical systems emerged with the early work of Trist and
Emery of the Tavistock Institute [21, 20, 36], can be view from two different
complementary perspectives: a social sciences [21, 30, 37] and a design or engi-
neering sciences [33, 34]. Social sciences study psychological, managerial, and
organizational aspects of a socio-technical phenomenon. For example, they
are interested in relationships inside workgroups, roles, supervision, motiva-
tion and the like. Differently, the latter perspective focuses on the design of
socio-technical systems given sets of requirements, as well as their system prop-
erties, leading to important design principles, such as Chern’s [12] and Pava’s
extension to advanced information technologies [36]. One important develop-
ment has involved the work of Majchrzak and Gasser [27] on the design of
TOP Modeller, a well tested tool and framework for designing, and analyzing,
a socio-technical system in several diffrent problem domains. Unfortunately
this work is outdated.

Socio-technical Systems Design (STSD) is a research paradigm for model-
ing the social and technical aspects of organizations [31]. Methods for design-
ing socio-technical systems have been studied and proposed (with varied re-
sults) for decades, see [2] for an overview. Unlike similar work in organizational
theory that have crossed over into computer science (business processes is one
popular example), it has been difficult for such systems to become adopted in
the software engineering community. This is primarily because of very wide
interpretations of the subject. Baxter [2] summarizes these problems, namely
inconsistent terminology in defining the technical and social systems, difficul-
ties in finding proper levels of abstraction, conflicting value systems, lack of
agreement on success criteria, lack of synthesis of ideas, multidisciplinary of
the field, failure to keep up with current advances, and problems of defining

12

CHAPTER 3. RELATED WORK 13

details needed in fieldwork. All these have made STSD less attractive to the
software engineering community, but while these present considerable obsta-
cles, the field is regaining attention (eg. [31, 13, 10, 29, 25]. ”There is still
a role for humanistic, socio-technical ideas” that give ”equal focus to the em-
ployee as to the non-human system,” [2]. In answer to this problem, recent
work has proposed to develop the discipline by using STSD throughout the
systems engineering life cycle [2, 31].

Goal -based requirements modeling for socio-technical systems and organi-
zations has been a topic of considerable research interest during the last fifteen
years [49]. In [6], Bryl et al proposed a planing-based extension of Tropos [5],
which is an agent-oriented software engineering based on goal methodology,
to support designer in exploring the space of alternative designs of a socio-
technical system, leading to automating the design. The fulfillment of each of
the system goals is related to a number of choices of how the goal is decom-
posed and which are the actors the goals are delegated to; hence, alternative
designs can be derived and evaluated in accordance with criteria that measure
their effectiveness.

The work of Bryl et al [6] employed AI (Artificial Intelligence) planning
[38] techniques and use PDDL (Planning Domain Definition Language) 2.2
[18] to formally specify the initial organizational setting and actions of the
domain. The task was framed as a planning problem where selecting a suitable
social structure corresponds to selecting a plan that satisfies the stakeholders
goals. A basic set of first-order predicates has be presented to formalize the
organizational setting in terms of actors and goals, their properties (e.g. actor
capabilities), and social dependencies among actors. An off-the-shelf planning
tool, LPG-td [28], is adopted for the implementation of the planning domain.
Plan metrics uses here are the global and local evaluation based on complexity
(e.g, cost and duration) of an actor in satisfying a goal [7, 9].

The above framework is then extended in [1], uses risk-based evaluation
metrics for selecting a suitable design alternative, and aims at agent-based
safety critical applications. In this work [1], the risk-based criteria (e.g. re-
lated to the criticality of a goal satisfaction or minimum acceptable level of
trust between agents) is incorporated into the planning-based procedure which
supports a socio-system design (as well as a system redesign at runtime). This
work aims at proposing a design that maintains the risk level within the ac-
ceptable limits.

Yet another extension of the framework proposed the use of location as a
metrics for evaluating alternatives [14]. Due to the fact that location properties
associated to variation points can be used to (a) limit the range of alternatives
an agent can choose among; (b) express location-dependent contribution to
soft-goals, the authors suggest a planning-based approach that can be cus-

CHAPTER 3. RELATED WORK 14

tomized to discard unavailable options and to exploit softgoal satisfaction for
ranking availble alternatives.

Nevertheless, design-time support is not sufficient to provide a comprehen-
sive support for socio-technical systems. Runtime violation of requirements
[24] is recognized as an open problem and has been explored since several
years. Feather et al [22] propose an approach to reconcile requirements with
runtime behavior, where both the design- and run-time phases are covered: (a)
anticipate as many violations as possible at specification time, and (b) detect
and resolve the remaining violations at runtime. Though Feather’s work is
not targeted for socio-technical systems, it points out problems and proposes
solutions which apply also in the context of STSs. In [7], Bryl et al presented
a centralized self-reconfiguration mechanism to dynamic reconfiguration of a
socio-technical system structure in response to internal or external changes.
The approach is the same as [6] with the reconfiguration mechanism added.
The evaluation on the both system state will decide whether the system needs
to be redesigned in response to external or internal change. And, if the above
evaluation shows that the reconfiguration is need, replans the system structure
would be done. The work gives the idea; however, the set of event is still in
preliminary

Another and complementary approach is decentralized self-reconfiguration
mechanism. Talos [14, 15] is an architectural for self-reconfiguration where self-
reconfiguration is seen from the perspective of each agent/component. Three
different subsystems are the core of the self-reconfiguration process each agent
performs: Monitor, Diagnose, and Compensate. The agent should continu-
ously monitor both its internal state and the location where it is running.
Triggering events are then diagnosed. If there is failure, a compensate plan
should be executed to ”undo” the effects of the failed plan.

Our work focuses on extending the work in [7, 9]. Local evaluation is no
longer exists but early encoded into the planning problem, hence, limit the
range of the alternatives/solutions space that an agent can choose among.
Evaluation could also be extended at runtime by adding new evaluators from
independent developers. Due to the fact that the best solution at the first
round planning may be the worst after triggering events, an event-based sim-
ulator performs on each solution to see its adaptation at runtime.

Chapter 4

Self Reconfigurable

Socio-Technical Systems

4.1 Socio-Technical Systems Design

According to Tropos methodology, the process of modeling and analyzing re-
quirements for STS is the following. Starting from the stakeholder’s request,
the designer identifies goals and actors for the system to-be. The designer
refines the goals and relations between the actors goals to provide the detail
specification of the system. In particular, the designer constructs a goal model
in which each of top goals is decomposed into AND- or OR-subgoals. Goals
are decomposed from a very high abstract level to concrete tasks that can be
assigned to human actors of software components. When being in charge of a
goal, an actor can continue decompose this goal, or fulfills it if it is a concrete
task, or delegates it to another actor. Obviously, there are more than one
way to decompose a goal, and assign goals to a actor as well. It produces
many alternatives for satisfying original top goals. The STS designer faces to
a question which is what is an optimal or, at least, good enough assignment of
leaf goals to actors so that to root goal is satisfied when all actors deliver on
the goals assigned to them? Such a question is the problem of exploring the
space of alternative delegation and assignment network. Each of alternatives
then is evaluated in particular criteria for the comparison.

To address this problem, Bryl et al [9] propose a requirements engineer-
ing approach that complements the Tropos requirements analysis and design
process. Then general schema of the approach is illustrated in figure 4.1.

15

CHAPTER 4. SELF RECONFIGURABLE SOCIO-TECHNICAL SYSTEMS16

Input

Checker
Planner Evaluator

User Evaluation

Interface

Analyst

I FU EL EG FUEUG

Plan constraints (from FU)

Plan constraints (from FE)

Output: final Tropos model

In. inc.

(I) Initial organizational setting description

(EL) Local evaluation criteria

(EG) Global evaluation criteria

(EUG) User’s global evaluation criteria

(FU) User feedback

(FE) Evaluator feedback

(In. inc.) Input inconsistencies

User input Output (if yes)

Output (if no)

Figure 4.1: Requirement analysis process: a general schema.

As a first step, the Input checker analyzes the organizational setting
description, detects inconsistencies, and proposes possible improvements, when
then are approved, or rejected, or modified by the designer. After the input
is checked, the first possible alternative is generated by the Planner. The
alternative then is assessed by the Evaluator with respect to a number of
criteria. The final output of the evaluation process needs to be approved by a
human designer. This is done thank to the User evaluation interface which
presented selected alternative to the designer together with the summarized
evaluation results. The designer can make feedback to the alternative, which
might initiate a new iteration. The process is completed when the designer is
satisfied with the alternative.

4.2 STS: Self-Reconfiguration at Runtime

At runtime, the system organizational structure is not static but continuously
evolving. One of the specific properties of an STS is the dynamic organizational
objectives[34], because objectives can have different (subjective) interpreta-
tions and may vary over time. Thus, the design-time support is not sufficient
to provide a comprehensive support for socio-technical systems. Runtime vio-
lation of requirement is recognized as an open problem and has been explored
since several years. There is hence a clear need for a mechanism which comple-
ments the design-time techniques we have presented. In which, the STS knows
about the changes in its operation environment then perform self-configuring
according to the changes with or without the human administrator.

Currently, there are two different but complementary approaches can drive
the self-reconfiguration process [14, 7]:

CHAPTER 4. SELF RECONFIGURABLE SOCIO-TECHNICAL SYSTEMS17

Controller

Planner Evaluator

Monitor

Model

Manager

Environment

In
it
ia

l
o

rg
a

n
iz

a
ti
o

n
a

l

s
e

tt
in

g
s

control the system

in
v
o

k
e

Modification

Alternatives

Environmental

changes

Assessment

result

Org.

Settings

Adminstrator

action Data

Figure 4.2: Basic settings of a centralized runtime self-reconfigurable STS.

• Centralized self-configuration: the self-configurable STS has a centralize
knowledge of the various agents and therefore the reconfiguration process
is controlled centrally.

• Decentralized self-configuration: this approach present self-reconfiguration
form the local perspective of an individual agent. Each agent commits
to achieve its own goals at best, without having a complete knowledge
of the STS. This approach cannot achieve the same level of optimal-
ity a centralized approach guarantees, but it the only available solution
whenever the agents do not want to disclose their internal structure to
a centralized supervisor.

We focus on the centralized approach whose general architecture, depicted in
figure 4.2, should include following component:

• Model Manager : manages the organizational settings for the system.
These settings include the initial organizational settings, the effect to
this model according to environmental changes over time.

• Planner : generates organizational alternatives using stored organiza-
tional settings and environmental effect in the Model Manager.

• Evaluator : assesses generated alternatives to support decision in select-
ing alternatives.

• Monitor : monitors the environment for changes and reports them to the
Controller.

• Controller : is the coordinator of the STS. The Controller invokes the
Planner for generating alternatives, and then passes them to the Eval-
uator. The Controller is also in charge of selected active alternatives

CHAPTER 4. SELF RECONFIGURABLE SOCIO-TECHNICAL SYSTEMS18

(with/or without the interactive of user), and applies the selected alter-
native for the STS. More important, the Controller receives notification
from the Monitor, performs appropriate modification to the organiza-
tional settings and invoke, if necessary, the self-configuration process.

In this work, we aim at constructing a framework supporting solution eval-
uation for an STS. Particularly, this framework plays the role of the three
components: Model Manager, Planner and Evaluator. The framework should
be generic enough to be reused in many fields of the STSs. In the following
chapters, we give a detail discussion about our proposed framework.

Chapter 5

Framework Architecture

In this chapter, we present the architecture of our proposed framework.

Organizational Model

Manager
Solution Generator

Solution Simulation &

Assessment

Assessment Visualizer

Data Flow

Organizational

Descriptor Model

Organizational Model

Editor

Figure 5.1: The general architecture of proposed framework

The general architecture of our proposed framework is illustrated in figure
5.1, which consists of following components:

• Organizational Model Manager : maintains the organizational descriptor

19

CHAPTER 5. FRAMEWORK ARCHITECTURE 20

model including the organizational model, evaluation model and event
model.

• Organizational Model Editor This component provides a GUI that allows
users to edit the descriptor model in a graphical way.

• Solution Generator : is in charge of generating a solution space. A solu-
tion is a goal-to-actor assignment scheme according to goals’ decompo-
sitions and actors’ capabilities. In this fashion, a solution is also called
as configuration of the organizational model.

• Solution Simulation & Assessment : performs the vital task of the frame-
work. This component takes each of solutions fed by Configuration gen-
erator, and carries out assortment. The output then is transferred to
Assessment Visualization to support end-user to make decision on which
solution shall be applied.

• Assessment Visualizer : takes the simulation result and displays it in a
user-friendly look such as charts, diagram, and so on.

5.1 Organizational Model Manager and Edi-

tor

The Organizational Model Manager (OMM) holds the information loaded from
the organizational descriptor model (ODM). This information is used to feed
the Configuration Generator and the Solution Assessment. The OMM is also
in charge of applying feedbacks to the organizational descriptor during assess-
ment. All functions provided by the OMM can be easily accessed and reused
the by the application. On the other hand, the OMM also provides an end-user
interface to manipulate the ODM at runtime.

The ODM is the data model organizing data structure necessary for other
parts of the framework. The ODM contains the information about the orga-
nizational model including list of goals, actors and dependency relationship
between them. The ODM also maintains a list of registered evaluators and
their configuration which is used to assess solutions for STS. Moreover, the
ODM holds a description of the event model used by the the event-based
simulator.

The detail of ODM will be discussed in chapter 6.

CHAPTER 5. FRAMEWORK ARCHITECTURE 21

5.2 Solution Generator

The Solution Generator accesses the ODM managed in OMM and generates
the solutions space which in turned used by the Solution Assessment. From
the potential organizational model, the Solution Generator tries to generate
solutions by assigning goals to appropriate actors according to their capabil-
ities. Since a goal can be provided by many actors, there are many ways to
do the assignment. For example, if we have 3 goals and 3 actors which can
provide each of these goals, then we have 3! = 6 possible combinations. The
goal-to-actor assignment hence is a combinatorial problem which causes a ter-
rible performance and computation issues if the number of goals and actors is
just greater than 20.

Therefore, it is impossible to take one-by-one in the solution space and
perform the evaluation to find which one is the best. The solution generator
hence shows its important contribution to the success of the framework by
filtering the solution space. Only considered-optimal solutions are fed to the
Solution Assessment for evaluation.

Instead of building the generator from scratch, we employ a general AI
planner . The general AI planner takes an input describing the planning prob-
lem in the Problem Domain Definition Language (PDDL). The PDDL is an
attempt to standardize planning domain and problem description languages.
It was developed mainly to make the 1998/2000 International Planning Com-
petitions possible. It was first developed by Drew McDermott in 1998 and later
evolved with each International Planning Competitions. The latest version of
this language is PDDL3.1

In the figure 5.2, it is the general architecture of the Solution Generator
component, which consists of four components:

• PDDL Generator extracts the potential organizational model from the
ODM and creates a corresponding PDDL problem file.

• Post PDDL processor performs a late processing on the generated PDDL
file. This component provides a mechanism to modify the PDDL file
without affecting the ODM by maintaining a list of post-PDDL com-
mands. A post-PDDL command is an introduction to add/remove a
goal/fact from the generated PDDL script. Thank to this mechanism,
the event simulator (later discussed in section 8.1.3) can embed state of
the world of the broken solution into the re-planning process.

• AI Planner acts as a proxy between our framework and the external
generic PDDL planner. The PDDL planner should be picked from the

CHAPTER 5. FRAMEWORK ARCHITECTURE 22

PDDL

Generator

Post PDDL

processor
AI Planner

Solution

Manager

Data Flow

Figure 5.2: General architecture of Solution Generator.

list of participants of the International Competition Planning1.

• Solution Manager collects and stored generated solutions for further as-
sessment.

5.3 Solution Simulation, Assessment and Vi-

sualization

This component takes a solution from the Solution Manager to evaluate. The
result then is displayed to end-user via a graphical ways such as tables, charts.
There are two kinds of assessment considered in this framework: scalar quan-
titative assessment and event-based quantitative assessment. The quantitative
assessment acts as a function of solution and returns a number representing
the measurement of this solution. The returned measurement could be a set
of numbers which explains how the final value is computed.

For example, consider Cost/Benefit evaluator which computes the benefit
over cost quotient of a solution. This evaluator returns not only the quotient
value, but also the values of benefit and cost.

The figure 5.3 illustrates the architecture of the Solution Assessment and
Visualization, including following sub components:

• Solution Evaluator acts as a front-end proxy that receives assessment
request and forwards to appropriate scalar evaluator or the event-base
simulator.

• Evaluator Registry maintains a list of simple evaluators. Other compo-
nents query the Evaluator Registry for an instance of a specific evaluator
to carry out assessment.

1http://ipc.informatik.uni-freiburg.de/

CHAPTER 5. FRAMEWORK ARCHITECTURE 23

Solution

Evaluator

Evaluator Registry

Event Simulator

Solution

Simulator

Visualizer

Scalar Evaluator
Scalar Evaluator

Data Flow

Figure 5.3: The architecture of the Solution Assessment and Visualization

• Event Simulator is in charge of simulating a solution in context of events.
Given a solution with its corresponding ODM, the Event Simulator
passes this solution to the Solution Simulator. For each time circle of
the Solution Simulator, the Event Simulator checks the precondition of
all active events in the Event Model of the ODM. If a precondition of
an event is satisfied, this event is considered as happen and its post-
conditions are executed.

• Solution Simulator simulates the execution of a given solution. The
Solution Simulator is based on a time-based simulation algorithm (see
algorithm 8.4) which executes solution’s actions when their preconditions
are matched.

• Visualizer gets the evaluation result and renders it to end-users. The
result will be displayed in a table if the assessment result is from a
scalar evaluator. Otherwise, the Visualizer will create a tree structure.
The root will be the given solution, called solution node. When events
happen while simulating this solution, a child node is created, called
event node. If the solution is replanned, a special child node called
branches is created, and for each new solution, it creates a child node for
branches node. And the same logic is applied new solution nodes. The
Visualizer labels solution node with the measurement value of a selected
scalar evaluator, event node with the time when this event happens.

Chapter 6

Organizational Descriptor

Model

The ODM includes i) the potential organizational model (see definition 1) de-
scribing the list of goals, actors and all possible capabilities of each actor as
well as all possible dependencies among actors; ii) the evaluation model in
which users can specify which evaluators should be used in assessment. This
model also contains the evaluators’ configuration that might be used to control
the evaluators’ behavior at runtime. Users can add evaluators from a prede-
fined list and their custom evaluators; iii) the event simulation model allows
users to define a list of events being used during the event-based simulation
which will be shown up in the next section.

6.1 Potential Organizational Model

The potential organizational model maintains a list of goals, actors, depen-
dency relationships that potentially generates organizational model. We for-
mally define the potential organizational model as follows:

Definition 1 The potential organizational model O is a tuple of 〈 A, G, Dc,

Dp, Cap, Pd, Pv〉, in which

• A: is a set of actors,

24

CHAPTER 6. ORGANIZATIONAL DESCRIPTOR MODEL 25

• G: is a set of goals,

• Dc ⊆ {AND,OR} ×G× 2G: is a set of all possible decompositions for

each goal in G. A dc =
〈
[AND|OR], g, 2G

〉
∈ Dc is an AND/OR decom-

position of goal g into other sub-goals. Goals are recursively decomposed

until operations which can be assigned to human actors of software com-

ponents.

• Dp ⊆ A × A × G: is a set of dependency relationships between actors.

A dependency relationship dp = 〈a1, a2, g〉 ∈ Dp presents a potential

delegation which actor a1 can delegate the satisfaction of goal g to a2.

• Cap ⊆ A × G : is a set of actors’ capabilities which describes goals

provided by each actor.

• Pd : is a set of property descriptors. A property descriptor is triplet

〈name, d type, def value〉 which defines a property name of type d type

with default value def value. Each property descriptor is associated with

an actor, goal or capability.

• Pv : {A ∪G ∪ Cap} × Pd → value: is a function mapping an actor, a

goal, or a capability and a property descriptor to a scalar value. This

value could be a text, number, or even reference to another object.

The figure 6.1 is the class diagram of the potential organizational model.
In this diagram, we focus on the relationship between entities; hence only
important properties are displayed. The main entities in the diagram are Actor
and Goal which represent actor and goal in the organizational model. The
capability of each actor is captured in Capability showing which goals can be
provided by this actor. In order to adapt with various domains, the properties
of actor, goal and capability are constructed dynamically by inheriting these
entities from a so-called CustomizableObject. Each CustomizableObject

belongs to an ObjectClass which holds a list of PropertyDescriptor. Each
PropertyDescriptor has name, data type and also the default value for a
property. The PropertyDescriptor also specifies the PDDL function used to
concert this property to the PDDL script. A CustomizableObject instance
maintains its specific properties’ value in a list of PropertyValue. For the ease
of use of innocent users, all possible properties of actor, goal and capability
are predefined by experts for specific application domain.

CHAPTER 6. ORGANIZATIONAL DESCRIPTOR MODEL 26

-Name

CustomizableObject

Actor Goal

Capacity

-Name

-DataType

-DefaultValue

PropertyDescriptor

-Name

-Value

PropertyValue

ObjectClass

-Type

Decomposition

Request

Figure 6.1: Potential organizational model class diagram

Beside, the Decomposition entity captures all possible decompositions of
a goal. In the potential organizational model, a goal is decomposed until it
reaches to particular operations which can be performed by human actors or
software components.

6.2 Evaluation model

The next part of the ODM is the evaluation model. An evaluator is a tuple
〈name, executor, parameters〉. The evaluator name invokes the executor with
parameter to carry out the assessment on a given solution.To this extend the
evaluation model are defined as follows.

Definition 2 An evaluation mode is a tuple 〈EV,EP 〉

• EV : is a set of evaluators.

• EP ⊂ {A ∪G ∪ Cap} × Pd: is a set of properties associated with ac-

tors, goals and capabilities. The properties are used by the evaluators to

perform computation.

The class diagram of the evaluator model is depicted in figure 6.2. In this
model, users are able to declare which evaluator will be used to do the quan-

CHAPTER 6. ORGANIZATIONAL DESCRIPTOR MODEL 27

-Name

-ClassName

Evaluator

-Name

-Value

PropertyValue
CompositeProperty

Figure 6.2: Evaluation model class diagram

titative evaluation. Each Evaluator contains the class name that implements
the evaluator, and a list of options which will be passed to the implementation
at runtime to configure its behavior. The implementation, certainly, has to
implement a predefined interface called IEvaluator(see figure 8.1) in order to
be understood by the system. More discussion about quantitative evaluations
and others is provided in section 8.

6.3 Event Model

The final part of the ODM describes the event model which is used to carry out
the event-based simulation. This part consists of list EventSet entities. Each
EventSet has a name to distinguish itself with others; a Boolean property
called Enabled to let the simulator know whenever to use this event set; and
a list of event definitions. The event definition employs the idea of Event
Calculus in which each event should be modeled as a triplet 〈precondition,
post-condition, parameters〉.

The event precondition shows whenever the event should happen. It can
be the absolute time while simulating a solution, a relative time correlated
with other events i.e., after an action has been executed, or an event happens.
Or it can the combination of primitive conditions.

On the other hand, the event post-condition describes the effect of this
event to the model. This effect is a list of reaction. There are many types of
reaction, e.g., a reaction that modifies the ODM at runtime (more particularly,
the potential organizational model part) by changing actors/goals properties,
introducing new goals, actors as well as capabilities. Or another reaction
refines the solution-generating process. The framework supports not only a
list of built-in actions (listed in table 8.2), but also custom reactions. The
custom reaction is a special reaction which allows users to embed their own
actions into the framework without rebuilding the source code.

CHAPTER 6. ORGANIZATIONAL DESCRIPTOR MODEL 28

-Name

-Enabled

EventSet

-Name

-Precondition

-PostCondition

-Parameter

Event

-Name

-Value

PropertyValueParameters

EventPreconditionPrecondition

AbsoluteTime ActionRelativeTime EventRelativeTime

+react()

EventReaction

PostCondition

Figure 6.3: Event model class diagram

The event parameters are a list of values used by the reactions defined in
the post-condition. These values are fed by user before the simulation. Or,
they can be fed by the simulation engine base on the simulated environment
at the moment events happen.

The event precondition and post-condition are depicted as EventPrecondition
entity and EventReaction entity in the class diagram (see figure 6.3).

As modeling event in this fashion, user is able to define many events with
different effects by combining reactions (predefined and custom) in different
order. In section 8.1.2, we will discuss how events are used in our framework
to carry out assessment.

Chapter 7

Socio-Network Planning

Problem

7.1 Organizational level planning

The organization planning problem is to assign goals to role in the organiza-
tional level settings. We inherits work of [8] in organizational level planning,
but we modifies action declaration as well as introduce some new functions in
order to embed preliminary assessment criteria into the PDDL script.

7.1.1 Formalized input from ODM

Table 7.1 lists the predicates used to formalize the ODM. These predicates take
variables of the following type: goal, actor, agent and role which correspond to
the basic concepts of Tropos modeling notation. In our framework, we adopted
predicates suffixed by (*) from [8] to formalize the ODM.

An actor is specialized into agent and role. However, at this level there is
no need to distinguish between agent and role. Thus we use actor to specify
input settings at this level.

The predefined ways of goal decomposition are presented using and/or subgoaln
predicates. To capture the meaning of goal conflict and goal prerequisite, we
uses predicate conflict and require. The goal A and goal B are considered
to be conflict if the satisfaction of goal A negates the satisfaction of goal B, or

29

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 30

Goal property and dependency predicates
and subgoaln(g, g1, g2, ..., gn : goal) (*)
or subgoaln(g, g1, g2, ..., gn : goal) (*)
conflict(g1, g2) (*)
require(g1, g2)
means end(g1, g2) (*)
Actor property predicates
request(a : actor, g : goal) (*)
can provide(a : actor, g : goal) (*)
can depend on(a1, a2 : actor) (*)
can depen on g(a1, a2 : actor, g : goal) (*)
Actor property functions
work sat(a : actor, g : goal) : int
work effort(a : actor, g : goal) : int
work time(a : actor, g : goal) : int
work max effort(a : actor, g : goal) : int
Misc. functions
total sat : int
total effort : int

(*): predicates adopted from [9].

Table 7.1: PDDL predicate in organizational planning domain.

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 31

if goal A is satisfied then goal B is not able to be satisfied. This is probably a
consequence of the sharing resources between A and B. The satisfaction of A
consumes some not reusable resources that required by goal B. Hence there is
no resource available for goal B. On the other hand, if the goal A is prerequisite
of goal B, then before satisfying goal B, we should satisfy goal A.

Actor capabilities are described with can provide predicate and work sat

/work effort/ work time/work max effort functions. While the former in-
dicates that an actor has enough capability to satisfy a specific goal, the later
predicates describe this capability more detail. Although many actors can
provide a same goal, there are many differences between them about the time,
the effort the actor has to pay, and the level of satisfaction of the goal. The
last function, work max effort, determines the maximum efforts this actor
could spend for fulfilling goals. It means that when an actor fulfills a goal, its
availability is decreased by a certain amount. And it could not fulfill any goal
when its availability moves to zero. This happens frequently in the real since
the availability of an actor is not infinitive.

Possible dependencies among actors are specified the help of can depend on

and can depend on g predicates, which mean that an actor can delegate to
another actor the fulfillment of any goal, or a specific goal, respectively.

The two last functions total sat and total effort are used to drive the
planning process. Basically, the AI planner tries to optimize the solution such
that the new solution is better than the old one. This ”better” concept is
depended on which criterion is used. Normally it is the length of the solution:
shorter is better. But in most case, it makes no sense. Thus we can ask
the planner to maximize the total sat, or minimize the total effort, or
maximize the quotient of total sat and total effort.

7.1.2 Planning problem

As discussed in section 5.2, the task of building a socio-technical model can
be framed as a planning problem: selecting a suitable set of delegations and
assignment of goals to actors corresponds to selecting a plan that satisfies ac-
tors’ and organizational goals. In general, AI planning is about automatically
determining a list of actions needed to achieve a certain goal where an action is
a transition rule form one state of the world to another. Actions are described
in terms of preconditions and effect as discussed in section 4.2.1, which are
in our case encoded in predicates/functions listed in table 7.1. In the domain
of socio-technical system design, a plan (or solution) comprises the following
actions, which are detailed in table 7.2:

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 32

AND DECOMPOSE(a,g,g1, . . . ,gn)
precondition: request(a, g) ∧ and decompose(g, g1, . . . , gn)
effect: ¬request(a, g) ∧ request(a, g1) ∧ . . . ∧ request(a, gn)

OR DECOMPOSE(a,g,g1, . . . ,gn)
precondition: request(a, g) ∧ or decompose(g, g1, . . . , gn)
effect: ¬request(a, g) ∧ request(a, g1) ∧ . . . ∧ request(a, gn)

PASSES(a1, a2,g)
precondition: request(a1, g) ∧ (can depend on(a1, a2) ∨
can depend on g(a1, a2, g))
effect: ¬request(a1, g) ∧ request(a2, g)

SATISFIES(a1,g)
precondition: request(a, g) ∧ can prodive(a, g) ∧
¬satisfied(g)
effect: ¬request(a, g) ∧ satisfied(g)

Table 7.2: Organizational planning actions’ logic

• AND/OR DECOMPOSES(a : actor, g, g1, , gn : goal): actor a decomposes goal
g into n AND/OR subgoals;

• PASSES(a1, a2 : actor, g : goal): actor a1 delegates goal g to actor a2;

• SATISFIES(a : actor, g : goal): goal g is assigned to and is satisfied by
actor a.

7.2 Instance level planning

The organizational level planning, however, considers only the relation between
roles and goals which is not able to directly apply in the real. Practically, a
role has as many instances as there are agents playing this role, and a goal has
as many instances as there are agents who want this goal to be satisfied [40].
There are some certain constraints can be expresses and considered only at the
instance level, where a socio-technical model reflects the actual dependencies
among agents playing roles and goal assignment to these agents [8]. They
could be legal regulations (e.g., two activities cannot be performed by the
same agent) or optimization concerns (e.g., overlapping assignments of goals
to agents should be avoided). The work that decides which agents play which
roles is called instantiation. And the process accomplishing instantiation is
called instance level planning.

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 33

The instantiation comes up with some issues need to be clarified. They are
how to instantiate and formalized roles and goals in the organizational model.
The discussion about these questions is as follows.

Question 1. How to instantiate roles? Roles are instantiated to agents at
instance-level. Answering this question is quite simple since we usually know
the number of agents and their capabilities before planning. �

Question 2. How to formalize agents? Agents can be described either
as instances of roles, or separated objects. In the former case, declaring an
agent is instance of a role (or agent can plan a role) automatically infers that
this agent inherits all capabilities of this role. These capabilities might be
different among agents of the same role. In the later case, agents are declared
as separated entities which have their own capabilities. The planer (or user)
has to classify agents to roles according to their abilities. Notice that in the
first option, the planner/user might also have to assign agents to roles since
an agent can plan more than a role. But, the nature of decision between two
options is different. �

Question 3. How to instantiate goals? The answer for this question is not
as simple as the one with agents. At organizational level, a role requests a
goal. But at instance level, there many agents play the same role, and it leads
the fact that many agents might request many goals. This problem is known
as goal instantiation problem. For the sake of clarity, goals at instance level
are renamed as desire. Hereafter, the term goal refers to organizational level
goal, and term desire refers to a goal at instance level.

At the organizational level, an actor arequests a goal g. The number of
tasks of goal g are depended on the number of agents of actor a. Basically, we
identify three different cases for the goal instantiation listed in table 7.3.

• one-to-one: the number of desires equal to the number of agents. For
instance, the actor Student requests the goal pass the Math exams. Sup-
pose that there are 100 students, then there are 100 desires to pass the
exams.

• many-to-one: every agents of a role share the same desire e.g., in a fire
fighting, every firemen have an ultimate goal which is to stop the fire.

• many-to-many : a group of agents share a same desire, but there are
more than one group in the same roles. And the desires among groups
are different. For example, there are 20 students in class, and they
are divided into 4 groups. Each group shares a desire of accomplishing
course’s project. But different groups have different projects.

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 34

Case Description
one-to-one one agent yields one desire.

many-to-one every agents share a same desire.
many-to-many different groups of agents in the

same role share different desires.

Table 7.3: The different cases of instantiating goal to desire.

Static request Non-static request
Static goal 1 1

Non-static goal 1 n

Table 7.4: The number of desires regards to the static/non-static characteristic
of goal and request.

To cope with the two first situations, in the ODM, the goal has an extra
property saying that goal is static or non-static. And the same property is also
applied for a goal request of an actor. The static goal at organizational level
will introduce only one desire at instance level under any circumstance. On
the other hand, non-static goal might yield one or more desires with respect
to the static or non-static request. The table 7.4 shows how we applies static
and non-static notions in order to deal with goal instantiation problem. The
third situation is the most complex one. Users have to specify desire for each
specific group. �

Question 4. How to formalize desires? This question has the similar mean-
ing with question 1. And then we can apply the same reasoning logic. Desire
can be formalized either base on goal, or as independent entities. �

According to [8], there are two options for instantiation, which can start ei-
ther from an organizational level solution, or from a formalized initial organiza-
tional setting. The former option needs predicate to describe an organizational
level solution an, meanwhile, the later options does not. Both approaches also
need additional predicates to model the agents and their properties. From this
point of view, we called these two approaches as direct and indirect instance
level planning.

7.2.1 Indirect instance level planning

This approach, as discussed, requires a solution from an organizational level
planning. The task is to assign a certain number of agents to pre-planned roles
as well as assigns specific goals of each role to agents playing this role. Table
7.5 lists predicates for instantiation.

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 35

Predicates capturing organizational solution
and/ordecomposed(r : role, g, g1, . . . , gn : goal)
passed(r1, r2 : role, g : goal)
assigned(r : role, g : goal)
Predicate instantiating organizational solution
can play(ag : agent, r : role)
desirefrom(d : desire, g : goal)
desire assignment conflict agent(d1, d2 : desire, ag : agent)
desire assignment conflict(d1, d2 : desire)
role assignment conflictagent(r1, r2 : role, ag : agent)
role assignment conflict(r1, r2 : role)

Table 7.5: Instance level predicate (indirect approach).

The organizational-level solution is captured by the predicates assigned

which specifies the goal-to-role assignment and the and/or decomposed shows
the ways goals should be decomposed according to the given solution. In that
way, every instances of a same goal have the same way of decomposition. The
predicate desire from(d,g) binds each desire to its corresponding goal in
the organizational-level solution. This binding is needed for the planner to
decompose desires in future.

The table 7.5 implies the answer to question 2 previously mentioned. In
this approach, agent is described as potential instance of a role by the predicate
can play. There two constraints are considered. The first one is the conflict
in desire assignment which means there two desires could not be assigned to a
same agent according to the regulation. The predicate desire assignment

conflict agent(t1, t2, a) means it is not allowed to assign both desires
d1, d2 to the same agent a. More generally, the predicate desire assignment

confict(d1, d2) is used to described the conflict for any agent. Similarly,
two versions of role assignment conflict are employed to specify the prohi-
bition of assigning roles r1, r2 to an/any agent. To this extend an instantiated
plan/solution consists of the following actions:

• TAKE ON ROLE(ag : agent, r : role): agent ag is assigned to role r.

• AND/OR DECOMPOSES(ag : agent, d, d1, , dn : desire): agent ag decom-
poses desire d into n AND/OR sub-desires;

• PASSES(ag1, ag2 : agent, d : desire): agent ag1 delegates desire d to agent
ag2;

• SATISFIES(ag : agent, d : desire): agent ag is assigned to satisfied desire
d.

CHAPTER 7. SOCIO-NETWORK PLANNING PROBLEM 36

7.2.2 Direct instance level planning

The direct instance-level planning, in contrast with the indirect one, constructs
the social network directly from the formalized ODM with extra information
about agents.

In this approach, the search space is bigger due to dependency relations
and capabilities are linear increased proportionally with the number of agents.
This number is usually larger many times in comparison with that of roles.
There are two strategies, as discussed, to formalize agents/desires: describing
agents/desires based on either roles/goals, or independent entities. Obviously,
the former requires less formalization predicates then the later. But the plan-
ning complexity is higher in the former since the planner has to infer instances’
properties and relations based on their corresponding class.

Formalizing agents/desires based on roles/goals. In this strategy,
we reuse all predicates formalizing actors/goals mentioned in section 7.1 for
describing roles. For agents, we employ predicates discussed in section 7.1.1
(except ones used for capture organizational-level solution).

The constructed solution includes actions mentioned in section 7.1.1, but
they, certainly, have a different logic inside. The planner needs more extra
actions to perform the planning. All necessary actions with their meaning are
described in table NN.

Formalizing agents/desires as independent entities. In this strat-
egy, each agent is described separately. In some points of view, this kind of
formalization is a degeneration of an organizational planning in which each
role has only one instance, and there are plenty of different roles that have the
same capabilities. In this fashion, the instantiation formalization becomes as
simple as that of organizational level, except the former has more predicates
than the later. In this setting, we can reuse all predicates as well as actions
describing in section 7.1

Institutively, formalization done in the first strategy requires less number
of predicates in the problem file than that with the second one. In contrast, the
first one consumes more CPU resources than the second since all information
for instances needed for planning have to be inferred at planning time.

There two formalizing strategies for agents and goals can be mixed. It
means that we can use the first strategy for formalizing agents and the second
one for goals, or vice versa. This mixed strategy is employed in our framework
to deal with the instantiation problem.

Chapter 8

Solution Assessment

Solution Assessment, as aforementioned, plays a critical role to the success of
our framework. A good and informative assessment will support designers at
design time as well as users at runtime when deciding an appropriate config-
uration for their STS. For automatically self-reconfigurable STS, the Solution
Assessment becomes more important because the STS has to make decision
by itself about which configuration should be applied.

There are two types of assessment: qualitative and quantitative. While
the former suits only for human, the later is applicable for automatic self-
reconfiguration. In our framework, we mainly support the later assessment.
However, it is not difficult to extend the framework to accept qualitative as-
sessment.

From the technical point of view, quantitative evaluators could be felt into
two groups: early evaluators and late evaluators. The formers are used by the
AI planner to drive the planning process. Only solution that is better than
the previous one, in sense of applying a particular evaluator, is considered.
This kind of evaluators needs to be hard-code in the PDDL script. In the
meanwhile, the later evaluators, instead of hard-code script, are java classes.
These evaluators are used to evaluate generated solutions.

The early evaluators can accessed properties of organizational objects (ac-
tors, actor’s capabilities and goals) by encoded functions in the PDDL script.
As discussed in section 6, each objects’ property descriptor has a correspond-
ing PDDL predicate. This predicate is used to encode the property values.
The early evaluators need to integrated into PDDL actions’ preconditions and
effects. Therefore, there is a commitment of properties’ name in the PDDL
script and the ODM.

37

CHAPTER 8. SOLUTION ASSESSMENT 38

The late evaluators are also divided into two categories: simple evaluator
and simulating-based evaluator. The simple evaluator takes the input solu-
tion, performs analysis on this solution and computes the final measurement.
During analyzing process, the evaluator can access the ODM to retrieve in-
formation associated with goals or actors e.g., an effort, time which an actor
have to pay to accomplish a task. The simulating-based evaluator, on the
other hand, simulates the input solution and analyzes the simulation process
to calculate the assessment value. A simple example of this kind of evaluator
is the Execution Time evaluator. This evaluator simulates a given solution
and measure the time needed for complete the whole solution. Notice that,
the execution time of a solution is different from its length. A longer solution
might complete earlier than a shorter one. This behavior happens because
solution’s actions can be performed simultaneously. When precondition of an
action is satisfied, it is immediately executed without waiting for the prior
action in the solution.

For the sake of clarity, our framework supports three different types of
evaluators:

• Early evaluators which are hard-coded in the PDDL script,

• Simple evaluators which are scalar functions taking a solution and com-
puting the measurement,

• Simulating-based evaluators which are also scalar functions, but they
takes the simulation result returned by the event-based simulation of a
given solution.

The design of this framework accepts runtime addition of late evaluators.
Extra evaluators are imported to the framework by registering with the Eval-
uator Registry. While registering an evaluator, users are able to declare pa-
rameters using by this evaluator. Each parameter has a name, data type and
default value. The default value can be changed later. Currently, four primi-
tive types of parameter are accepted: Integer, String, Date time and Boolean.
Besides, the composite parameter type allows user to declare structural values.

The simple evaluator should implement interface IEvaluator (figure 8.1).
This interface provides two methods: one for computing assessment value and
one for combining two assess value. In method evaluate(), we can access
to other services provided by the framework (context), ODM (model), the
parameters of this evaluator declared in registry entry (item) and list of actions
to be evaluated (actions). This method returns an EvaluatorResult which
contains the assessment value as well as all necessary values to recalculate it.

CHAPTER 8. SOLUTION ASSESSMENT 39

1: interface IEvaluator
2: function evaluate(context: IJasimContext, model:ODM, entry:

EvaluatorEntry, actions: list of PddlAction): EvaluatorResult;
3: function combine(res1, res2: EvaluatorResult): EvaluatorResult;
4: end

Figure 8.1: IEvaluator interface.

The second method in this interface is used to combine two separated
results into one. It is extremely useful in simulating-based evaluator. During
event-considered simulation, if an event happens and causes the simulator to
re-plan, the original solution is not completely executed, and is substituted by
a new one. Therefore, to assess the original solution, we should evaluate the
executed part of the original solution, and the substitution.

8.1 Simulation Engine

The simulating-based evaluators carry our assessment by analyzing the execu-
tion of a given solution. This is done thank to the simulation engine. There
are two kind of simulation supported by the simulation engine: plain simu-
lation and event-based simulation. The plain simulation takes a solution and
simulates the whole solution, meanwhile the event-based simulation take into
account events which may happen during the simulation process. The effects
of an event may cause simulating solution invalid, and the solution needs to
be replanned at the time it gets corrupted. Simulating solution in this manner
shows the resilience of the original solution regard to a given set of events.
This assessment point of view is important since these events can happen
in the real, and the selected solution should be good enough to resist the
environmental changes. The simulation engine provides two simulators called
plain simulator and event-based simulator to support the plain simulation and
event-simulation, respectively. These simulators are described in the following
sections.

8.1.1 Plain Simulator

The objective of the simulation is to create an environment in which all actions
of a solution are executed as they are in the real. That is each action requires
a period of time to accomplish, and consumes some resources. At a certain
time, one agent can only perform one action, but actors can carry out actions

CHAPTER 8. SOLUTION ASSESSMENT 40

in parallel unless there are dependencies among jobs. A good simulator should
have an internal optimizer so that there are as much as possible actions are
performs at a same moment to accomplish the solution in the shortest time.

Each action has a particular execution time. The unit of time is not impor-
tant in the simulation; it thus can be minute, hour, day or whatever. Instead,
we emphasize on the relative between them i.e., the goal g1 is five times longer
that goal g2 to be accomplished. The table 8.1 shows the execution time for
supported actions in a solution. Particularly, the SATISFIES action’s duration
depends on what goal is satisfied as well as who is doing the goal, meanwhile,
other actions are assumed to be accomplished in a constant time. For other
actions not supported, the simulator simply drops them out.

Action Exec. Time
AND/OR DECOMPOSE 1

PASSES 1
SATISFIES vary

Table 8.1: Supported actions by the solution simulator and their execution
time.

The heart of the simulator is the algorithm illustrated in figure 8.2. This
algorithm is based on the idea of the JASON simulator [4] in which the simula-
tion time are divided into slots. In each timeslot, actions whose precondition is
matched are executed. The simulation stops when no more action is executed.

The simulation algorithm starts by a call to InitializeAgentsList()

(line 7). This procedure scans through the solution for the list of actors and
their corresponding actions. It also assigns the initial goals for these actors
based on the initial requests. When a goal is assigned to an actor, its corre-
sponding actions will be put in the action queue of this actor. In line 8 to
9, it resets the virtual clock to 0 and sets the termination condition to false.
The virtual clock is used to measure the duration of an action as aforemen-
tioned. The simulation actually starts in loops until its termination condition
is matched in the While loop found in line 10. In this loop, the simulator builds
a list of active actions (line 11). In a clock circle, there only one action is active
for an actor. The active action for an actor is selected from its action queue,
and should be in ready-to-execute status which means the execution precon-
dition for action is satisfied. For action AND DECOMPOSE, OR DECOMPOSE, the
precondition is the to-be decomposed goal is the active goal of an appropriate
actor. For action PASSES, the precondition is the delegator actor is available
and free. Alternatively, action PASSES is always true, and each actor has its
own goal queue to keep a list of goals to be fulfilled. For action SATISFIES,
the precondition is more complex. It is the actor who will satisfy this goal is

CHAPTER 8. SOLUTION ASSESSMENT 41

1: function simulate(actions: list of PddlAction)
2: var
3: clock: integer; terminated: boolean;
4: activeActions: list of PddlAction;
5:
6: begin
7: initializeAgentsList(actions);
8: clock = 0;
9: terminated = false;

10: while terminated = false do
11: activeActions = getListOfActiveActions();
12: if activeActions is not empty then
13: slot = create new time slot for the current clock;
14: for each action: Action in activeActions do
15: slot.add(action);
16: performAction(action, clock);

17: else
18: terminated = true;

19: return clock;
20: end

Figure 8.2: Solution simulation algorithm.

CHAPTER 8. SOLUTION ASSESSMENT 42

available and free, all prerequisite goals are fulfilled, all resources required by
this goal are available and ready to use.

If the active action list is not empty, the simulator creates a new time slot
which holds a list of actions and actors who are in charge of doing them in a
specific time circle. After being added to the time slot, each of active actions
is started executing (line 14). Base on action’s type, the simulator performs
different behaviors as following:

• AND/OR DECOMPOSE: the simulator looks up the ODM for the sub goals
and then replaces the top goal by its sub goals in the actor’s goal queue.

• PASSES: the simulator remove the goal in the goal queue of the actor who
delegates and add this goal to the delegate’s goal queue.

• SATISFIES: the simulator looks up the model the simulator does nothing
as assuming the actor is doing something to archive the goal.

8.1.2 Simulation event

As discussed, a simulation event has three part: precondition, post-condition
and parameters. The event precondition express whenever an event happens,
and its effects are described in post-condition. Meanwhile, the parameters are
values used by the reactions composing the post-condition.

Currently, there three preconditions are supported:

• AbsoluteTime is triggered when the simulator’s clock reachs to a given
time value,

• ActionRelativeTime is triggered in a given time circle after a specific
action happens,

• EventRelativeTime is triggered in a given time circle after a specific
event happens.

At runtime, when an event reaction is executing, beside parameters that
could be valued before simulating, it may also need other contextual informa-
tion at the moment the event happens e.g., the goals, actors affected by this
action. The reaction can get this information thank to the Parameters section
of the event definition and the magic of the simulator which will be detailed
in section 8.1.3.

CHAPTER 8. SOLUTION ASSESSMENT 43

ModifyObjectReaction

Description modifies dynamic property of an object.
Parameters
Action : {Assign, Increase}
NewValue : map to a variable (*) holding the new value.
Object : map to a variable (*) points to the modified object.
Property : the PropertyDescriptor describing the modified prop-

erty.

ModifyPDDLReaction

Description modifies the generated PDDL script
Parameters
Action : {Add/Remove Fact, Add/Remove Goal}
Predicate : the PDDL predicate being injected to (removed from)

the PDDL script.
PredicateArg: arguments of the predicate.
Negative : indicate whether the predicate is negated.

ForAllReaction

Description repeats a list of reactions where the parameters receive
new values in each loop according to a ForAll-domain. The ForAll-
domain provides a list of value based on the input parameters. The
following ForAll-domains are currently supported in the framework:

• ProvidedGoalDomain: goals provided by a given actor.

• RequestGoalDomain: goals requested by a given actor.

• AssignedGoalDomain: goals assigned to a given actor.

• SatisfyGoalDomain: goals assigned to a given actor, but not
yet satisfied.

• RequestorDomain: actors who request a given goal.

• ProviderDomain: actors who provide a given goal.

ReplanReaction

Description forces the event simulator to re-plan.

Table 8.2: Built-in event reactions

CHAPTER 8. SOLUTION ASSESSMENT 44

Example 8.1. Let consider a solution in which an actor Alice is assigned
goal Shutdown electricity. But she fails in 5 units of time after trying to
accomplish the goal. And Alice does not has the ability to fulfill this goal
any longer. Unluckily, this goal still needs to be fulfilled. So, we need to
replan to find a new solution in the context that Alice no longer provides
this goal. The definition for the event describing the situation is illustrated
in figure 8.3. When the simulator encounter the action (SATISFIES Alice

Shutdown electricity), this event is triggered, the parameter Actor and
Goal are respectively set to Alice and Shutdown electricity. Afterward,
the post condition is applied which removes the fact (CAN PROVIDE Alice

Shutdown electricity from the new PDDL script before re-planning. �

Event: SatisfactionFailure
Precondition:

ActionRelativeTime

Action = SATISFIES

Actor = ?
Goal = Shutdown electricity

Time = 5
Parameters:

Actor = ?
Goal = ?

Post-Condition:
ModifyPDDLReaction

Action = REMOVE FACT

Predicate = CAN PROVIDE

PredicateArg = {Actor} {Goal}
Replan

Figure 8.3: Satisfaction Failure event

8.1.3 Event-based simulator

In this section, we discuss about the event-based simulator (hereafter, referred
to as event simulator) which is built on the plain simulator as previously
represented. The event simulator hooks into the plain simulator for checking
whether events happen on every time circle. The event simulation algorithm
is listed in figure 8.4

The algorithm starts by creating a structure called simulation node (figure
8.5(b)) has references to the corresponding solution, the PDDL script that

CHAPTER 8. SOLUTION ASSESSMENT 45

1: function event simulate(model: ODM, sol: Solution)
2: var
3: node, root, child: SimulationNode;
4: Q: Queue of SimulationNode;
5: new solutions: list of Solution;
6:
7: begin
8: root = new SimulationNode(solution);
9: Q.enqueue(root);

10: while Q is not empty do
11: node = Q.dequeue();
12: node.createPlainSimulator(); {create a plain simulator for the so-

lution associated with the processing node. The created simulator is ac-
cessed through Simulator property of node}

13: Hook event processor into simulator;
14: node.Simulator.simulate(node.Solution);
15: if Need replan then
16: Capture state of world into the model’s post-PDDL com-

mand list;
17: new solutions = generateSolutions(model);
18: if new solutions is not empty then
19: for each s: Solution in new solutions do
20: child = new SimulationNode(s);
21: node.addChild(child);
22: Q.enqueue(child);

23: else
24: node.isDanglingNode = true; {This node needs to replan,

but no solution found. Then it is considered as dangling node.}
25: else
26: node.isCompleteNode = true;

return root;
27: end

Figure 8.4: The event simulation algorithm.

CHAPTER 8. SOLUTION ASSESSMENT 46

ODM 0

Node #0

Node #0.0 Node #0.1 Node #0.2

Node #0.1.1Node #0.1.0

ODM 0.1

events

(a) Simulation Tree

Simulated Node

Solution

Event Simulator

Solution Simulator

ODM

(b) Simulation Node

Figure 8.5: The simulation tree structure returned by the event simulator (a)
and the structure of a simulation node (b).

generates this solution, the ODM that generates the PDDL script and the
plain simulator that simulates this solution. The created node is put in a
queue nodes (line 9).

In the While loop (line 10), the event simulator picks up an simulation node,
and invokes the plain simulator to simulate the original solution. When an
event precondition is satisfied, event simulator bind each unassigned parameter
in Parameters section (c.f. section ??) with appropriate value extracted from
the solution’s action interrupted by the event. The binding is done by using
name matching. Then, all reactions in the event’s post condition are applied.

If one of the reactions causes the solution fails to continue, the event simu-
lator captures the current state of world and passes to the Solution Generator
for re-planning. New generated solutions could be filtered to improve the
performance as well as to prevent the solution explosion. The filter criteria
are based on a simple evaluator, by which, only ”good enough” solutions are
returned. By default, the filter does nothing. Users have to choose an appro-
priate simple evaluator and a threshold value. A solution is considered as good
enough if the returned value of the filter evaluator is greater than or equals the
threshold value. Afterward, the event simulator creates new simulation nodes
corresponding to new generated solutions, line 17. These nodes are enqueued,
line 22, and later processed by the event simulator.

Another point to be considered is that the AI planner does not always find
and return a solution. Because the most of planner chooses the local search
approach, hence there is no guarantee that the search will stop with a solution.
And it is not enough evidence to conclude that the problem is unsolvable. To
deal with such situations, we set the time limit for the planner. We assume

CHAPTER 8. SOLUTION ASSESSMENT 47

that if the AI planner does not find any solution within a period of time, then
the problem is unsolvable.

If a simulation node needs to re-plan but there is no solution found, we
call this node as dead-end node or dangling node. The dangling node means
if we follow this solution, and the given set of events happens, we will never
archive all the top goals. On the other hand, we called a simulation node as
leaf node if the associated solution is successfully completed.

At the end of simulation progress, the event simulator returns root node of
the simulation tree (as depicted in figure 8.5(a)) to the caller which in turned
passes it to the event-based evaluators, and to the Visualizer to display the
final result on the screen.

8.2 Simple Evaluators

8.2.1 Overall Benefit/Cost Quotient

The benefit/cost quotient (BCQ) is widely adopted in many fields, especially
economic. The objective is to gain benefit per each unit of cost as much
as possible. In our organizational planning problem, the BCQ could be the
satisfaction degree of all goals over the effort (or consumed time) need to pay
to archive goals. In some situations, users may want to focus only on the cost
(or benefit) come from goal satisfaction.

Normally, each goal has its own threshold level of satisfaction. A goal is
considered as satisfied if it is fulfilled with a certain level of satisfaction at
least the threshold value. In practice, there are many actors are able to satisfy
a given goal, but their satisfaction abilities of this goal are different.

Example 8.2. Considering an example where two students Alice and Bob
want to satisfy the goal ”passing the Math examination”. Alice accomplishes
the exam in 1 hour with grade 8 (10 is max) while Bob needs 2 hours with grade
9. Obliviously, the later student satisfies the goal with a higher level than the
former. But both of them pass the exams since their grades are greater than
5. Alice, however, needs less effort to complete exams than Bob. Then we can
say that the benefit and cost of actor (student) Alice for completing this goal
are 8 and 1, respectively; and those of actor Bob are 9 and 2.

Therefore, the efficiency (BCQ) of Alice (8/1 = 8) is theoretically bet-
ter than Bob (9/2 = 4.5). Nevertheless, the comparison of BCQ does not
make sense in this case because the final grade, of course, is more important
regardless how much effort each student has to pay. �

CHAPTER 8. SOLUTION ASSESSMENT 48

To this extend, in order to evaluate the BCQ of a solution, the BCQ eval-
uator need to know the benefit and cost for each action in a solution. In
this evaluator, we consider only satisfaction action. Therefore, the benefit
of the action SATISFIES(a, g) determines how well the actor a fulfills the
goal g. Similarly, the cost of this action is how much effort the actor a has
paid for fulfilling goal g. Hence, the domain of the effort and benefit could
be {low,medium, high, veryhigh}, and {average, good, verygood, excellent}.
Therefore, the registered entry of BCQ in the event model of ODM as a tu-
ple 〈BCQ, {〈Cap,BENEFIT 〉 , 〈Cap,EFFORT 〉}〉. We employ a normalize
function, norm, which maps these enumerate values to numeric as of formula
8.1.

norm(effort) =

25, low,

50, medium,

75, hight,

100, veryhight

,norm(benefit) =

25, average,

50, good,

75, verygood,

100, excellent

(8.1)

The BCQ of a solution is computed as follow:

BCQ(S) =

∑
act∈S norm(Bef(act))∑

act∈Act norm(Cost(act))
(8.2)

Where:

• Bef(act) =

Pv(cap, BENEFIT), act = SATISFIES(ai, gk) ∧

cap = 〈ai, gk〉 ∈ Cap
0, otherwise

• Cost(act) =

Pv(cap, EFFORT), act = SATISFIES(ai, gk) ∧

cap = 〈ai, gk〉 ∈ Cap
0, otherwise

The figure 8.6 presents the algorithm of the BCQ evaluator.

This algorithm is worth for some comments. Line 8 and 9 find the PropertyDescriptor
of BENEFIT and COST which are attached to actors’ Capability as mentioned
above. In the FOR loop (line 10), only SATISFIES actions are considered.
The algorithm extracts the actor, goal from the action; and looks for the
corresponding capability. Then, it extracts the cost and benefit from this
capability to accumulate.

This benefit/cost model could be extended to accept many types of cost as
well as many kinds of benefit. Then cost and benefit is not only a scalar value,

CHAPTER 8. SOLUTION ASSESSMENT 49

1: function CBQ(model: ODM, actions: list of PddlAction)
2: var
3: benefitProp, costProp: PropertyDescriptor;
4: act: Actor; goal: Goal; cap: Capability;
5: cost, benefit: float;
6:
7: begin
8: benefitProp = model.getDescriptor(Capability, BENEFIT);
9: costProp = model.getDescriptor(Capability, COST);

10: for each a: PddlAction in actions do
11: if a.Functor = SATISFIES then
12: act = model.getActorByName(a.getArgument(0));
13: goal = model.getGoalByName(a.getArgument(1));
14: cap = act.findCapability(goal);
15: if cap is not null then
16: cost += norm(benefitProp.getValue(cap));
17: benefit += norm(costProp.getValue(cap));

18: return benefit/cost;
19: end

Figure 8.6: The Benefit/Cost quotient algorithm.

CHAPTER 8. SOLUTION ASSESSMENT 50

but a vector. In this case, each element in a vector has different contribution
factor as it has different important level. More important, elements in the
cost vector are usually belong to different domain or measurement unit. For
instance, a cost vector consists of two element 〈effort, duration〉, the effort
could be one of {low,medium, high, veryhigh}, and duration could be the
number of minutes to complete the task. Therefore, we need a normalize
function that maps these heterogenous values to a standard domain. The
following is an alternative of formula 8.2, but it accepts cost/benefit vector.

−−−→
BCQ(Act) =

∑
act∈Act

−−→
Bef(act)∑

act∈Act

−−→
Cost(act)

(8.3)

or in the scalar form

BCQ(S) =

∑
act∈S

∑n
i=1 αi · norm(Befi(act))∑

act∈S

∑m
i=1 βi · norm(Costi(act))

(8.4)

where:

• αi, βi: the contribution factor of the ith element of benefit and cost vec-
tors, respectively.

• norm: is the normalize function since the costs values are heterogenous.

• Befi(act), Costi(act): the ith element of benefit and cost vectors, respec-
tively.

8.2.2 Actor criticality analysis

The solution could be considered as a social network. In this network, an
actor is a super node consisting of many goal nodes. Goal delegations among
actors create links for the network. The criticality of an actor measures how
a social network will be affected in case the actor has been removed or has
left the network. This notion is highly connected to that of resilience of
network [9]. In practice, a social network might be collapsed if its highest-
degree nodes are removed. Therefore the study of criticality of actors in a
solution is quite important to the self-reconfigurable STS, since this highly
vulnerable can happen in the real life.

CHAPTER 8. SOLUTION ASSESSMENT 51

In our framework, we adopt the idea of criticality analysis in [9] which
concisely summarized as follow.

Leaf goals satisfaction dimension All the leaf goals assigned to an actor
will be unsatisfied when that actor is removed. Let an integer number
w(g) is the weight of goal g. w(g) is intuitively the measure of importance
of g for the system defined by a human designer. The criticality of
actor a in a solution/configuration S, according to leaf goals satisfaction
dimension, is defined as:

crg(a, S) =

∑
SATISFIES(a,g)∈S ω(g)∑
SATISFIES(x,g)∈S ω(g)

(8.5)

Where x is an actor and g is a goal

Dependency dimension All the in- and outgoing dependencies for goals,
together with the actor, are removed when actor is removed. This means
that a number of delegation chains become broken and the goals dele-
gated along these chains cannot reach the actor at which they will be
satisfied. Hence, the fraction of ”lost” dependencies (ingoing or out-
going) when actor a is removed from the socio network constructed in
accordance with solution Sis:

crin(a, S) =

∑
PASSES(a′,a,g)∈S ω(g)∑
PASSES(x,y,g)∈S ω(g)

,

crout(a, S) =

∑
PASSES(a,a′,g)∈S ω(g)∑
PASSES(x,y,g)∈S ω(g)

,

crdep(a, S) = crin(a, S) + crout(a, S) (8.6)

Where a’, x, y are actors and g is a goal

Actor criticality with respect to a set of goals It is also important to
quantify the impact of an actor removal on the top-level goals of a STS,
or, in general, on any predefined set of non-leaf goals. Let Gdir aff (a, S)
is the set of goals directly affected by the removal of actor a in solution

CHAPTER 8. SOLUTION ASSESSMENT 52

S:

Gdir aff (a, S) ={g : goal.SATISFIES(a, g) ∈ S∨
∃a′ : actor.(PASSES(a′, a, g) ∈ S)∨
∃a′′ : actor.(PASSES(a, a′′, g) ∈ S)}

LetGaff (a, S) is the set of goals affected by the removal of actor a in solu-
tion S, corresponding to the set Gdir aff (a, S). Gaff (a, S) is constructed
by goal reasoning which allows to infer the (un)satisfiability to top goals
by propagating though a goal graph the (un)satisfaction evidence [9].

Let Gr is the set of ”reference” goals, i.e. top-level or any pedefined
subset of system goals with respect to which criticality of an actor in a
solution will be evaluated [9]. Then the criticality of a in S corresponding
to Gris defined as follows:

cr(a, S,Gr) =

∑
g∈Gr∧Gaff (a,S) ω(g)∑

g∈Gr
ω(g)

(8.7)

Based on the above three dimensions, we introduce the concept of overall
actor criticality for a specific actor aas:

cr(a, S) = ω1crg(a, S) + ω2crdep(a, S) + ω3cr(a, S,Gr) (8.8)

where ωi, i = 1, 3 are the contribution factors of each type of criticality mea-
surements. Since there are many actors with different criticality in one so-
lution, we are thus interested in the variance analysis of actor criticality in
solutions. The variance ratio is computed as:

∆cr(S) =
1

N

∑
a∈S

(cr(a, S)− cr)2 (8.9)

where

cr =
1

N

∑
a∈S

cr(a, S)

We consider this variance ratio (or standard deviation) as another metric
for evaluating solutions. The lower the variance ratio of actor’s criticality in a
solution, the more resilience the solution is.

Another approach for criticality analysis Thank to the event-based

CHAPTER 8. SOLUTION ASSESSMENT 53

simulator, we can explore another expansion to evaluate the criticality of an
actor. We start the simulation on the given solution then trigger an event that
removes an actor to see how the solution is adapted. If the solution fails and
can not be replanned successfully, then the actor is high-criticality in solution;
otherwise it is not. We can also remove some particular parameters (e.g, the
capability of satisfying certain goal) of an actor instead of removing the actor
itself. The simulation can also be run on several solutions to see how resilient
they are with the same event.

By this faction, we might identify the criticality of the actor in a specific
period of time during the execution of the given solution.

8.3 Simulating-base Evaluators

8.3.1 Solution execution time

The solution execution time is somehow an interesting criterion. In some
situation when the time to archive the top goal is the most important regardless
of cost and benefit obtaining from the goal.

As aforementioned, actions in a solution can be performed in parallel.
Hence, there is no correlation between solution length and solution execution
time. Instead, an accurate way is to simulate the given solution. Depend of
which simulator is applied, there are two calculation for the solution execution
time. If solution simulator is used, the execution time is the value returned by
the simulator. If event simulator is employed, the simulation tree is returned.
Let consider the simulation tree as a direct weighted graph where the weight
of a connection is the simulation time of the target node. If the target is a
dangling node, the weight is set to infinitive. To this extend the execution
time is the simulation time at the root node plus the cost of the shortest path
from root to a leaf node.

In figure 8.7, it is the algorithm calculating the execution time of a solution
base on the simulation tree returned by the event simulator. The input of the
algorithm is a simulation node. The idea is to employ recursive method. The
algorithm result is first set to the simulation time of the input node. If the
simulation node has any child, it recursively calls itself for each of children to
find the smallest value. Finally, it adds this value the initial result and returns
the sum value to the caller.

CHAPTER 8. SOLUTION ASSESSMENT 54

1: function executionTime(node: SimulationNode)
2: var
3: time, child time, temp: integer;
4:
5: begin
6: time = node.Solution.getSimulationTime(); {get the simulation time

of the associated solution.}
7: if node.Children is not empty then
8: child time = MAX INT;
9: for each child: SimulationNode in node.Children do

10: temp = executionTime(child);
11: if temp < child time then
12: child time = temp;

13: time += child time;

14: return time;
15: end

Figure 8.7: The solution execution time algorithm.

8.4 Early Evaluators

8.4.1 Local Gain of Benefit/Cost Quotient

The Local Gain of Benefit/Cost Quotient (LG-BCQ) evaluator computes the
gain of each action generated during the planning process. Each time the
AI planner tries a move (or action), it calculates the LG-BCQ value for this
move as guided in the PDDL script. This value then is accumulated and used
as a optimizing metric for the planner. Therefore, the planer always tries to
generate a solution with the maximal accumulated LG-BCQ.

Unlike the overall BCQ (section 8.2.1) which only measures cost and ben-
efit for goal satisfaction, LG-BCQ takes into account other actions as well.
Eventually, there three different kinds of action are considered as follows:

• Goal satisfaction: csik and bsik respectively denotes the cost and benefit
of satisfying goal gk by actor ai. These values are the same of that used
in the overall BCQ.

• Goal decomposition: crik, brik denotes the cost and benefit of decom-
posing goal gk by actor ai.

• Goal delegation: cdik, bdik denotes the cost and benefit of delegating

CHAPTER 8. SOLUTION ASSESSMENT 55

goal gk by actor ai.

The LQ-BCQ then is computed as of formula 8.10:

LQ−BCQ(S) =
∑

SATISFIES(ai,gk)∈S

bsik

csik

+

∑
DECOMPOSES(ai,gk,gk1,...,gkn)∈S

brik

crik

+

∑
PASSES(ai,aj ,gk)∈S

bdik

cdik

(8.10)

where

• bsik = 1
n
·
∑n

j=1 norm(Befj(SATISFIES(ai, gk)))

• csik = 1
n
·
∑n

j=1 norm(Costj(SATISFIES(ai, gk)))

• brik, crik, bdik, cdik are assigned values by domain experts. These
values should also be normalized like that of SATISFIES action.

The LQ-BCQ is an early evaluator, it thus is hard-coded in the PDDL script
which has limitation of function invocation. Therefore, in our implementation
all costs value are first normalized before they are scripted.

8.4.2 Actor Budget Constraint

The Actor Budget Constraint(ABC) evaluators prevents the situations in which
an actor is assigned too much that exceed actor’s limitation. Concretely, sup-
pose that each actor has a budget to satisfy goals. And when this actor fulfills
a goal, the budget is decreased a certain amount. Once this budget is too low
to fulfill any goal, this actor is exhausted and it should not be assigned goals
any more. The ABC objective is to avoid such a situation.

The implementation of ABC is quite simple. At the beginning, each actor
has its own value of maximum budget. For each of consumed energy actions
(AND/OR DECOMPOSE, PASSES, SATISFIES) we append a precondition saying
that actor’s budget should be greater than the required cost of this action.
And in the action’s effect, we decrease actor’s budget by amount of action’s
cost. The action’s cost can be retrieved as described in 8.4.1.

To this extend, this early evaluator can be seen as an implementation of
the local optimization in Bryl et al approach [9], but at the planning process.

Chapter 9

Implementation

This chapter gives a glance to the implementation of the framework as well as
the employed technologies. We use Java as programming language to develop
the framework due to its popularity in the research community. The frame-
work is developed base on the Eclipse Modeling Framework Project. And for
the AI planner, we adopt LPG-td which won the best planner prize in the
International Planning Competition 20041.

9.1 Eclipse Modeling Framework

Eclipse Modeling Framework project (EMF) [35, 17] is a modeling framework
and code generation facility for building tools and other application based on
a structured data model.

EMF provides tools to define the data model which saved in XMI format,
and provides tool for generate runtime support Java classes. The generated
classes include APIs allow user to construct viewer, editor for the data model.
They also include a basic editor for the data model.

The interesting point (also the strength) of EMF is to support code re-
generate. It means that users are able to customize generated code. When
they need to update to model, EMF can regenerate the code without affecting
to customized code. In this way, EMF provides a mechanism for developing
model-based applications.

Generated code can run as ether a rich-client program (RCP), or an plugin

1http://www.informatik.uni-freiburg.de/hoffmann/ipc-4/.

56

CHAPTER 9. IMPLEMENTATION 57

Figure 9.1: The MDI and dockable interface of an RCP.

of the Eclipse IDE. It inherits a powerful plug-in infrastructure of Eclipse
IDE that allows user to customize the application by plug-in. It also provides
an elegant user interface supporting Multiple-Document Interface (MDI) and
dockable interface which the MDI editor sits in the center and other views are
placed around (see figure 9.1).

9.2 AI Planner

As aforementioned, our framework relies on an off-the-shelf AI planner tool.
We adopted LPG-td [28], a fully automated system for solving planning prob-
lems, which supports PDDL 2.2 specification [19]. The LPG-td is a fast
planner with an easy, simple command interface, which supports both tar-
get platforms: Windows and Linux. However, as PDDL is a standard for
the International Planning Competition, it is not difficult to move to other
planners.

CHAPTER 9. IMPLEMENTATION 58

9.3 Jasim Application

This section discusses about the Jasim Application which is built on top of the
framework. Although Jasim itself is not an self-reconfigurable STS, it provides
a GUI supporting designers in developing their STS. Jasim developers employ
the EMF to develop an elegant, user-friendly, flexible and extensible tool.
Most of functions of Jasim can be reused in developing other applications
in a simplest way thank to the powerful Eclipse Plugin Architecture. The
major features of Jasim are: ODM editor, ODM solution generator, and ODM
solution simulation.

9.3.1 ODM Editor

The ODM editor is an elegant MDI editor which allows users to open many
ODM documents at the same time. There are two kinds of ODM documents:

• Template document is a variant of the ODM. The template document
contains i) sets of property descriptors for actor, goal and capability.
ii) list of available evaluators iii) list of available custom reactions which
can be used in define events iv) list of predefine events. These infor-
mation can be shared between different ODM in a same domain. For
example, the models of fire fighting are vary in different scenarios e.g.,
fire in buildings, fire in forests. But, the properties of actors, goals and
capability in these scenario are somewhat similar as well as the event
types and evaluators.

• Normal document contains information of the potential organizational
model and the event model for simulation.

In figure 9.2(a), it is the ODM editor. Each of ODM document has fives
subtabs. The Selection tab is tree-like editor for the whole content of the
ODM. When a object is selected, its properties are shown in the Properties
view in order to edit. The next three tabs, Actors, Goals, and Capabilities, are
different view aspects of the ODM (see figure 9.2(b)). They are tabular editors
whose columns are dynamically constructed based on the number property
descriptors of the corresponding object. These editors provide users an easier
way to edit objects’ properties. The final PDDL tab shows the PDDL code
reflect to the editing model.

CHAPTER 9. IMPLEMENTATION 59

(a) Selection tab (b) Actors tab

Figure 9.2: Jasim MDI editor of ODM document

9.3.2 ODM Solution Simulation

The feature consists of different views supporting the solutions simulations as
follows:

• Solution List (figure 9.3(a)) displays a list of generated solutions. From
this view, users can view the solution detail, simulate selected solutions
with/without events.

• PDDL Solution (figure 9.3(b)) displays the detail of selected solutions
as well as the PDDL code generating this solution. This information is
extremely useful for the event simulation feature. It allows users to view
PDDL script of each simulation node.

• Solution Simulation (figure 9.3(c)) displays the execution of a solution.
Each execute action has information about agent who is in charge of,
the detail action and the starting time as well as ended time.

• Simulation Timeline (figure 9.3(d)) display the same information as So-
lution Simulation view, but in a visual way. In this view, each actor
occupies a swimlane which shows actions performed by this actor. Each
action is presented by a round rectangle with different color, and a label
on top e.g., D for DECOMPOSE action and P for PASSES. The rectan-
gle’s length determines the duration of this action in virtual time. If a
action is interrupt by a replan action, it is displayed with a red color.

CHAPTER 9. IMPLEMENTATION 60

• Event Simulation (figure 9.4) displays the result of the event simulator.
The simulation tree is shown of the left hand side, meanwhile the detail
of selected simulation node is displayed on the right hand side. A sum-
marized chart for the solutions’ adaptation is also illustrated on the this
side. In this chart, user is able to select different chart types and scalar
evaluator evaluating simulation tree.

When user selects a simulation tree node, the corresponding solution and
solution’s execution are shown in the PDDL Solution and Simulation
Timeline views, respectively.

(a) Solution List (b) Pddl Solution

(c) Solution Simulation (d) Simulation Timeline

Figure 9.3: Jasim’s solution simulation’s views.

CHAPTER 9. IMPLEMENTATION 61

Figure 9.4: Event simulation view.

Chapter 10

Experiment

To experimental validate our proposed framework, we run our prototype appli-
cation (Jasim, cf., 9.3) on a case study of crisis management domain. Particu-
larly, the case study focuses on the Fire fighting at a building. In the following
sections, we detail the case study constructed based on scenario in [32],

10.1 Case Study: Fire fighting

10.1.1 Scenario

The fire happens in some location of a building. Fire warden of the build-
ing performs on-site reactions such as switch off gas/electricity and use fire-
extinguishers. If the extinguishers are damaged by the fire, then it cannot be
used. After fire trucks arrive to the scene, the fire commander wish to attack
the fire. For the preparation, the police cordon area of bystanders. The two
teams: Blue team and Green team will attempt scouting the building to locate
the seat of fire and locate the place of trapped victim. The Red team launches
the main attack to fight with the fire. Victims who are trapped wish to be
saved. Any of the three teams can lead victim out. Medical staff then provides
medical treatment for the victims.

From the above sample scenario, we derive eight actors and twelve goals
(both top goals and leaf goals). The goal model is depicted in figure 10.1. Table
10.1(a) shows the actors’ capabilities on satisfying a specific goal. Table 10.1(b)
shows the dependency relationship; for example, actor ’A3: Fire commander’

62

CHAPTER 10. EXPERIMENT 63

G1: Attack the fire

G3: launch

preparation

G4: Launch

main attack

G2: On-site

reaction

G5: Switch off

gas/electricity

G6: Use

extinguisher

G7: Cordon

place

G8:Locate seat

of fire

G9: Locate

victim

G11: Lead

victim out

G10: Save

victim

G12: Provide

medical

treatment

AND
AND

AND
AND

AND

Figure 10.1: The scenario goal model.

can depend on actor ’A8: Medical staff’ to perform the goal ’G12: Provide
medical treatment’.

Table 10.2 shows the precedence constraints between goals; for example,
the goal ’G11: Lead victim out’ can only be performed after the goal ’G9:
Locate victim’, and ’G12: Provide medical treatment’ can only be performed
after ’G11: Lead victim out’.

(a) Capabilities

Actor Goal Effort Time Benefit
A2 G5 25 5 100
A2 G6 25 20 100
A4 G7 25 30 100
A5 G5 25 5 100
A5 G8 25 30 100
A5 G9 25 30 100
A5 G11 50 35 100
A6 G5 25 5 100
A6 G8 25 30 100
A6 G9 25 30 100
A6 G11 50 35 100
A7 G4 75 60 100
A7 G11 50 25 100
A7 G12 25 10 100

(b) Dependency relationship

Actor Dependum Dependee
A1 G10 A3
A3 G4 A7
A3 G5 A2, A5, A6
A3 G6 A2
A3 G7 A4
A3 G8 A5, A6
A3 G9 A5, A6
A3 G11 A5, A6, A7
A3 G12 A8

A1:Victim, A2:Fire warden, A3:Fire commander, A4:Police, A5:Blue team, A6:Green
team, A7:Red team, A8:Medical staff

Table 10.1: The actors’ capabilities (a), and dependency relationship (b)

CHAPTER 10. EXPERIMENT 64

Goal Precedence goals
G4 G5, G8
G8 G5
G9 G5
G11 G9
G12 G11

Table 10.2: The precedence constraints between goals

10.1.2 Planning result

Table 10.3 reports eight candidate solutions for the scenario. Solutions are
presented in rows, meanwhile columns are organizational leaf goals. Each
table cell is the goal-to-actor assignment and the period of time when this
goal is fulfilled.

To evaluate these solution, besides the BCQ evaluator (cf. section 8.2.1),
we will simulates them over a set of event as follow. Suppose that during
the fire fighting, when a solution is in execution for 40 minutes, the available
budget (cf. section 8.4.2) of the actor Green team is suddenly decreased by 50
(event E1) for some reasons (e.g., some members of Green team get injured).
And at the minute of 70, the Blue team’s budget is decreased by 50 as well
(event E2).

To this extend we simulate all candidate solutions within the set of these
two events to see their effects to the candidates. The table 10.4 shows the
evolution of solutions with respect to events happen. In this table, the first
column Solution indicates the solution number. The Initial determines the
initial BCQ assessment value (BCQ for short). Next, column E1 (t=40) and
E2 (t=70) present the solutions’ BCQ at the moment events happen. The last
column tend shows the time when each solution is accomplished. The graph
shown in figure 10.2 is the quality of each solution over time.

According to table 10.4, there five solutions (#1, #3, #4, #6, #7) have
the same score as 2.4096. Late on, when event E1 happens, there two solu-
tions #1 and #6 are affected, their scores are decreased to 2.3256 and 2.2364,
respectively. Next, event E2 arrives, solution #3 suddenly goes to dead-end
which means all the top goals are never satisfied. Again, solution #6 is affected
and decreased to 2.2599 while the others remain unaffected.

Based on this assessment, if total execution time is the most important,
solution #2 may be the best choice. Otherwise, both solution #4 and #7
are more suitable. Solution #6 might be the poor choice since its quality is
dropped down and the execution time is prolonged. In the meanwhile, solution
#3 is even worst because it leads to a dead-end.

CHAPTER 10. EXPERIMENT 65

Solution G4 G5 G6 G7 G8 G9 G11 G12

#0
A7 A6

–
A4 A5 A5 A6 A8

54–133 18–22 21–50 24–53 54–83 84–118 119–128

#1
A7 A2 A2 A4 A5 A5 A5 A8

57–116 18–22 23–42 24–53 27–56 57–86 87–121 122-131

#2
A7 A2

–
A4 A6 A6 A5 A8

54–113 18–22 21–50 24–53 54–83 84–118 119–128

#3
A7 A2

–
A4 A6 A6 A5 A8

54–113 18–22 21–50 24–53 54–83 84–118 119–128

#4
A7 A2 A2 A4 A5 A5 A6 A8

57–116 18–22 23–42 24–53 27–56 57–86 87–121 122-131

#5
A7 A6

–
A4 A5 A5 A5 A8

51–110 12–16 18–47 21–50 51–80 81–115 116–125

#6
A7 A2 A2 A4 A6 A5 A5 A8

57–116 18–22 23–42 24–53 27–56 30–59 60–94 95–104

#7
A7 A2 A2 A4 A6 A6 A5 A8

57–116 18–22 23–42 24–53 27–56 57–86 87–121 122-131

Table 10.3: Eight candidate solutions for the scenario settings.

Solution Initial BCQ E1 (t = 40) E2 (t = 70) tend

#0 2.3179 n/a dead –
#1 2.4096 2.3256 n/a 179
#2 2.3179 n/a n/a 128
#3 2.4096 n/a dead –
#4 2.4096 n/a n/a 131
#5 2.3256 2.3392 dead –
#6 2.4096 2.2364 2.2599 209
#7 2.4096 n/a n/a 131

n/a: not affected, dead: no available solution

Table 10.4: The evolution of solutions according to events.

CHAPTER 10. EXPERIMENT 66

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

2.4

2.42

0 50 100 150 200 250

B
e

n
e

fi
t/

C
o

st
 Q

u
o

ti
e

n
t

Execution time

Sol#1

Sol#2

Sol#4

Sol#6

Sol#7

Figure 10.2: Accomplishable solutions’ quality according to events happen.

Step Time(ms) Percentage(%)
Event-Simulation 80.73181 100%
1. Initialize simulator 0.02089 0.03%
2. Simulate solution 0.853154 1.06%
3. Replan 72.97947 90.40%

Table 10.5: Consumed time for each step in event-based simulation.

10.2 Scalability

In the domain of socio-network planning, the scalability of the planning prob-
lem and performance are very important. Obviously, the event-base simulators
usually takes long time to complete than the simple ones. The table 10.5 shows
the time consumed in each step of the event simulation. An event-simulation
usually has there major steps: initialize the simulator, simulate the solution
and replan when solution gets corrupt as events happen. Depend on the input
solution and the events, these steps might happen several time. It is easy to
realize that the time for (re)planning dominates times for other steps.

Hence, the performance and scalability of our framework relies heavily on
the AI planner. This property depends on two factors. The first one, certainly,
is the AI planner itself. We do not discuss detail it here since we can simply
choose the fastest planner on the market which supports PDDL standard. The
second factor depend on how the problem domain is defined. More specific, it

CHAPTER 10. EXPERIMENT 67

(or subgoal2 G1 G2 G3)
(and subgoal3 G2 G4 G5 G6)
(or subgoal2 G4 G9 G10)
(and subgoal2 G5 G11 G12)
(and subgoal2 G3 G7 G8)
(and subgoal3 G7 G13 G14 G15)

(a)

(can depend on A1 A2)
(can depend on A1 A3)
(can depend on A2 A4)
(can depend on A2 A5)
(can depend on A3 A5)
(can depend on A3 A6)

(b)

Figure 10.3: Elementary goal tree (a), and actors’ relationship (b)

is the number of predicates used for describe the problem as well as the actions
used by the planner.

Bryl et al [9] has studied the scalability of an off-the-shelf AI planner tool,
LPG-td, in their experiment. The planning part of our framework is based on
that of [9]. In which, the early evaluators are incorporated into the planning
process. Therefore, in this experiment, we aim at studying how the growing
complexity of planning problem influences the performance of the approach in
comparison to Bryl’s.

The planning problem files are conducted in the similar way of Bryl’s,
which are building from an elementary tree containing 4 decomposition levels,
15 goals (Gi, i = 1, 15, 2 OR and 4 AND decomposition relations (see figure
10.3(a)). All problem files contain 6 actors (Ai, i = 1, 6), organized into three
levels with respect to the relations between them as of figure 10.3(b). Over-
lapping capabilities is also introduced, namely, each leaf goal is satisfied by
two actors.

In the experimental result in table 10.6, we study the situation that the
planning problem grows in breadth; that is, the number of top goals increase.
Ntrees represents the number of elementary trees in the problem file, NB

fact, t
B
total

are the number of facts in the problem file and the total planning time of Bryl’s
approach, respectively. And NJ

fact, t
J
total are those of our approach. The two

last columns, Dfact =
NJ

fact −NB
fact

NB
fact

shows the difference of number of facts

between two approach, and Dfact =
tJtotal − tBtotal

tBtotal

is that total time. As shown

in the table, our approach has the same scalability of Bryl’s. In our approach,
since the number of facts in the planning problem file is approximate twice
greater than that of Bryl’s. Therefore, the difference of total time is not
surprisingly around 20% slower.

On the other hand, the table 10.7 reports experimental result of increasing
the problem complexity in depth; it means that the level of the elementary goal

CHAPTER 10. EXPERIMENT 68

Ntrees NB
fact NJ

fact tBtotal tJtotal Dfact Dtotal

1 31 91 0.06 0.08 1.94 0.33
2 56 170 0.53 0.64 2.04 0.21
3 81 249 2.48 2.51 2.07 0.01
4 106 328 3.7 3.73 2.09 0.01
5 131 407 8.52 10.17 2.11 0.19
6 156 486 11.89 15.23 2.12 0.28
7 181 565 15.3 19.33 2.12 0.26
8 206 644 20.25 25.21 2.13 0.24
9 231 723 28.09 31.39 2.13 0.12
10 256 802 40.01 45.21 2.13 0.13
11 281 881 58.39 63.07 2.14 0.08
12 306 960 ERR ERR – –

Table 10.6: Experimental result: increasing number of elementary goal trees.

tree is increased by adding additional goal to leaf goals. The meaning of each
column is exactly the same as that of table 10.6. The reported numbers are a
little bit suppress since our approach and Bryl’s are approximately the same.
The reason could be that our approach has a the greater parsing time and
the lower searching time compare with that of Bryl’s. The reason of greater
parsing time is obliviously because of the larger amount of facts. Meanwhile,
additional early evaluators helps the planner to cut down the search space; it
lead to the smaller searching time.

Level NB
fact NJ

fact tBtotal tJtotal Dfact Dtotal

13 139 415 6.21 4.15 1.99 -0.33
14 151 451 8.47 5.85 1.99 -0.31
15 163 487 9.34 10.37 1.99 0.11
16 175 523 10.75 9.91 1.99 -0.08
17 187 559 13.95 12.15 1.99 -0.13
18 199 595 13.14 13.71 1.99 0.04
19 211 631 15.76 18.63 1.99 0.18
20 223 667 19.31 19.7 1.99 0.02
21 235 703 23.07 21.12 1.99 -0.08
22 247 739 27.33 25.8 1.99 -0.06
23 259 775 31.51 30.17 1.99 -0.04
24 271 811 ERR ERR – –

Table 10.7: Experimental result: increasing level of elementary goal trees.

Chapter 11

Conclusions and Future Work

Socio-technical systems, which including human actors as an integral parts of
the system, has emerged as a promising solution to increase the success rate
of a software project. Since the human behaviors are different over time and
the continuous evolving characteristic of the organizational structure, mod-
ern information systems, particularly socio-technical systems, need to adapt
themselves according to the changes in the operation environment. Therefore,
runtime self-reconfiguration becomes an important factor to the success of an
STS.

Having studied about the self-reconfigurable STSs, we realize that the abil-
ity to automatically generate configurations and assess these configurations is
essential to support runtime self-configuration. To this extend, this thesis
work focuses on constructing a framework for generating and evaluating STS’s
configurations, which are the organizational model of an STS.

In this work, we have proposed an architecture of such a framework. To
generate configuration, we employ AI planning technique in which an off-the-
shelf planning tool, LPG-td, is used. The generated configuration is presented
as a plan (or solution) containing of a list of actions, in which all system’s
goals are assigned to human actors and/or software components. To assess
generated solution, our framework proposes two kind of evaluators to assess
the configuration in both static view and dynamic view. While the static
assessment analyzes the whole solution base on the list of actions inside, the
dynamic assessment simulates the solution, then carries out assessment based
on the simulated execution of the solution. The simulation is analyzing with
respect to a set of events in order to evaluate the resilience of solutions.

We have also developed a runtime prototype based on the proposed archi-
tecture. The framework prototype are developed based on the Eclipse Model-

69

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 70

ing Framework and Eclipse Plugin Infrastructure, a popular Java framework,
so that our framework can be easy integrated in an STS which is also built on
these technologies.

In future, we are planning to fully support instance-level planning, which
is currently limited supported, as well as instance-level simulation. Moreover,
additional evaluators will be added to provide a wide range assessment e.g.,
risk analysis.

Bibliography

[1] Yudistira Asnar, Volha Bryl, and Paolo Giorgini. Using risk analysis to
evaluate design alternatives. In AOSE, pages 140–155, 2006.

[2] G. Baxter and Ian Sommerville. Socio-technical systems: From design
methods to systems engineering. Submitted to Int. J. Human Computer
Studies., 2009.

[3] Carole Bernon, Marie-Perre Gleizes, Sylvain Peyruqueou, and Gauthier
Picard. ADELFE: A methodology for adaptive multi-agent systems engi-
neering. Engineering Societies in the Agents World III, 2577:80–81, 2003.

[4] Rafael H. Bordini, Jomi Fred Hubner, and Michael Wooldridge. Program-
ming multi-agent systems in AgentSpeak using Jason. Wiley, 2007.

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[6] Vohla Bryl, Paolo Giorgini, and John Mylopoulos. Designing cooperative
is: Exploring and evaluating alternatives. In OTM Conferences (1), pages
533–550, 2006.

[7] Volha Bryl and Paolo Giorgini. Self-configuring socio-technical systems:
Redesign at runtime. International Transactions on Systems Science and
Applications, 2(1):31–40, 2006.

[8] Volha Bryl and Paolo Giorgini. Automated design of socio-technical sys-
tems: From organizational structure to instance level design. In Proc. of
23rd IEEE/ACM International Conference on Automated Software Engi-
neering, 2008.

[9] Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing socio-
technical systems: from stakeholder goals to social networks. Requir.
Eng., 14(1):47–70, 2009.

71

BIBLIOGRAPHY 72

[10] K. M. Carley. Computational organization science: A new frontier. Pro-
ceedings of the National Academy of Science, 33(3):7314–7316, 2002.

[11] Luca Cernuzzi and Franco Zambonelli. Dealing with adaptive multi-agent
organizations in the gaia methodology. Agent-Oriented Software Engi-
neering VI, 3950:109–123, 2006.

[12] A.B. Cherns. Principles of sociotechnical design revisited. Human Rela-
tions, 40(3):154–162, 1987.

[13] L. K. Comfort, M. Hauskrecht, and J. Lin. Dynamic networks: Modeling
change inenvironments exposed to risk. In 5th International Conference
on Information Systems for Crisis Response and Management, 2008.

[14] F Dalpiaz, R Ali, Y Asnar, V Bryl, and P Giorgini. Applying tropos to
socio-technical system design and runtime configuration. In In Proceeding
of the Italian workshop Dagli OGGETTI agli AGENTI (WOA’08), 2008.

[15] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Talos: an archi-
tecture for self-reconfiguration. Technical report, DISI-08-026, 2008.

[16] Rajdeep K. Dash, Nicholas R. Jennings, and David C. Parkes.
Computational-mechanism design: A call to arms. IEEE Intelligent Sys-
tems, 18(6):40–47, 2003.

[17] Eclipse. Eclipse modeling framework project (emf).
http://www.eclipse.org/modeling/emf/.

[18] Stefan Edelkamp and J Hoffmann. Pddl2.2: The language for the classical
part of the 4th international planning competition. Technical Report 195,
January 2004.

[19] Stefan Edelkamp and Jörg Hoffmann. Pddl2.2: The language for the
classical part of the 4th international planning competition. Technical
Report 195, January 2004.

[20] F. E. Emery. ”designing socio-technical systems for greenfield sites. Jour-
nal of Occupational Behavior, 1(1):19–27, 1980.

[21] F.E. Emery. Characteristics of socio-technical systems, 1959. London:
Tavistock.

[22] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Recon-
ciling system requirements and runtime behavior. In IWSSD ’98: Pro-
ceedings of the 9th international workshop on Software specification and
design, pages 50–59, Washington, DC, USA, 1998. IEEE Computer Soci-
ety.

BIBLIOGRAPHY 73

[23] Standish Group. Extreme chaos 2001. Technical report, The Standish
International Inc, 2001.

[24] Axel Van Lamsweerde. Divergent views in goal-driven requirements engi-
neering. In Joint Proceedings of the Sigsoft ‘96 Workshops – Specifications
‘96, ACM, pages 252–256. Press, 1996.

[25] N. G. Leveson, M. Daouk, N. Dulac, and K. Marais. Applying stamp
in accident analysis. In NASA CONFERENCE PUBLICATION, pages
177–198, 2003.

[26] Lin Liu and Eric Eric Yu. Designing information systems in social context:
A goal and scenario modelling approach. Info. Syst, 29:187–203, 2003.

[27] A. Majchrzak and B. Borys. Generating testable socio-technical systems
theory. Journal of Engineering and Technology Management, 18:219–240,
2001.

[28] LPG Home page. Lpg-td planner. http://zeus.ing.unibs.it/lpg/.

[29] Zahid H. Qureshi. A review of accident modelling approaches for com-
plex socio-technical systems. In SCS ’07: Proceedings of the 12th Aus-
tralian workshop on Safety critical systems and software and safety-related
programmable systems, pages 47–59, Darlinghurst, Australia, Australia,
2007. Australian Computer Society, Inc.

[30] Gnter Ropohl. Philosophy of socio-technical systems. In Society for Phi-
losophy and Technology, 4:59–71, 1999.

[31] Walt Scacchi. Socio-technical design. The Encyclopedia of HumanCom-
puter Interaction, pages 656–659, 2004.

[32] SPEARS: Scalable Personal Area Services. Deliver-
able d2.1. disater management - scenatio and use cases.
https://doc.freeband.nl/dsweb/Get/Document-31938/Spears

[33] Herbert A. Simon. The Sciences of the Artificial, 3rd Edition. MIT Press,
1996.

[34] Ian Sommerville. Software Engineering 8th Edt, chapter Socio-Technical
system, pages 21–42. Pearson, 2006.

[35] Dave Stenberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework, 2nd Edition. Addison-Wesley Pro-
fessional, 2008.

BIBLIOGRAPHY 74

[36] Eric Lansdown Trist, Hugh. Murray, and F.E. Emery. The social engage-
ment of social science: a Tavistock anthology. University of Pennsylvania
Press, 1990.

[37] Guy H. Walker, Neville A. Stanton, Paul M. Salmon, and Daniel P. Jenk-
ins. A review of sociotechnical systems theory: a classic concept for new
command and control paradigms. Theoretical Issues in Ergonomics Sci-
ence, 9(6):479–499, November 2008.

[38] D.S. Weld. Recent advances in ai planning. AI Magazine, 20(2):93–123,
1999.

[39] Eric Siu-Kwong Yu. Modelling strategic relationships for process reengi-
neering. PhD thesis, Toronto, Ont., Canada, Canada, 1996.

[40] Nicolla Zannone. A Requirement Engineering Methodology for Trust, Se-
curity, and Privacy. PhD thesis, University of Trento, 2006.

	Introduction
	Background
	Goal-Oriented Methodology
	PDDL

	Related Work
	Self Reconfigurable Socio-Technical Systems
	Socio-Technical Systems Design
	STS: Self-Reconfiguration at Runtime

	Framework Architecture
	Organizational Model Manager and Editor
	Solution Generator
	Solution Simulation, Assessment and Visualization

	Organizational Descriptor Model
	Potential Organizational Model
	Evaluation model
	Event Model

	Socio-Network Planning Problem
	Organizational level planning
	Formalized input from ODM
	Planning problem

	Instance level planning
	Indirect instance level planning
	Direct instance level planning

	Solution Assessment
	Simulation Engine
	Plain Simulator
	Simulation event
	Event-based simulator

	Simple Evaluators
	Overall Benefit/Cost Quotient
	Actor criticality analysis

	Simulating-base Evaluators
	Solution execution time

	Early Evaluators
	Local Gain of Benefit/Cost Quotient
	Actor Budget Constraint

	Implementation
	Eclipse Modeling Framework
	AI Planner
	Jasim Application
	ODM Editor
	ODM Solution Simulation

	Experiment
	Case Study: Fire fighting
	Scenario
	Planning result

	Scalability

	Conclusions and Future Work
	Bibliography

