
Softw Syst Model
DOI 10.1007/s10270-015-0499-4

THEME SECTION PAPER

Designing secure business processes with SecBPMN

Mattia Salnitri1 · Fabiano Dalpiaz2 · Paolo Giorgini1

Received: 8 October 2014 / Revised: 17 September 2015 / Accepted: 20 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Modern information systems are increasingly
large and consist of an interplay of technical components
and social actors (humans and organizations). Such inter-
play threatens the security of the overall system and calls
for verification techniques that enable determining compli-
ance with security policies. Existing verification frameworks
either have a limited expressiveness that inhibits the specifi-
cation of real-world requirements or rely on formal languages
that are difficult to use for most analysts. In this paper, we
overcome the limitations of existing approaches by present-
ing the SecBPMN framework. Our proposal includes: (1)
the SecBPMN-ml modeling language, a security-oriented
extension of BPMN for specifying composite information
systems; (2) the SecBPMN-Q query language for represent-
ing security policies; and (3) a query engine that enables
checking SecBPMN-Q policies against SecBPMN-ml spec-
ifications. We evaluate our approach by studying its under-
standability and perceived complexity with experts, running
scalability analysis of the query engine, and through an
application to a large case study concerning air traffic man-
agement.

Keywords Information systems · Security policies ·
BPMN · Compliance

Communicated by Dr. Selmin Nurcan.

B Mattia Salnitri
mattia.salnitri@unitn.it

1 Department of Information Engineering and Computer
Science, University of Trento, Trento, Italy

2 Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

1 Introduction

Information systems are becoming increasingly large, com-
plex, and decentralized. Air Traffic Management (ATM)
systems, smart grids, and smart cities are not just monolithic
software systems, but rather they are socio-technical systems
[10,54] that consist of multiple autonomous, heterogeneous,
and mutually interdependent social (humans, organizations)
and technical (software, embedded systems, etc.) com-
ponents. Humans are an essential part of socio-technical
systems; they constitute, along with the organizations they
shape, the social part of such systems, through the creation
of a complex network of social dependencies.

The complexity of these systems and their blending with
society calls for new design techniques, for their crashes
entail severe effects in the broader societal context where
the systems operate [54]. Furthermore, due to the large
amount of private and confidential information that they
manage, their design shall treat information assurance and
security as primary concern that is analyzed from both a
social/organizational and a technical perspective [44].

Business process models are an adequate design abstrac-
tion to support the design of socio-technical systems, for they
enable specifying the interactions between humans, orga-
nizations, and technical systems. However, two challenges
shall be addressed to effectively use business process models
in the design of secure socio-technical systems: (i) includ-
ing explicit primitives for modeling security aspects and (ii)
developing automated verification techniques to check the
compliance of a business process model with certain secu-
rity policies.

To overcome the security modeling challenge, languages
have been proposed that extend Business Process Model-
ing and Notation (BPMN) [38]—the de-facto standard for
representing business processes—with security annotations

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0499-4&domain=pdf


M. Salnitri et al.

that constrain individual BPMN elements [44,59]. However,
these annotations do not support specifying security poli-
cies about the admissible behavior of the whole process.
Some other BPMN extensions employ a predefined set
of policies—BPMN patterns which specify the desirable
behavior—but they do not allow the definition of custom
security policies [7,34].

Concerning the verification challenge, existing techniques
suffer from two main limitations: (i) they focus on general-
purpose policies and provide no explicit support to security
policies [2,18,30,45], thereby relying on a too generic vocab-
ulary, and (ii) they include a too limited set of policy types,
mainly concerning access control [33,34,44], thereby cover-
ing a little part of the information security spectrum.

In this paper, we address both challenges through
SecBPMN, a framework formodeling and verifying the com-
pliance of a business process model with security policies.
We take BPMN-Query (BPMN-Q) [2]—a query language
that enables expressing and verifying generic queries over a
BPMN model—as our baseline. We extend BPMN-Q with a
number of annotations for expressing security policies. Our
contributions are as follows:

1. The SecBPMN-modeling language (SecBPMN-ml)
extends BPMN with annotations to express security
aspects in a business process model.

2. The SecBPMN-Query (SecBPMN-Q) language, an
extension of BPMN-Q for specifying security policies
as queries.

3. A software toolset for modeling in SecBPMN-ml, speci-
fying security policies in SecBPMN-Q, and checking for
compliance of SecBPMN-Q queries against SecBPMN-
ml diagrams.

4. An evaluation of the SecBPMN framework that includes
(i) a study of the understandability and perceived com-
plexity with expert modelers; (ii) a scalability analysis of
the compliance verification engine; and (iii) an applica-
tion to a large-scale case study in the ATM domain.

This paper extends our previous work [48] with the fol-
lowing: (i) we present a process to support analysts in using
SecBPMN; (ii) we conduct a study with expert modelers
about understandability and perceived complexity; (iii) we
run experiments to analyze the scalability of our verification
engine; and (iv) we provide an extended description of the
related works.

The research conducted for the original paper and for
this extension follows the six steps proposed in the Design
Science Research Methodology (DSRM) [42]: (i) problem
identification andmotivation, we identified the need of repre-
senting security aspects in business processes, andwe looked
for existing solution in the existing literature; (ii) definition
the objectives for a solution, we determined the best solution
that an adequate solution is a framework that enables mod-

eling business processes with security aspects, representing
security policies and verifying the latter against the former;
(iii) design and development, we identified BPMN as our
baseline modeling language, the set of concepts to be added
and how to extend BPMN; (iv) demonstration, by applying
it to a case study, we show the validity of the solution we
created; (v) evaluation, we conducted an online survey with
experts and ran a set of scalability tests; (vi) communication,
through the publication of the original paper [48], the present
extension, and technical reports available on [52].

The rest of the paper is structured as follows. Sec-
tion 2 describes our baseline. Sections 3 and 4 introduce
SecBPMN-ml and SecBPMN-Q, respectively. Section 5
presents our proposedprocess for using theSecBPMNframe-
work. Section 6 reports on our evaluation, while Sect. 7
discusses related works. Finally, Sect. 8 presents our con-
clusions and outlines future directions.

2 Baseline

In this section, we introduce the baseline of our research: the
BPMN-Q language for querying business process models,
and the RMIAS security reference model that constitutes a
comprehensive high-level ontology of security.

While BPMN is adequate for expressing the interactions
among the components in a complex socio-technical system,
it does not natively support the verification of compliance
with certain security properties that should hold in themodel.
For example, when modeling the landing procedure in ATM,
onemaywant to verify that in the process it is always the case
that pilots will confirm the landing trajectory of the plane.

Visual analysis ofBPMNmodelsworks only for small sce-
narios, but it becomes ineffective when many models exist,
or when they are as large as hundreds of elements. Moreover,
when safety and security properties are at stake, relying on an
informal analysis is not an option, due to the harmful effects
of adopting a model that violates them.

BPMN-Q is a diagrammatic query language which par-
tially overcomes this limitation, by expressing proper-
ties concerning business process models through graphical
queries that can be checked against aBPMNmodel [3]. These
queries can be seen as patterns that a given BPMN model
should comply with. BPMN-Q introduces relations that are
functional to define the queries, i.e., the concepts of path,
negative path, and negative flow.

Figure 1 shows an example of a BPMN-Q query, using the
SWIM ATM case study1 that we use throughout this paper.
The query enables checking whether the flight plan (Refer-
ence Business Trajectory or simply RBT) is approved and if

1 The System Wide Information Management (SWIM) [15] is a
next-generation communication system for the secure exchange of
information among ATM decision makers.

123



Designing secure business processes with SecBPMN

Fig. 1 A BPMN-Q query for
the SWIM ATM case study

the landing documents are checked at least once. The query
willmatch against any business processmodelwhich: (i) con-
tains an activity labeled “Plane RBT generation service” and
such activity generates the data object “RBT [Proposed]” (the
text within brackets denotes the state of the data object); (ii)
contains a path, i.e., a sequence ofBPMNelements connected
through a control flow, that connects the first activity to a par-
allel gateway; (iii) contains a path that connects the gateway
to “Control Tower communication service” that generates the
data object “RBT [Accepted]”; (iv) contains another path that
connects the gateways to an activity with any label (“@Y”)
that reads the data object “Landing documents [Approved]”.

BPMN-Q enables expressing generic properties over
BPMN elements, but does not provide any explicit model-
ing primitive for specifying security properties. We intend
to overcome this limitation by defining security annotations
that adhere with a state-of-the-art reference model for infor-
mation security.

A prominent family of referencemodels relies on theCon-
fidentiality Integrity Availability (CIA) triad [40]. However,
their adequacy has been questioned for they characterize a
too limited set of properties of a system [41]. Richer mod-
els exist, such as McCumber’s cube [32], which conceives
system security from three perspectives: information states,
critical information characteristics, and security measures.
The Business Model for Information Security (BMIS) [21]
addresses four interconnected elements: organization design
and strategy, people, process, and technology.

In our work, we choose the Reference Model on Informa-
tionAssurance and Security (RMIAS) [8], whichwas assem-
bled through an analysis and classification of security aspects
proposed by the most known reference models on informa-
tion assurance and security. As far as our knowledge goes,
RMIAS proposes the most comprehensive set of security
aspects, for it aggregates and classifies security aspects pro-
posed in the most reknown reference models on security and
information assurance, such as the CIA triad and BMIS [21].
The security aspects proposed inRMIAS are listed in Table 1.

3 SecBPMN-ml: a modeling language for secure
business processes

We extend BPMN with security annotations to cover each
of the security aspects in the RMIAS (Table 1). Every anno-

Table 1 Security aspects covered by the RMIAS [8]

Name Definition

Accountability An ability of a system to hold users
responsible for their actions (e.g., misuse of
information)

Auditability An ability of a system to conduct persistent,
non-by passable monitoring of all actions
performed by humans or machines within
the system

Authenticity An ability of a system to verify, identity, and
establish trust in a third party and in
information it provides

Availability A system should ensure that all system’s
components are available and operational
when they are required by authorized users

Confidentiality A system should ensure that only authorized
users access information

Integrity A system should ensure completeness,
accuracy, and absence of unauthorized
modifications in all its components

Non-repudiation The ability of a system to prove (with legal
validity) occurrence/non-occurrence of an
event or participation/non-participation of a
party in an event

Privacy A system should obey privacy legislation, and
it should enable individuals to control,
where feasible, their personal information
(user involvement)

tation has a graphical syntax and has to be linked with an
existing element of a BPMNmodel: an activity, a data object,
or a message flow. Moreover, annotations have attributes
that are used to specify detailed information on the security
mechanisms2 that enforce the policy. Attributes are optional
except for the one linking the annotation with a BPMN
element.

More precisely, SecBPMN-ml extends the subset of
BPMN that serves for specifying orchestrations, which
enables expressing interactions among information system
components: activities, gateways, and data objects. Each
security annotation is formalized in terms of one or more
predicates, one for every type of BPMN element that the
annotation can be linked with.

2 The low-level (software and hardware) functions that implement the
controls imposed by the policy [50].

123



M. Salnitri et al.

We designed the graphical syntax of the primitives fol-
lowing Moody’s guidelines for increasing the usability and
comprehensibility of modeling languages [35]. Moody clas-
sifies the visual differences between graphical elements of
modeling languages in eight visual variables: horizontal and
vertical position, shape, size, color, brightness, orientation
and texture. Graphical elements that represent similar con-
cepts should share as many variables as possible, while they
should be easily distinguishable among themselves, i.e., they
have at least one visual variable not in common.

Security annotations share three common visual variables:
they all have an orange fill color, a solid texture, and a circular
shape; they differ for the icon in the middle of the circle.
Every security annotation has a visual distance of three from
non-security annotations, i.e., they can be easily recognized
from other elements of the modeling language, and a visual
distance of one from other security annotations.

We decided to use icons instead of abstract symbols
because icons are deemed as easier to remember and faster
to recognize [35]. For example, the icon for the availability
security annotation is a clock face, which should recall the
concept of “time” and, therefore, should be easily linked to
the definition of availability security concepts (see Table 1).
Leitner et al. [25–27] conducted empirical studies to pro-
pose guidelines for representing a set of security aspects. We
did not apply these suggestions because they conflict with the
recommendation by the security experts that helped us define
the security annotations, and moreover, the set of security
aspects Leitner et al. took into account covers only partially
the security aspects proposed in RMIAS.

Figure 2 shows a model in SecBPMN-ml of the negoti-
ation process for the RBT between a control tower and the
pilots of a flight. This process heavily relies on the human
participants of the socio-technical system, since most tasks
are human-conducted activities.

Constraints of the software tool we developed (available
online on [52]) impose to deviate from BPMN 1.1 speci-
fications: SecBPMN allows the specification of only one
business process for each diagram. Therefore, subsequent
activities executed by different participants, for instance two
activities that exchange a message, must be connected with
a sequence flow. For example, in Fig. 2 Create report and
Examine results are linked with a control flow, i.e., they
are part of the same business process, even if the former is
executed by co-pilot and the latter by Control tower.

The security annotations specify the security aspects that
the implemented services and human activities will comply
with. The annotations are defined in Table 2 and explained
below. Security annotations can be associated only with
tasks, data objects, and message flows.

In particular, security annotations cannot be linked to
events, which represent changes in the environment of a
socio-technical system. Events could be associated with two

security annotations: auditability and non-repudiation. The
former is equivalent to modeling an event in SecBPMN-ml,
for its presence in a model implies its monitoring. For what
concerns the latter security annotation, an event in BPMN
1.1 is “something that happens during the course of a busi-
ness process”. If an event is external, i.e., not generated by
the business process, then its existence is publicly available,
and there is no need of a proof of its existence. Instead, if
an event is internal, i.e., it is generated as consequence of an
internal action, then the non-repudiation shall be applied to
the action that generated the event.

3.1 Accountability

It applies only to activities—thus, only one corresponding
predicate called AccountabilityAct exists—and expresses
the need of monitoring a set of users when executing the
activity. The predicate has three parameters: the activity a
that is being monitored, a set of security mechanisms enfBy
used to enforce accountability for the activity, and the set of
users monitored which are monitored.

If the activity is executed by a user that is not in mon-
itored, the security property is satisfied without using the
enforcement mechanism. This situation would typically
occur with trusted users that do not need to be monitored.
Security designers can specify the keyword ALL in moni-
tored, to indicate that all users are held for their actions.

Consider, for example, the predicate Accountability-
Act(“Approve destination”, {RBAC}, {juniorPilots}),which
details one of the accountability security annotations in
Fig. 2. The first attribute details the activity linked with the
security annotation, the second one indicates that role-based
access control (RBAC) [16] will be used to enforce account-
ability, while the third one specifies that only junior pilots
have to be monitored while executing that activity.

3.2 Auditability

This security annotation comes in three variants, express-
ing different types of auditability in a business process: (i)
AuditabilityAct indicates that it should be possible to keep
track of all the actions performed by the executor of the
activity a when trying to execute that activity; (ii) Auditabil-
ityDO indicates that it should be possible to keep track of
all the actions (e.g., write, read, store) concerning a data
object do; (iii) AuditabilityMF indicates that it should be
possible to keep track of all the actions executed to handle
the communication (send/receive actions) within a message
flow mf.

The predicates share two parameters: enfBy to express
the set of security mechanisms to be used, and frequency
to specify how often the security checks are performed. If
frequency is set to zero, continuous verification is required.

123



Designing secure business processes with SecBPMN

Fig. 2 Example of a
SecBPMN-ml business process
model

For instance, consider the predicate AuditabilityAct
(“Approve destination”, {}, 10d), which formalizes one of
the auditability annotations in Fig. 2. It applies to activity
Approve destination, does not require a specific technology
for checking auditability, and requires audits to be performed
every 10days.

3.3 Authenticity

It comes in two versions, depending on which BPMN ele-
ments the annotation applies to. AuthenticityAct imposes
that the identity and/or authenticity of the users of activity a
is verified. The attribute enfBy is the set of security mech-
anisms to be used, while trustValue is the minimum level
of trust [22] the executor of activity a must have. If attribute
ident is true, anonymous users should not take part in the exe-
cution of the activity, while if auth is set to true, the identity

of users should be verified. AuthenticityDo indicates that it
should be possible to prove the data object do is genuine: the
fact that do was not modified by unauthorized parties, and it
contained proofs of the identity of the entities who generated
and/or modified it.

For example, consider the predicate AuthenticityDO
(“RBT”, {TLS, X.509}), which formalizes an authenticity
security annotation in Fig. 2. The predicate specifies that
the integrity of RBT data object should be guaranteed using
transport security layer (TLS) and X.509 security mecha-
nisms.

3.4 Availability

It applies to three BPMN elements; hence, we defined three
different versions: (i) AvailabilityAct specifies that the activ-
ity a should be ready for execution whenever the activity is

123



M. Salnitri et al.

Table 2 Security annotations in
SecBPMN: predicates and their
graphical syntax AccountabilityAct (a: Activity, enfBy: {SecMechanisms}, monitored: {Users})

AuditabilityAct (a: Activity, enfBy: {SecMechanisms}, frequency: Time)

AuditabilityDO (do: DataObject, enfBy: {SecMechanisms}, frequency: Time)

AuditabilityMF (mf: MessageFlow, enfBy: {SecMechanisms}, frequency: Time)

AuthenticityAct (a: Activity, enfBy: {SecMechanisms}, ident: Bool, auth: Bool,
trustValue: Float)

AuthenticityDO (do: DataObject, enfBy: {SecMechanisms})
AvailabilityAct (a: Activity, enfBy: {SecMechanisms}, level: Float)
AvailabilityDO (do: DataObject, enfBy: {SecMechanisms}, authUsers: {Users},

level: Float)

AvailabilityMF (mf: MessageFlow, enfBy: {SecMechanisms}, level: Float)
ConfidentialityDO (do: DataObject, enfBy: {SecMechanisms}, readers: {Users},

writers: {Users})
ConfidentialityMF (mf: MessageFlow, enfBy: {SecMechanisms}, readers: {Users},

writers: {Users})
IntegrityAct (a: Activity, enfBy: {SecMechanisms}, personnel: Bool,

hardware: Bool, software: Bool)

IntegrityDO (do: DataObject, enfBy: {SecMechanisms})
IntegrityMF (mf: MessageFlow, enfBy: {SecMechanisms})
NonRepudAct (a: Activity, enfBy: {SecMechanisms}, execution: Bool)
NonRepudMF (mf: MessageFlow, enfBy: {SecMechanisms}, execution: Bool

PrivacyAct (a: Activity, enfBy: {SecMechanisms}, sensitiveInfo: {Info})
PrivacyDO (do: DataObject, enfBy: {SecMechanisms}, sensitiveInfo: {Info})

encountered in the control flow of the business process; (ii)
AvailabilityDO specifies that the data object do should be
available when required by the authorized users specified in
the attribute authUsers; (iii) AvaliabilityMF specifies that it
should always be possible to communicate through the mes-
sage flow mf.

The predicates share two parameters: enfBy, described
above, and level, i.e., the minimum time percentage that
the resource (i.e., activity, data object, or message flow,
depending on the variant of availability annotation) should
be available. In AvailabilityDO, security designers can
specify that all users are authorized to request the data
object, simply specifying the keyword ALL in the attribute
authUsers.

For instance, the predicate AvailabilityAct(“Check
coherency”, {SAVE}, 99.5) specifies thatCheck coherency
has to process at least 99.5% of the total requests, using the
source address validity enforcement (SAVE) [28] protocol to
prevent denial of service attacks.

3.5 Confidentiality

It has two variants:ConfidentialityDO specifies that the data
object do can be accessed only by authorized users, andCon-
fidentialityMF specifies that only authorized users can use
(i.e., send or receive through) the message flow mf. Both
predicates share three parameters: enfBy, already described;
readers, i.e., the set of users that are authorized to read the
data object (or receive from the message flow); writers, i.e.,
the set of users that are authorized to write the data object do
(or send through the message flow). The attributes readers
and writers allow the usage of the keyword ALL to specify
that all the users are authorized.

For example, consider the predicate ConfidentialityMF
(mf(“Refine RBT”, “Examine RBT”), {TLS, RBAC}, {tow-
erControl, controlAuthority, RBTOwner}, {towerControl,
RBTOwner}), which details one of the confidentiality anno-
tations in Fig. 2. It specifies that only the users controlTower,
controlAuthority andRBTOwner can receive from themes-

123



Designing secure business processes with SecBPMN

sage flow between Refine RBT and Examine RBT, and
only RBTOwner and controlTower can send data objects
through that channel. This security annotation must be
enforced using both TLS and RBAC security mechanisms.

3.6 Integrity

It comes in three variants: (i) IntegrityAct specifies that
the functionalities of activity a should be protected from
intentional corruption.Attributespersonnel,hardware, and
software determine which entities—involved in the execu-
tion of the a—are protected from intentional corruption [17];
(ii) IntegrityDO specifies that the data object do should
be protected from intentional corruption; (iii) IntegrityMF
specifies that every message exchanged through mf should
be protected from intentional corruption. All the predicates
share the attribute enfBy.

For instance, the predicate IntegrityAct(“Check colli-
sions”, {} , false, true, true) specifies one of the integrity
annotations in Fig. 2. It indicates that software and hardware
used to execute Check collisions will be protected from
intentional corruption, e.g., unauthorized modifications of
the software or hardware robbery.

3.7 Non-repudiation

It comes in two variants, depending on the element it applies
to:NonRepudiationAct andNonRepudiationMF. The for-
mer indicates that the execution (or non-execution) of activity
a should be provable, while the latter specifies that the usage
(or non-usage) of the message flow mf should be verifi-
able. Both predicates share two attributes: enfBy, already
described before, and execution. The latter specifies that:
(i) a proof of execution of activity a or a proof of usage of
the communication channel mf shall be provided, if set to
true; (ii) a proof of non-execution for a or a proof of non-
usage for mf shall be provided, if set to false.

For example, the predicateNonRepudiationAct(“Create
RBT proposal”, {}, false) defines one of the non-repudiation
annotations in Fig. 2. It specifies that it should be possible to
prove that Create RBT proposal has never been executed.
There are no constraints on the security mechanisms that
have to be implemented because the parameter is an empty
set.

3.8 Privacy

It has two variants: (i) privacyACT specifies that activity a
should be compliant with privacy legislation, and it should
let users to control their own data; (ii) privacyDO is similar
to the former one, but is targeted to a specific data object
do. Both predicates share two parameters: enfBy, already

described, and sensitiveInfo, i.e., the set of sensitive infor-
mation to protect.

For example, consider the predicatePrivacyDO(“Report”,
{} , {name, surname, dateOfBirth}), which refines one of
the privacy annotations in Fig. 2. It specifies that, if the con-
tent of Report is published, name, surname, and date of
birth information shall be anonymized as required by law,
e.g., only partial information can be published.

4 Modeling and verifying security policies

We introduce the SecBPMN-Q language, an extension of
BPMN-Q query language, to model security policies using
the security annotations that we describe in Table 2. Our
query language permits the graphical modeling of security
policies, which is a useful feature to facilitate the communi-
cation among modelers and with other stakeholders.

Consider, for example, a textual policy such as “The RBT
document must be authenticated and it must be sent through
a secure channel which assures the information will not be
sniffed or modified by third parties, implementing TLS and
X.509 security mechanisms”. Figure 3 shows an equivalent
modeling of this policy in SecBPMN-Q.

Beside the twogeneric tasks and the path, that are elements
of BPMN-Q, the model features a message flow (repre-
sented as a dashed arrow) that transfers a data object called
“RBT”. When executed, this query will match any message
flow between two activities which exchange the “RBT” data
object. The confidentiality annotation linked with the mes-
sage flow requires the communication channel to assure the
data object will be received only by “RBTOwner”, “contro-
lAuthority”, and “towerControl”. Moreover, the “RBT” data
object has to be protected by unauthorized modifications,
implementing the “MD5” security mechanism specified by
integrity annotation, and its originality has to be provable
using “TLS” and “X.509” security mechanisms, specified in
the authenticity annotation.

Note that some attributes are not specified, meaning that
the security designer is imposing fewer constraints on the
specific securitymechanism; for example,enfBy andwriters
parameters of ConfidentialityMF are not defined in Fig. 3
(see the underscore wildcard); hence, the predicate will be
satisfied regardless the security mechanisms implemented or
the set of users authorized to send data objects through the
channel.

In order to verify whether a SecBPMN-ml business
process is compliant with security policies modeled with
SecBPMN-Q,we extended theBPMN-Qengine as described
in Algorithm 1. The algorithm takes in input a SecBPMN-ml
business process and a SecBPMN-Q security policy, and it
verifies whether there exists a path in the business process
that satisfies the security policy. For each path (line 4), the

123



M. Salnitri et al.

Fig. 3 Example of a security
policy and predicates expressed
with SecBPMN-Q

algorithm verifies whether the security annotations of the
business process are of the same type of those in the secu-
rity policy (line 8) and whether they are linked to the same
SecBPMN-ml element (line 9). If so, the security annota-
tions of the security policy are verified against the security
annotations in the business process (line 10).

Algorithm 1 Compliance check of a security policy
Compliance(SecBPMN-ml bp, SecBPMN-Q secPolicy)

1 paths ← findPath(bp, secPolicy)

2 if paths = ∅ then

3 return false

4 for each path ∈ paths do

5 satisfied ← true

6 for each secAnnPolicy ∈ getSecurityAnnotations(secPolicy) do

7 for each secAnnPath ∈ getSecurityAnnotations(path) do

8 if secAnnPolicy.type = secAnnPath.type then

9 if checkTarget(secAnnPath, secAnnPolicy) then

10 satisfied ← satisfies(secAnnPath, secAnnPolicy) ∧ satisfied

11 if satisfied then

12 return true

13 return false

Algorithm 2 Pseudo-code of function “satisfies”
satisfies(SecurityAnnotation SecAnnPath, SecurityAnnotation SecAnnPolicy)

1 if (secAnnPolicy.enfBy �⊆ secAnnPath.enfBy) then

2 return false

3 switch (SecAnnPolicy.type)

4 case AccountabilityAct :

5 return (SecAnnPolicy.monitored ⊆ SecAnnPath.monitored)

6 case AuditabilityAct ∨ AuditabilityDO ∨ AuditabilityMF :

7 return (SecAnnPolicy.frequency ≤ SecAnnPath.frequency)

8 case AuthenticityAct :

9 return ((SecAnnPolicy.ident → SecAnnPath.ident)∧
10 (SecAnnPolicy.auth → SecAnnPath.auth)∧
11 (SecAnnPolicy.trustValue ≤ SecAnnPath.trustValue))

12 case AvailabilityAct ∨ AvailabilityDO ∨ AvailabilityMF :

13 return (SecAnnPolicy.value ≤ SecAnnPath.value)

14 case ConfidentialityDO ∨ ConfidentialityMF :

15 return ((SecAnnPolicy.readers ⊇ SecAnnPath.readers)∧
16 (SecAnnPolicy.writers ⊇ SecAnnPath.writers))

17 case IntegrityAct :

18 return ((SecAnnPolicy.personnel → SecAnnPath.personnel)∧
19 (SecAnnPolicy.hardware → SecAnnPath.hardware)∧
20 (SecAnnPolicy.software → SecAnnPath.software))

21 case NonRepudiationAct ∨ NonRepudiationMF :

22 return (SecAnnPolicy.exeution ↔ SecAnnPath.execution)

23 case privacyAct ∨ privacyMF :

24 return (SecAnnPolicy.sensitiveInfo ⊆ SecAnnPath.sensitiveInfo)

Asecurity annotationof a business process satisfies a secu-
rity annotation of a security policy if all the attributes of the
former are more restrictive of the attributes of the latter. The
function satisfies, defined in Algorithm 2, checks this prop-
erty. As first step, Algorithm 2 checks whether the security
mechanisms specified in the security annotation of the pol-
icy are all specified in the security annotation of the business
process (line 1); if not, it returns false, meaning that the secu-
rity policy specifies at least a security mechanism that is not
implemented in the business process. After that, depending
on the type of annotation, the algorithm performs different
checks:

– Accountability (lines 4–5) Are all the monitored users
specified in the policy also monitored by the business
process?

– Auditability (lines 6–7) Is the frequency of the checks
specified in the business process higher than or equal to
the one specified in the business process?

– Authenticity (lines 8–11) If the attribute ident is true in the
security annotation specified in the security policy (every
user has to be identified), then is the same attribute spec-
ified in the business process also true? The same criteria
is used also for attribute auth. The trustValue defined
in the security annotation of the security policy has to be
less or equal that the value defined in the one specified
in the business process, since the security annotation is
satisfied when the trust provided by the executor of the
activity is higher than that required by the policy.

– Availability (lines 12–13) Is the value specified in the
business process higher than the value specified in the
policy?

– Confidentiality (lines 14–16) Is the set of authorized users
specified in the business process a subset of the set of
authorized users of the security annotation of the security
policy?

– Integrity (lines 17–20) If the personnel attribute (of
IntegrityAct) is true in the security policy, is it also true in
the business process? The same criteria applies for hard-
ware and software. The other two variants of integrity
do not need special criteria because they are character-

123



Designing secure business processes with SecBPMN

ized only by the attribute enfBy, that is already checked
in the first two lines of the algorithm.

– Non-repudiation (lines 21–22) Is the attribute execution
set to the same value in both security annotations?

– Privacy (lines 23–24) Is the set of sensitive information
specified in the security policy included in the set speci-
fied in the business process?

Our developed software tool, available on [52], permits to
model SecBPMN-ml and SecBPMN-Q diagrams and fully
implements the algorithms described in this paper.

When a SecBPMN-Q security policy is checked, the inter-
face of our engine returns which ones among the analyzed
business processes have at least one path (graphically high-
lighted in the business process) that satisfies a given security
policy. Figure 4 shows the result of the SecBPMN-Q query
shown in Fig. 3 with the SecBPMN-Q process shown in
Fig. 2. The path highlighted in Fig. 4 satisfies the security

policy in Fig. 3: (i) the first activity of the path, “RefineRBT”,
is linked with a message flow to the last activity of the path,
“Examine RBT”; (ii) the message flow is used to exchange
the data object “RBT”, and it assures confidentiality of the
transferred data object; (iii) integrity and authenticity of the
“RBT” data object are preserved. When the predicates that
detail the security annotations of the security policy are less
restrictive than the predicates of the business process, the
path—and, thus, the business process—satisfies the security
policy.

5 A process for SecBPMN

We describe a reference process that details how to use
the SecBPMN framework to keep the business processes
describing an information system compliant with the secu-
rity policies specified by the stakeholders. The process is

Fig. 4 Result of the query
based on SecBPMN-Q policy in
Fig. 3 against the SecBPMN-ml
model in Fig. 2

123



M. Salnitri et al.

conducted by a team composed of security experts—who
have the necessary security knowledge—and business ana-
lysts—who are capable of modeling the business processes
that the information system will execute.

The process, illustrated in Fig. 5, starts with a study of
the context, where business analysts, security experts, and
stakeholders engage with each other in order to produce a
textual description of the business processes and of the secu-
rity requirements. This activity is conducted with the use of
traditional techniques for requirements elicitation and orga-
nizational analysis.

The documentation produced in the first step feeds two
tightly coupled activities: modeling the business processes
using SecBPMN-ml and specifying security policies using
SecBPMN-Q. These two activities are conducted in paral-
lel following an iterative and agile cycle, and they feed each
other.

The specification or update of the security policies, which
results in the creation of SecBPMN-Q queries, is led by the
security experts, with the support of business analysts to
evaluate the functional aspects of the security policies. For
example, when designing an ATM information system, the
best method to protect the communication with the control
tower from network attacks would be to block all communi-
cations, but such policy cannot be put into effect, as if would
hinder the control tower’s operation.

The modeling or update of the business process, which
results in the definition of SecBPMN-ml models, is led by
the business analysts, with the support of security experts
to enrich the diagrams with the annotations that specify the
security choices. In the previous ATM example, the business
analysts would model the business processes that describe
the interaction between the control tower and the other par-

ticipants, while the security experts will enrich the business
process models with security choices; for example, spec-
ifying the message flow to preserve the integrity of the
transmitted data.

The last step consists in the automated verification—
using the SecBPMN verification engine—of the compliance
between SecBPMN-ml business processes with SecBPMN-
Q security policies. If non-compliance is identified, the
security policies and/or the business processes are updated
by initiating a new iteration in the process.

Complex information systemsmay need post-deployment
adaptations to cope with external changes. For example, in
theATMsystem, a renewal in the luggage distribution system
would require a new procedure, but such procedure must be
verified against all the existing security policies before the
new information system is deployed. Security policies can
change too; for example, if the privacy legislation changes,
all the relevant security policies shall be updated, thereby
requiring all business processes to be re-verified against the
updated policies. In order to accommodate these situations,
our process supports continuous monitoring; when changes
occur in the system, or policies are modified, an analysis
is conducted to determine whether the system should be
evolved—initiating a new iteration in our process—or dis-
missed.

6 Evaluation

We evaluate the SecBPMN framework in three ways. First,
we conduct an empirical study with experts to evaluate the
understandability and the perceived complexity of our mod-
eling languages (Sect. 6.1). Second, we run a scalability

Fig. 5 Suggested process when using SecBPMN framework

123



Designing secure business processes with SecBPMN

Table 3 GQM template for our
experiments Analyze SecBPMN-ml

for the purpose of evaluation

with respect to their perceived graphical complexity and understandability

from the point of view of the security experts and business process modelers

in the context of reading SecBPMN models

Analyze SecBPMN-Q

for the purpose of compare it with CTL formulas

with respect to their perceived graphical complexity and understandability

from the point of view of the security experts and business process modelers

in the context of reading security policies

analysis of our verification engine, to determine its suitabil-
ity for large business process models and security policies
(Sect. 6.2). Third, we evaluate the applicability of our frame-
work on a large ATM case study (Sect. 6.3).

6.1 Modeling languages understandability and
perceived complexity

We designed and conducted an experiment to test the
understandability and the perceived graphical complexity of
SecBPMN-ml and SecBPMN-Q;we define the latter concept
as semiotic clarity [35] and diagrammatic complexity [35].
Our experiment was conducted through an online survey as
a way to maximize the number of subjects.

6.1.1 Empirical experiment design

The design of our experiment was conducted following
Wohlin’s guidelines [58]. We used the Goal, Question, Met-
ric (GQM) template [4] to define the scope and objectives of
the survey; in particular, the GQM template specifies: (i) the
focus of the experiment; (ii) the objective of the experiment;
(iii) the variables to test; (iv) the subjects; and (v) the context
of the experiment.

Table 3 shows the two GQM templates for our experi-
ment. The first part of the experiment analyzes SecBPMN-ml
for evaluating its perceived graphical complexity and under-
standability. The experiment targets the main roles involved
in the process (Fig. 5): security experts and business process
modelers. The latter category is a prominent subset of
business analysts. The evaluation is performed by asking
the subject to read SecBPMN models. The second part
of the experiment compares SecBPMN-Q with a formal
approach for expressing policies, i.e., Computational Tree
Logic (CTL) [14] formulas.

Table 4 shows the hypotheses that we tested with the
experiments. We divide hypothesis into two sets, one per
experiment: the first set compares SecBPMN-mlwithBPMN
models with a textual description of the security policy
(BPMNts); the second set compares SecBPMN-Qwith CTL.

We chose BPMNts, instead of BPMN, in order to com-
pare SecBPMN with a modeling language with the same
expressiveness. Other languages, such as SecureBPMN, can
express only a part of the security aspects, and therefore, the
comparison would be unfair. For the same reason, we chose
to compare SecBPMN-Q with CTL: they can express the
same type of time patterns.

We opted for convenience sampling as a means to recruit
subjects: we did spread the word about the survey through
mailing lists, used by security experts and business process
modelers. We left the survey available on line for 20days,
and then we analyzed the answers.

To evaluate the perceived complexity and the readabil-
ity of SecBPMN and BPMNts, we created three pairs of
diagrams, each consisting of a SecBPMN-ml diagram and
BPMNts diagram. To ensure a fair comparison, both dia-
grams modeled the same business processes, with the same
security choices. We also use the same layout, except of the
message flow that was colored differently (we discuss the
implications in Sect. 6.1.2).

The surveywas structured in different parts (for the details
see [52]):

– General questions concerning the background of the sub-
ject;

– An introduction to SecBPMN-ml;
– Questions on a small-size business process (SecBPMN-
ml/BPMNts);

– Questions on a slightly bigger business process
(SecBPMN-ml/BPMNts);

– Questions on a medium-size business process
(SecBPMN-ml/BPMNts);

– An introduction to SecBPMN-Q;
– Questions on security policies (SecBPMN-Q/CTL).

6.1.2 Validity of our experiments

We report the main threats to the validity of our experiment,
using Wohlin’s categorization [58].

123



M. Salnitri et al.

Table 4 Hypotheses of the
experiments Experiment 1: SecBPMN-ml versus BPMNts

H0–1.1: SecBPMN-ml is more complex than BPMNts

H1–1.1: SecBPMN-ml is less complex than BPMNts

H0–1.2: SecBPMN-ml is less understandable than BPMNts

H1–1.2: SecBPMN-ml is more understandable than BPMNts

H0–1.3: SecBPMN-ml is more complex and less understandable than BPMNts

H1–1.3: SecBPMN-ml is less complex and more understandable than BPMNts

Experiment 2: SecBPMN-Q versus CTL

H0–2.1: CTL is preferable to SecBPMN-Q for communication with stakeholders

H1–2.1: SecBPMN-Q is preferable to CTL for communication with stakeholderss

Threats to conclusion validity The relevant threats in this
category are the following: (i) low statistical power, as we
cannot determine the size of the mailing lists and how many
respondents in advance;
(ii) random irrelevancies in the experimental setting, for we
opted for an on line survey, thereby having no control on
external factors which could affect the results of the experi-
ment; (iii) random heterogeneity of subjects, aswe distribute
the survey on line and we were not able to select adequate
participants. Looking at the obtained results, the statistical
power threat is only partially addressed: while 30 respon-
dents do not yield strong statistical power, the number is in
the average for PhD studies [31]; concerning the third threat,
most of the participants had knowledge in business process
modeling (28 out of 30 had experience in either BPMN, Petri
nets, orUMLactivity diagrams), andwith the subjects having
a knowledge above average in information security average
x̄ = 3.13 (range from 1 to 5), standard deviation σ = 1.41.

Threats to internal validity The only relevant threat is
mortality. We mitigated such threat by allowing subjects
to interrupt the survey at the end of each part. 10% of
the subjects interrupted the experiment after the questions
about small-size business process, 7%, of the remaining
subjects interrupted it in the following part, and 3% in the
part about medium-size business processes. Overall, we col-
lected results on the small-size processes from all subjects,
on slightly larger models from 90% of the subjects, and on
medium-size models from 80% of the sample.

Threats to construct validity This type of validity is threat-
ened by the restricted generalizability across constructs. In
other words, some constructs (diagrams) can influence the
valuation of other diagrams. In our case, the danger is that
by looking at a diagram in one notation, the user already
gets a sense about its meaning and is facilitated in under-
standing the alternative notation. We mitigated this threat in
different ways. First, since we aimed to assess the SecBPMN
framework, we presented our notation first, so that most of

the cognitive effort was put on understanding the process
using our languages. Second, we modeled the same business
processes throughout the survey but with different level of
details. For the same threat, we avoid to influence subjects
with factors that are not tested in the survey using for each
part the same layout and the same detail. Construct validity is
also threaten by a difference in the coloring of the diagrams:
whilewedid our best to keep the layouts as similar as possible
between business processes of the same pairs, the message
flows of the SecBPMN-ml diagrams are colored in blue
while the same message flows in BPMN diagrams are black.
Another threat to construct validity is hypothesis guessing,
where the subjects can be conditioned by the results they are
providing. We mitigated this threat by carefully formulat-
ing questions as much impartially as possible, and by clearly
stating the purpose of the questionnaire.

Threats to external validity External validity is threatened
by the interaction of setting and treatment. In our case, this
would occur with business process diagrams that are not
an accurate representation of the real process. Due to time
constraints, the first two proposed business processes were
relatively small; the third one, however, is medium-sized,
and constitutes therefore a fair representation of a real-world
business process for the chosen domain.

6.1.3 Experiment results

The survey was completed by 30 subjects; the large major-
ity (96%) were familiar with at least one business process
modeling language, 60% where familiar with BPMN stan-
dard. The majority of the subjects (60%, N = 18) declared
to have good or wide knowledge of security, while 40% of
the subjects (N = 12) are not security experts (x̄ = 3.13
on a scale from 1 to 5, σ = 1.41). The original results are
publicly available on [52]. Let us review some key results:

– For small diagrams (respondents N = 30), SecBPMN-
ml is largely considered more understandable and less

123



Designing secure business processes with SecBPMN

complex than BPMNts: 80% preferred it to BPMNts,
13% rated both diagrams understandable, 7% found
none of them understandable, no-one preferred BPMNts.

– For slightly larger diagrams (N = 27), the preference
for SecBPMN-ml is confirmed, even though a smaller
percentage (67%); 11% of the respondents opted for
BPMNts diagrams, 18% of the respondents found both
of them understandable, and 4% of the sample found no
notation understandable.

– For medium-size diagrams (N = 25), the majority of
the subjects found SecBPMN-ml more useful to define
secure business processes (80%), 8% preferred BPM-
Nts, 8% of the subjects would choose either, and 4%
of the sample would use none. When asked about which
language would be more effective to communicate with
stakeholders, 60% chose SecBPMN-ml, 12% chose
BPMNts, 20% chose both of them, and, 8% would not
use neither SecBPMN-ml nor BPMNts.

An interesting result is about the perceived level of secu-
rity of business process modeled with SecBPMN-ml that we
tested with the second couple of diagrams. While both dia-
grams expressed the same security information, the majority
of the subjects (74%, N = 27) thought that the SecBPMN
diagram represents a more secure business process, 15%
chose BPMNts diagram, and 11% thought that both diagram
represent a business process with the same level of security.
This seems to indicate that SecBPMN is more understand-
able than BPMNts, in the sense that it is easier to identify the
security choices.

For what concerns the comparison between SecBPMN-Q
and CTL, the former is preferred for communication with
customers (88%), none of the subjects chose the CTL for-
mula, 4% would use either of them, and 8% none of them.
Regarding the use for verifying compliance, a CTL formula
was chosen by the majority of the subjects (54%), 21%
would use SecBPMN-Q, 21% would use either of them, and
4% would use neither SecBPMN-Q nor CTL. This result
shows that the subjects think that SecBPMN-Q is not expres-
sive enough for the verification of security policies. However,
SecBPMN-Q is based on temporal logics, and our verifica-
tion engine fully supports it. It is probably the case that the
respondents’ opinion is due to the common knowledge about
the expressiveness of temporal logic formulas, and had no
knowledge on the expressiveness of SecBPMN-Q.

The last question investigated the usefulness of highlight-
ing those paths in a model that satisfy a given security policy;
this is a key feature of our modeling and verification toolset.
We asked whether this could help security experts to find
causes of non-compliance; the respondents (N = 23) rated
this feature positively, even though not extremely positively:
on as scale from 1 (not useful at all) to 5 (extremely useful),
we obtained x̄ = 3.78 and σ = 1.00.

With the results collected in the survey is possible to refute
H0–1.1,H0–1.2, andH0–1.3 and hence confirmH1–1.1,H1–
1.2, and H1–1.3. For the set of hypotheses we defined for
SecBPMN-Q, it is possible to refute H0–2.1 and to confirm
H1–2.1. In other words, the results of the survey constitute a
preliminary evidence of the fact that SecBPMN-ml is more
understandable and has a lower perceived complexity than
BPMNts, and that SecBPMN-Q is preferred to CTL for com-
municating security policies with stakeholders.

6.2 Scalability analysis

To assess the adequacy of the SecBPMN verification engine
for real-world scenarios, we conducted a scalability analysis
concerning the engine’s performance in terms of execution
time. We defined two sets of experiments: the former checks
how the performance is affected by increasing the complex-
ity of the business process model in SecBPMN-ml, while
the latter analyzes the performance trend by increasing the
complexity of the security policies in SecBPMN-Q. Each of
the experiments was repeated three times, and we took the
average time of execution to perform the verification. The
models used for the tests can be found online on [52]. We ran
our experiments on a virtual machine with a 1GHz proces-
sor, 1GB of RAM, and equipped with Microsoft Windows
XP.

6.2.1 Scalability with increasingly complex SecBPMN-ml
business process

Our first set of experiments aimed at checking which are
the factors that affect the scalability of the verification of
SecBPMN-ml processes, and to what extent these factors
play a role. We chose to test artificially generated models of
growing complexity in terms of the number of activities, gate-
ways, loops, data objects, and security annotations. These are
all the relevant factors that may affect the verification of a
SecBPMN-ml business process. In this experiment, we kept
the security policy unaltered, in order to properly test only
the factors of the business processes.We used a SecBPMN-Q
security policy with 8 activities, 8 security annotations, and
7 paths.

Figure 6 shows the results of the experiments. The dots
represent the values for each of the conducted tests, and the
continuous line, whenever shown, is a heuristic plot of the
scalability curve. The raw results from our results can be
found online [52]. The experiments show positive results—
linear growth—when increasing complexity in the number
of gateways, security annotations, and data objects. The
increase in the number of activities leads to a polynomial
trend. The number of loops does not influence at all the com-
plexity of the compliance verification problem, thanks to the
heuristics and optimizations of the engine implementation.

123



M. Salnitri et al.

Fig. 6 Scalability analysis with increasingly complex SecBPMN-ml business processes

The absolute execution time of the tests is relatively low,
also considering the low computational power of the cho-
sen virtual machine. The longest execution took 14.71 s on a
business process which consisted of 50 activities, 8 security
annotations, 60 data objects, and 16 gateways. The execu-
tion time for the business process with the highest number
of activities (100) took 5.09 s. We can confidently claim that
these are acceptable times. We repeated the tests on a similar
machine, with more RAM (4GB). The results followed the
same trend as the ones reported in Fig. 6, but 0.5 s faster. The
execution time can be reduced with optimizations such as
the adoption of an in-memory object-oriented database, or
the usage of an ad hoc graphical interface.

6.2.2 Scalability with increasingly complex SecBPMN-Q
security policies

The objective of the second set of experiments was to dis-
cover what factors in a SecBPMN-Q policy affect most the
complexity of the verification problem. Just like for the scal-
ability of SecBPMN-ml models, we chose to analyze the
number of activities, paths, data objects, security annota-
tions, and gateways. In this experiment, we kept the business
process unaltered: we used a SecBPMN-ml business process
with 50 activities, 30 security annotations, 10 data objects,
and 16 gateways.

123



Designing secure business processes with SecBPMN

Fig. 7 Scalability analysis with increasingly complex SecBPMN-Q security policies

Figure 7 shows the results of our experiment. Again, the
raw results can be consulted online [52]. The results are
encouraging, showing that all the considered factors of com-
plexity have a linear impact on the verification execution
time.

The absolute execution time is positive. For example,
the policy which required the longest execution time, only
10.06 s, contains 14 activities, 6 paths, 10 data objects, and
30 security annotations. The execution time of the security
policy with the highest number of activities (30) is 1.64 s.
The execution time for multiple policies is the sum of the
execution time of each security policy.

6.3 Application to a case study

We applied the SecBPMN framework to a case study about
the SWIM [15] ATM system, part of the Aniketos3 European
FP7 project. The ATM system consists of a large number of
autonomous and heterogeneous components, which interact
with each other to enable air traffic management operations:
pilots, airport personnel, national airspace managers, meteo
services, radars, etc. In such a complex socio-technical sys-
tem, ensuring security is critical, for security leaksmay result
in severe consequences on safety and confidentiality.

3 www.aniketos.eu.

123

www.aniketos.eu


M. Salnitri et al.

Security experts involved inAniketos project analyzed the
security requirement documents of the SWIM ATM infor-
mation system and identified 27 active participants and 60
textual security policies. We analyzed those textual secu-
rity policies and transformed all of them in SecBPMN-Q
security policies. In certain cases, we transformed a single
textual policy into multiple SecBPMN-Q security policies;
for example, we transformed a non-disclosure security pol-
icy into a SecBPMN-Q policy concerning the disclosure of
electronic documents, and another one about the print of doc-
uments. In general, the transformation process was easy, and
critical points were about the interpretation of the textual
security policy, and never due to limitations of SecBPMN-Q
language.

SecBPMN-Q enabled us model all the security policies
elicited by the experts except for two specific cases:

– security policies concerning redundancy, whichwe could
represent only at a high level of abstraction, without
managing to express if the fallback activities have to be
performed by the same or a different executor. This limi-
tationwas inherited byBPMN-Q,which does not support
verifying policies that concern swim-lanes and pools;

– security policies about the non-delegation of an activity,
i.e., preventing that third parties execute one activity or
parts of it. Even in this case, our future work includes
introducing additional elements to the meta-model to
support this type of policy.

The dimensions of SWIM ATM information system are
considerably wide but with similar, redundant, sub-parts.
Therefore, when we used SecBPMN-ml to model the busi-
ness processes, we opted to focus on three representative
aspects of the information system: the management of exter-
nal services, the landing, and the taking-off. We also chose to
minimize the number of diagrams, aggregating, where possi-
ble, the processes in a single, comprehensive,model. This led
to the creation of four SecBPMN-ml diagrams: two for the
service management, one for the taking-off and one for the
landing. With this choice, we used SecBPMN-ml language
with medium-size business processes instead of small-size
ones. The SecBPMN-ml diagrams are not included because
their dimension prevents their readability, but they can be
found online on [52].

We modeled one business process for the taking-off pro-
cedure. In such procedure, the RBT is negotiated between
the tower control and the pilots, after that, some services are
called to check the consistencies of the RBT then, if the flight
object (FO) is authorized, the takeoff can start. This proce-
dure is executed for each airspace, an area controlled by a
control tower, crossed by the RBT of the FO. This business
process is composed by 48 elements that are executed by 3

different participants. It contains 13 message flows and 17
data objects and 31 security annotations.

For the landing process, we modeled a business process
in which the FO negotiates, with the tower control, a RBT to
the landing point. When the FO reaches the landing position
(i.e., the airspace above the airport to land), it waits flying on
the RBT defined by the tower control that is controlling the
landing point. When its turn arrives, it starts the RBT to land.
This business process is composed by 59 elements executed
by 4 participants. It contains 14 message flows and 14 data
objects and 31 security annotations.

In a SWIM ATM information system, external services
can be used, for example, to retrieve weather forecasts. But
once external services can access to the internal network of
the ATM, they may threat a number of assets; therefore, spe-
cial procedures are executed to permit internal components
to use the external services and to evaluate the quality of
services offered by such services.

A SWIM ATM information system grants to internal
users the reliability and trustworthiness of external services
with a trust-basted mechanism. When an unknown service
is allowed to access the internal network, the ATM system
assigns a predefined, low, trust value. Every time a func-
tionality of a external service is used, internal components
evaluate that functionality: if the evaluation is positive, the
trust value of the service provider is increased, otherwise is
decreased. This mechanism is used to evaluate external ser-
vices and to filter the virtuous services from the ones that
do not offer a good-enough quality of service. This business
process contains 55 elements that are executed by 5 partici-
pants. It contains 15 message flows and 16 data objects and
18 security annotations.

Before to be allowed to access to the internal network,
an external service and the SWIM ATM information system
negotiate the quality of service that will be offered to SWIM
ATM users. The business process we modeled for such pro-
cedure is composed by 28 elements that are performed by 4
participants. It contains 5 message flows and 7 data objects.
In this business process, 14 security annotations are used to
represent, on the SecBPMN model, the security aspects of
each activity.

During the analysis of the security policy of the case study,
we realized how different the interpretations of the same
security policy can be. This confirms the usefulness of the
flexibility of SecBPMN. We found that the understandabil-
ity of SecBPMN-ml is a key point, because when business
processes grow in size and complexity, the security choices
can still be easily recognized, giving a good first impres-
sion of how the security is handled. On the other side, the
engine performed very well: during the design of the busi-
ness processes, we check the security policies many times
and all the executions took seconds, allowing to check the
compliance at each incremental step of the design. For more

123



Designing secure business processes with SecBPMN

information on howwe used SecBPMN framework to model
the procedural aspects of this case study, please refer to [49].

7 Related work

The literature offers a number of approaches for express-
ing and verifying security in business process models. We
analyze the most relevant and prominent works. We review
extensions of business process modeling languages for secu-
rity (Sect. 7.1), methods and guidelines for the design of
secure business processes (Sect. 7.2), approaches for busi-
ness process compliance verification, i.e., query languages
for business processes (Sect. 7.3) and verification techniques
that employ formal languages (Sect. 7.4).

7.1 Security extensions of business process modeling
languages

A natural solution to represent the security aspects of busi-
ness process is to create or extend amodeling language. Such
languages are easy to learn and to use [35], thereby requiring
a moderately low effort for security designers to specify a
secure business process.

Menzel et al. [33] propose security extension of BPMN
that enables generating security specifications for service-
oriented applications. They introduce two security anno-
tations and a set of security properties. Their proposed
transformation rules generate machine-readable specifica-
tion of such security properties in Rampart [56]. The major
limitation of this approach consists in the fixed set of security
properties that are checked, which disallows for the creation
of custom and domain-specific security properties.

Rodríguez et al. [44] take a subset of BPMN and introduce
extensions to express a predefined set of security requirement
types. However, this approach has limited expressiveness, as
it does not take into account the information flow of business
processes, and it does not decouple the specification of the
policy from the modeling of the security solutions that the
process implements.

Saleem et al. [46] extend BPMN with security objectives
for service-oriented architecture (SoA) applications. They
include a set of security concepts in BPMN: confidential-
ity, integrity, availability, traceability, and auditing. Like the
previous ones, the language does not decouple policies from
security solutions in the processes. Moreover, their work is
specific for the SoA domain.

Wolter et al. [59] propose a modeling language for busi-
ness processes and business security goals, to be used to
graphically define security specifications. They also develop
a framework which transforms security goals in security
policies specified in XACML [37] and Rampart [56]. The
framework automatically extracts specifications of security

mechanisms which enforce the security goals, but it does
not permit security experts to compose security goals and,
therefore, to create complex security policies.

Wolter and Schaad [60] propose an extension of BPMN
for specifying task-based authorization constraints. Their
approach includes a graphical extension of BPMN as well
as a formalization of task-based authorization constraints.
Their approach permits to specify dynamic resource allo-
cation such as dynamic separation of duty and role-based
resource allocation. Their approach is focused on authoriza-
tion constraints of executors of tasks, and it is not possible
to use it to specify other security aspects, such as availability
or integrity.

Salnitri et al. [47] propose a verification engine for veri-
fying whether a business process is compliant with a given
set of security requirements. They use SecureBPMN [7] to
represent business processes. The main drawback consists
in the fixed set of security requirements that the approach
supports.

Schmidt et al. [51] propose two ontologies for defining
quality constraints and for defining service processes, respec-
tively. Such ontologies are used to check whether a service
process complies with the imposed quality constraints. The
main drawback of this approach is in the fixed set of con-
straints that can be specified and checked.

SecureBPMN [7] extends BPMN with access control and
information flow constraints. It uses the hierarchic structure
of the organization, inwhich the business processwill be exe-
cuted, to help security designers to define security properties
such as, for example, binding of duty [29] and separation of
duty [29,53]. However, SecureBPMN is limited in that it is
not possible to specify other central security aspects such as,
for instance, confidentiality or availability.

UMLSec [23] is a security-oriented extension of the Uni-
fied Modeling Language (UML) [39]. In particular, the
extension of UML activity diagrams can be used to define
business process with security choices. However, UMLSec
does not allow security designers to define security policies
and verify them against a process.

7.2 Methods and guidelines

Some approaches provide methods and guidelines that help
security experts in the process of constructing sound business
process models.

Gruhn and Laue [19] propose a heuristic approach for
finding common design errors in business process models,
represented using Event Process Chains (EPCs) [57]. They
defined a set of rules to check whether a business process is
not sound or it matches some bad design patterns. Security
experts could adopt this approach to verify the compliance
of the business process model against a fixed set of rules.
However, using a fix set of rules is a major limitation when

123



M. Salnitri et al.

dealing with security policies, as it forces security experts to
adopt an interpretation of security policies which may not fit
the original policy.

Blanc et al. [6] propose an incremental inconsistency
checker. Such framework is based on the hypothesis that
the definition of a business process is an incremental task,
and, thus, inconsistency checking shall be done incremen-
tally. They offer a software tool, based on Prolog [9], which
checks if a fixed set of well-formedness rules are satisfied by
a business process model. The framework can be applied to
any modeling language that can be translated in Prolog. The
fixed set of queries is a major limitation, as it inhibits custom
security policies.

7.3 Query languages for business processes

Security policies can be seen as patterns, and the their verifi-
cation against business processes corresponds to the problem
of checking whether a pattern holds in a business process.
Query languages and their software tooling can be used to
solve this type of problems, as they allow the creation of
queries (patterns), and compliance verification against a busi-
ness process model.

Delfmann et al. [11] propose a pattern matching approach
for conceptual models. Such approach consists in algorithms
for solving the relaxed graph isomorphism problem, i.e., ver-
ifying if the nodes of a labeled graph match with a given
pattern (isomorphism problem), and the existence of a path
among the graph nodes as indicated in the pattern (home-
omorphism problem). They created a tool that implements
their algorithms to verify the compliance of a graph with a
pattern. The approach is not specific to any modeling lan-
guage, being rooted in labeled graph theory. However, such
approach has to be extended to support the verification of
security aspects in a business process.

Beeri et al. [5] propose Business Process Query Lan-
guage (BP-QL), a pattern-based graphical query language
for business processes. They also provide software tooling
to determine the compliance of a business process—defined
usingWS-BPEL [36]—with a pattern. The decision of using
WS-BPEL, a machine-readable standard, hinders the read-
ability of the business process, especially with real case
scenarios, where business process easily reach hundreds of
elements.

A Process model Query Language (APQL), proposed by
Hofstede et al. [20], is a textual query language, based on 20
predicates that can be composed to create complex queries.
This approach suffers of scalability issues: the definition of
complex queries is a challenging task that will lead to errors
due to the complexity of the task. Moreover, as far as our
knowledge goes, this approach is not supported by a software
framework.

Visual Model Query Language (VMQL) [55] is a graph-
ical query language based on UML activity diagrams [13].
It permits to define custom properties, which are evaluated
when the compliance of a query is verified against a business
process. But VMQL was not created for security purposes:
even if the custom properties can be used to represent secu-
rity concepts, the VMQL software engine can not interpret
them limiting their usage only as a representation of security
concepts.

The Business Process Query Language (BPQL) [12] per-
mits to graphically define both queries and business process
models using the same language. Unfortunately, BPQL is not
based on BPMN, hence the learning process is likely to be
slower than that with by BPMN-Q. Moreover, BPQL (just
like BPMN-Q), does not include security concepts.

7.4 Verification of properties using formal languages

Some approaches build on logic languages (e.g., first order,
temporal) for determining compliance. Theseworks are char-
acterized by high expressiveness, but poor usability, for they
require a substantial effort for formalizing business processes
and security policies.

Sadiq et al. [45] propose to use a Formal Contract Lan-
guage (FCL) to express normative specifications. Their
approach includes a modeling language to visualize business
processes as well as normative constraints. They also define
a compliance distance, which denotes the extent to which the
process model has to be changed to become compliant with
the declared constraints. The limitation of this approach is
the complexity of the language, despite the provision of a
tool to graphical represent normative requirements and busi-
ness processes. In future work, it would be interesting to
compare the usability of the SecBPMN framework with the
FCL-based approach.

Liu et al. [30] propose a language and a framework
which statically verifies a business process against a formally
expressed regulatory requirements. The framework accepts
as input a business process specified in WS-BPEL [36] and
a set of regulatory requirements, expressed with a temporal
logic language called “Business Process Specification Lan-
guage”. While powerful, this approach is hardly usable for
large scenarios, due to the complexity of expressing regula-
tory requirements.

The approaches for business process compliance verifi-
cation we analyzed do not take in consideration security
aspects, therefore is not possible to use them for the pur-
poses of this paper. Moreover, only few of them provide a
graphical modeling language for the definition of the pat-
terns to verify, even if it is essential for the usability of such
approaches [24,30].

Other researchworks [1,43] use extensions of Petri nets to
define business processes with security choices of stakehold-

123



Designing secure business processes with SecBPMN

ers. Petri net modeling language is simple and easy to use,
but it does not include all the graphical constructs of BPMN.
This influences negatively the understandability of models
about medium-size or large business processes, limiting the
applicability to only small-size business processes.

8 Conclusions and future work

This paper has introduced SecBPMN, a framework for
establishing and maintaining compliance between security-
annotated business processes and security policies. It is com-
posed by (i) SecBPMN-ml, a modeling language for repre-
senting security-annotated business processes;
(ii) SecBPMN-Q, a query language for specifying security
policies; and (iii) a software toolset that supports both mod-
eling and checking queries against processes. Furthermore,
we presented a process that guides analysts while using the
SecBPMN framework, and presented an evaluation of our
approach.

Our approach overcomes some limits of existing
approaches, which either suffer from a low expressiveness—
being graphical languages that support only a predefined set
of security annotations—or are hard to use—begin reliant on
temporal logics, which are hardly usable by most analysts.

Our approach opens the doors to several future directions,
including: (1) applying the languages to different domains;
(2) creating a catalog of patterns representing common secu-
rity policies; (3) including our engine in a workflow system
to support security policy-compliant runtime reconfigura-
tion;(4) extending SecBPMN to specify inter-organizational
processes; and (5) extending SecBPMN to specify con-
straints on roles.

Acknowledgments This researchwas partially supported by the ERC
advanced Grant 267856, ‘Lucretius: Foundations for Software Evo-
lution’, www.lucretius.eu and by European Union’s Horizon 2020
research and innovation program under Grant Agreement No. 653642-
VisiON.

References

1. Atluri, V., Huang, W.: An extended Petri net model for supporting
workflows in a multilevel secure environment. In: Samarati, P.,
Sandhu, R. (eds.) Database Security X: Status and Prospects, pp.
199–216. Chapman and Hall, london (1996)

2. Awad, A.: BPMN-Q: a language to query business processes. In:
EMISA, vol. P-119, pp. 115–128 (2007)

3. Awad, A.: A Compliance Management Framework for Business
Process Models. Ph.D. thesis (2010)

4. Basili, V.R., Caldiera, G., Rombach, D.H.: TheGoalQuestionMet-
ric Approach. Wiley, New York (1994)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business
processes with BP-QL. Inf. Syst. 33(6), 477–507 (2008)

6. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental detec-
tion of model inconsistencies based on model operations. In:
Proceedings of the CAiSE, pp. 32–46 (2009)

7. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.:
SecureBPMN: modeling and enforcing access control require-
ments in business processes. In: Proceedings of the SACMAT, pp.
123–126 (2012)

8. Cherdantseva, Y., Hilton, J.: A reference model of information
assurance and security. In: Proceedings of the ARES, pp. 546–555
(2013)

9. Clocksin, W., Mellish, C.: Programming in PROLOG. Springer,
Berlin (2003)

10. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical
systems: a requirements-driven approach. Requir. Eng. 18(1), 1–24
(2013)

11. Delfmann, P., Dietrich, H., Havel, J., Steinhorst, M.: A language-
independent model query tool. In: Proceedings of the DESRIST,
pp. 453–457 (2014)

12. Deutch, D., Milo, T.: Querying structural and behavioral properties
of business processes. In: Proceedings of the DPL, pp. 169–185
(2007)

13. Dumas, M., Hofstede, A.H.M.: UML activity diagrams as a work-
flow specification language. In: Proceedings of theUML, pp. 76–90
(2001)

14. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressive-
ness in the temporal logic of branching time. In: Proc. of STOC,
pp. 169–180 (1982)

15. Federal Aviation Administration: SWIM ATM Case Study,
last visited March 2014. http://www.faa.gov/about/office_org/
headquarters_offices/ato/service_units/techops/atc_comms_
services/swim/ (2014)

16. Ferraiolo, D., Cugini, J., Richard Kuhn, D.: Role-Based Access
Control (RBAC): Features and Motivations In: Proceedings of
11th annual computer security application conference, pp. 241–
248 (1995)

17. Firesmith, D.: Specifying reusable security requirements. J. Object
Technol. 3(1), 61–75 (2004)

18. Ghose, A., Koliadis, G.: Auditing business process compliance. In:
Proceedings of the ISOC, pp. 169–180 (2007)

19. Gruhn, V., Laue, R.: A heuristic method for detecting problems in
business process models. Bus. Process Manag. J. 16(5), 806–821
(2010)

20. Hofstede, A., Ouyang, C., La Rosa, M., Song, L., Wang, J.,
Polyvyanyy, A.: APQL: a process-model query language. In: Pro-
ceedings of the Asia-Pacific Business Process Management, vol.
159, pp. 23–38 (2013)

21. ISACA: An Introduction to the Business Model for Informa-
tion Security. Technical report (2009). http://www.isaca.org/
Knowledge-Center/Research/Documents/Introduction-to-the-
Business-Model-for-Information-Security_res_Eng_0109.pdf

22. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation
systems for online service provision. Decis. Support Syst. 43(2),
618–644 (2007)

23. Jurjens, J.: UMLsec: extending UML for secure systems develop-
ment. In: Proceedings of the UML, pp. 412–425 (2002)

24. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst,
W.M.P.: Business process compliance checking: current state and
future challenges. In: Loos, P., Nttgens, M., Turowski, K., Werth,
D. (eds.) MobIS, LNI, vol. 141, pp. 107–113. GI (2008)

25. Leitner,M.,Miller,M.,Rinderle-Ma,S.:Ananalysis and evaluation
of security aspects in the business process model and notation. In:
Proceedings of the ARES, pp. 262–267 (2013)

26. Leitner, M., Rinderle-Ma, S.: A systematic review on secu-
rity in process-aware information systems—constitution, chal-
lenges, and future directions. Inf. Softw. Technol. 56(3), 273–293
(2014)

123

www.lucretius.eu
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/
http://www.isaca.org/Knowledge-Center/Research/Documents/Introduction-to-the-Business-Model-for-Information-Security_res_Eng_0109.pdf
http://www.isaca.org/Knowledge-Center/Research/Documents/Introduction-to-the-Business-Model-for-Information-Security_res_Eng_0109.pdf
http://www.isaca.org/Knowledge-Center/Research/Documents/Introduction-to-the-Business-Model-for-Information-Security_res_Eng_0109.pdf


M. Salnitri et al.

27. Leitner, M., Schefer-Wenzl, S., Rinderle-Ma, S., Strembeck, M.:
An experimental study on the design and modeling of security
concepts in business processes. In: Proceedings of the PoEM, pp.
236–250 (2013)

28. Li, J., Mirkovic, J., Wang, M., Reiher, P., Zhang, L.: SAVE:
source address validity enforcement protocol. In: Proceedings of
the INFOCOM, vol. 3, pp. 1557–1566 (2002)

29. Li, N., Tripunitara,M.V., Bizri, Z.: Onmutually exclusive roles and
separation-of-duty. ACM Trans. Inf. Syst. Secur. 10(2), 5 (2007)

30. Liu, Y., Müller, S., Xu, K.: A static compliance-checking frame-
work for business process models. IBM Syst. J. 46(2), 335–361
(2007)

31. Mason, M.: Sample size and saturation in PhD studies using qual-
itative interviews. Forum Qual. Soc. Res. 11(3), 190–197 (2010)

32. McCumber, J.: Information systems security: a comprehensive
model. In: Proceedings of the NCSC (1991)

33. Menzel, M., Thomas, I., Meinel, C.: Security requirements spec-
ification in service-oriented business process management. In:
Proceedings of the ARES, pp. 41–48 (2009)

34. Monakova, G., Brucker, A.D., Schaad, A.: Security and safety of
assets in business processes. Appl. Comput. 27, 1667–1673 (2012)

35. Moody, D.: The physics of notations: toward a scientific basis for
constructing visual notations in software engineering. IEEE Trans.
Softw. Eng. 35, 756–779 (2009)

36. OASIS: Web Services Business Process Execution Language.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

37. OASIS: eXtensible Access Control Markup Language
(XACML)Version 3.0. http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.html (2013)

38. OMG: BPMN 2.0. http://www.omg.org/spec/BPMN/2.0 (2011)
39. OMG:UnifiedModeling Language (UML), Infrastructure, V2.1.2.

Technical report (2007). http://www.omg.org/spec/UML/2.1.2/
Infrastructure/PDF

40. Parker, D.: Our excessively simplistic information security model
and how to fix it. ISSA J. 8(7), 12–21 (2010)

41. Parker, D.B.: Fighting Computer Crime—A New Framework for
Protecting Information. Wiley, New York (1998)

42. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A
design science research methodology for information systems
research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

43. Rasmussen, J.L., Singh, M.: Designing a security system bymeans
of coloured Petri nets. In: Proceedings of the ICATPN, pp. 400–419
(1996)

44. Rodríguez, A., Fernández-Medina, E., Piattini, M.: A BPMN
extension for the modeling of security requirements in business
processes. IEICE Trans. Inf. Syst. 90(4), 745–752 (2007)

45. Sadiq, S., Governatori, G., Namiri, K.:Modeling control objectives
for business process compliance. In: Proceedings of the BPM, pp.
149–164 (2007)

46. Saleem, M., Jaafar, J., Hassan, M.: A domain-specific language for
modelling security objectives in a business process models of SOA
applications. Adv. Inf. Sci. Serv. Sci. 4(1), 353–362 (2012)

47. Salnitri, M., Dalpiaz, F., Giorgini, P.: Aligning service-oriented
architectures with security requirements. In: Proc. of OTM, pp.
232–249 (2012)

48. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying secu-
rity policies in business processes. In Proceedings of the BPMDS,
pp. 200–214 (2014)

49. Salnitri, M., Giorgini, P.: Modeling and verification of ATM secu-
rity policies with SecBPMN. In: Proceedings of the SHPCS (2014)

50. Samarati, P., Vimercati, S.: Access control: policies, models, and
mechanisms. In: FOSAD, vol. 2171, pp. 137–196 (2001)

51. Schmidt, R., Bartsch, C., Oberhauser, R.: Ontology-based repre-
sentation of compliance requirements for service processes. In:
Proceedings of the CEUR (2007)

52. SecBPMN Website: SecBPMN Website, last visited Sept 2014.
http://www.secbpmn.disi.unitn.it (2014)

53. Simon, R., Zurko, M.: Separation of duty in role-based environ-
ments. In: Proceedings of the CSFW, pp. 183–194 (1997)

54. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T.,
Kwiatkowska, M., Mcdermid, J., Paige, R.: Large-scale complex
IT systems. Commun. ACM 55(7), 71–77 (2012)

55. Störrle, H.: VMQL: a visual language for ad-hoc model querying.
J. Vis. Lang. Comput. 22, 3–29 (2011)

56. The Apache Software Foundation: Apache Rampart website,
last visited Aug 2014. http://axis.apache.org/axis2/java/rampart/
(2014)

57. van der Aalst, W.M.P.: Formalization and verification of event-
driven process chains. Inf. Softw. Technol. 41(10), 639–650 (1999)

58. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslèn, A.: Experimentation in Software Engineering: An Intro-
duction. Kluwer Academic, Boston, MA (2000)

59. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.:
Model-driven business process security requirement specification.
J. Syst. Archit. 55(4), 211–223 (2009)

60. Wolter, C., Schaad, A.: Modeling of task-based authorization con-
straints in BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
Business Process Management. Lecture Notes in Computer Sci-
ence, vol. 4714, pp. 64–79. Springer, Berlin (2007)

Mattia Salnitri is a Ph.D. can-
didate at Department of Informa-
tion Engineering and Computer
Science of University of Trento,
Italy. He received his Bache-
lor’s Degree in Computer Sci-
ence from University of Trento
in 2009 and his Master’s Degree
in Computer Science from the
same university in 2011. His
research interests include soft-
ware engineering, requirement
engineering, security require-
ment enforcement and align-
ment, business processes.

Fabiano Dalpiaz is an assis-
tant professor in the Depart-
ment of Information and Com-
puting Sciences, Utrecht Univer-
sity, the Netherlands. His main
research interest lies in require-
ments engineering; within this
field, his work spans across
multiple facets such as security
requirements, adaptive systems,
gamification and serious games,
modeling and automated rea-
soning, socio-technical systems.
Before joining Utrecht Univer-
sity, he was a postdoctoral fellow

at the Department of Computer Science, University of Toronto, Canada
(2012–2013), and at the Department of Information Engineering
and Computer Science, University of Trento, Italy (2011–2012). He
obtained a Ph.D. from the University of Trento (2006–2011) in the
area of self-adaptive socio-technical systems. He has published over 60
papers in international journals, conferences, and workshops. He has

123

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.secbpmn.disi.unitn.it
http://axis.apache.org/axis2/java/rampart/


Designing secure business processes with SecBPMN

organized the iStar’14workshop at CAiSE’14, the EMAS’14workshop
at AAMAS-2014, and the RESC workshop at RE’11. He has partici-
pated in several regional, national, and international research projects
(NSERC-BIN, PAT-MOSTRO,MIUR-Mensa, EU-IP-Serenity, EU-IP-
Aniketos, ERC-Lucretius). He serves on the program committee of
international conferences such as CAiSE, ER, AAMAS.

Paolo Giorgini is associate pro-
fessor and head of the Soft-
ware Engineering, Formal Meth-
ods and Security group at the
Department of Engineering and
Computer Science of Univer-
sity of Trento. He received his
Ph.D. degree from University
of Ancona (Italy), and then, he
joined theUniversity of Trento as
assistant professor. He is respon-
sible for the bachelor and mas-
ter program in computer science
at University of Trento. He has
worked on the development of

requirements languages and the application of agent and goal-oriented
techniques to (security) software analysis. His publication list includes
more than 200 refereed journal and conference proceedings papers and
12 edited books.

123


	Designing secure business processes with SecBPMN
	Abstract
	1 Introduction
	2 Baseline
	3 SecBPMN-ml: a modeling language for secure business processes
	3.1 Accountability
	3.2 Auditability
	3.3 Authenticity
	3.4 Availability
	3.5 Confidentiality
	3.6 Integrity
	3.7 Non-repudiation
	3.8 Privacy

	4 Modeling and verifying security policies
	5 A process for SecBPMN
	6 Evaluation
	6.1 Modeling languages understandability and perceived complexity
	6.1.1 Empirical experiment design
	6.1.2 Validity of our experiments
	6.1.3 Experiment results

	6.2 Scalability analysis
	6.2.1 Scalability with increasingly complex SecBPMN-ml business process
	6.2.2 Scalability with increasingly complex SecBPMN-Q security policies

	6.3 Application to a case study

	7 Related work
	7.1 Security extensions of business process modeling languages
	7.2 Methods and guidelines
	7.3 Query languages for business processes
	7.4 Verification of properties using formal languages

	8 Conclusions and future work
	Acknowledgments
	References




