
Maintaining Secure Business Processes
in Light of Socio-Technical Systems’ Evolution

Mattia Salnitri
DISI, University of Trento

Trento, Italy
Email: mattia.salnitri@unitn.it

Elda Paja
DISI, University of Trento

Trento, Italy
Email: elda.paja@unitn.it

Paolo Giorgini
DISI, University of Trento

Trento, Italy
Email: paolo.giorgini@unitn.it

Abstract—Today’s systems are socio-technical, they are com-
posed of social (humans and organizations) and technical com-
ponents that interact with one another to achieve objectives
they cannot achieve on their own. Security is a central issue in
socio-technical systems and cannot be tackled through technical
mechanisms alone. Instead, it requires enforcing security policies
over the procedures that specify how components of these systems
operate and interact (i.e., business processes). The continuous
evolution of socio-technical systems, to adapt to external changes,
may result in business processes that do not enforce security.
Thus, it is important to preserve security through a constant
update of business processes and/or security policies, to avoid
security issues that may result in loss of reputation or monetary
sanctions. To this end, in this paper we propose a framework to
assist security engineers in maintaining secure business processes
during socio-technical systems evolution. The framework is com-
posed of: (i) SecBPMN2-ml, a modeling language for business
processes; (ii) SecBPMN2-Q, a modeling language for security
policies; and (iii) a software engine that verifies if security policies
are enforced in business processes. The framework is applied to
a case from the air traffic management domain.

I. INTRODUCTION

Today’s companies invest remarkably in reaching and main-
taining a level of security that is either demanded by their
stakeholders or dictated by security standards or regulations
they should comply with [1]. In particular, the verification of
security requirements in business processes, i.e., procedures
executed to achieve companies’ business objectives, is a cen-
tral issue [11]. Such verification is a time consuming and error-
prone task, because of the dimensions and of the complexity
of business processes. It is, however, a necessary task, to prove
that a given company (in particular its processes) is compliant
with the security requirements specified by the stakeholders
or by security standards and regulations.

This is a challenging task since today’s systems can no
longer be treated as monolithic entities, rather they are de-
signed and developed together with their underlying environ-
ment, involving people, organizations, and technical compo-
nents [15].

Such systems are continuously evolving, either because new
technologies, new laws or standards are introduced, or because
stakeholders’ requirements change. Whatever the trigger, these
changes invariably affect the ability of the socio-technical
system to meet its intended security requirements. What is

worth emphasizing is that the changes can hardly be planned
in advance.

Therefore, in managing security in ever changing socio-
technical systems, the best we can do is verifying that security
is maintained, by keeping security policies satisfied in business
processes.

Existing approaches either verify properties other than se-
curity [4], [7], or do not consider evolution [5], [19], [13].
In this work, we propose a framework to verify whether
the business processes meet security policies by iteratively
creating business process models for the system at hand,
capturing security policies, and verifying if the latter are
satisfied by the former. Specifically, the contributions of this
work are:

• a modeling language, namely Secure BPMN 2.0
(SecBPMN2), for modeling business processes and spec-
ifying procedural security policies;

• a formal specification of the modeling language and of
the verification of business processes against security
policies;

• an implementation of the verification using DLV K [8];
• a case study to evaluate the effectiveness of the frame-

work in handling violations of security policies, as well
as promising scalability results of our implementation.

The paper is structured as follows: Section II describes
the overall framework. Section III presents the SecBPMN2
modeling language, while Section IV describes the verification
framework. Section V introduces our implementation and Sec-
tion VI presents the evaluation results. Section VII describes
the relevant related work. Finally, Section VIII describes the
conclusions and sketches future work.

II. APPROACH OVERVIEW

The framework proposed in this paper is composed of three
elements: (1) a modeling language for representing business
processes with security concepts, (2) a modeling language for
capturing procedural security policies, and (3) a verification
engine which verifies the security policies against the business
processes.

In our previous work, we proposed SecBPMN [22], a
modeling language for modeling business processes with se-
curity concepts and security policies, that extends BPMN 1.1
with a set of security annotations defined by the Reference

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE 155

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE
DOI 10.1109/REW.2016.11

155

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE
DOI 10.1109/REW.2016.11

155
RE 2016 Workshops, Beijing, China

MoDRE Workshop Paper

!"#$%&'
()*+,$-&'."/$*$)('

!"#$%&'
0+($1)(('.,"*)(()(

2),$%&
'()*+,$-&'."/$*$)(

3

4

5

6)(
7"

8"*$"9-)*:1$*;/'
(&(-)<')="/=)#

8;-$(>)#?

Fig. 1: Security verification process.

Model for Information Assurance and Security (RMIAS) [6].
The evaluation of SecBPMN underlined limitations of its
expressiveness [22], [24] due to the limited set of concepts
of BPMN 1.1 and lack of security concepts that could be
represented.

In this paper we propose SecBPMN2, an extension of
SecBPMN with BPMN 2.0, while adding to the first three
new security annotations. In particular, we focused on BPMN
2.0 collaboration models: SecBPMN2 does not include con-
versation and choreography models, that are part of BPMN
2.0 standard. This decision is a consequence of the objective
of creating a language as simple as possible. However, from
our experience, conversations and choreographies models are
less used than process and collaboration models.

The extension with all BPMN 2.0 collaboration elements
greatly increases the expressiveness of SecBPMN adding the
possibility of modeling numerous types of tasks and events,
among many other concepts1.

Following the naming convention of SecBPMN, we call the
part of SecBPMN2 for business processes SecBPMN2- mod-
eling language (SecBPMN2-ml), while we call SecBPMN2-
Query (SecBPMN2-Q) the part of SecBPMN2 for security
policies.

Inputs and output. The framework receives as input a docu-
ment containing the description of running business processes
with security concepts, and a specification of the security
policies to which the system shall be compliant with. The
framework returns a positive answer in case the policies are
satisfied by the business processes.

Roles. The framework aims at helping security requirement
engineers (a role that encapsulates the expertise of require-
ments analysts and security engineers or experts), in assisting
them after the deployment of the socio-technical system to
align business processes with security policies in light of
evolution.

Process. We propose the process, shown in Fig. 1, to maintain
security policies satisfied in business processes. The process
starts with the design of business processes. Security poli-
cies (activity 1) and business processes are created (activity
2). After that, the software engine verifies security policies
against business processes (activity 3). If the result is negative
the business processes or the security policies are modified

1For further details on BPMN 2.0 refer to [14].

(activities 1-2) and the verification is executed again (activity
3). If the result is positive (they are satisfied), the business
processes are deployed. After that, the process will remain
inactive waiting for a new change in the system.

III. MODELING SECURE BUSINESS PROCESSES AND
SECURITY POLICIES

In this section, we formally specify the abstract syntax of
SecBPMN2. Since SecBPMN2 is based on BPMN 2.0, we
propose a formalization of the part of the standard that we
need for the formal specification of the verification of business
processes against security policies.

We employ the following notation: variables are strings in
italic with a leading non-capital letter (e.g., x, y); sets are
strings in the calligraphic font for mathematical expressions
(e.g., G, I); relations and functions names are in sans-serif
with a leading non-capital letter (e.g., enforces); constants are
in typewriter style with a leading non-capital letter (e.g., true,
false). We use subscript to specify the tuple the elements
belongs. For example, Ax indicates that the set A belongs to
the tuple x. Relations are defined as set of ordered pairs, while
functions are defined using functional notation.

Fig. 2 shows an example of a SecBPMN2-ml diagram. It
represents two business processes delimited by a start event
and an end event. Each business process is executed by a pool,
namely Tower control operator and Pilots (that are further divided
in lanes called Captain and Co-pilot), and contains at least one
activity, e.g. Analyze request take-off. The order of execution of
activities is represented with sequence flow relations that links
two SecBPMN2 elements and specifies that the source element
is executed before the target element. Gateways represent
branches in the sequence flow, for example the diamond with
an “X" symbol is an exclusive gateway. The gateway executed
after the activity Analyze request take-off in Fig. 2 specifies that
the sequence flow can take two different paths, based on
the evaluation of the condition Errors?. Security concepts are
specified with security annotations, which are represented with
orange solid circles, that are explained later in this section.

A. Formalization of BPMN 2.0

We define a BPMN 2.0 business process as tuple that
contains the sequence of elements that can be executed, data
objects, participants and association between them.

Definition 1 (BPMN 2.0 Business Process).
A BPMN 2.0 business process is a tuple

156156156

!"
#$
%&

'
()
%(
"*

'
$+
)"
#$
%

,$
-
./
01
$*
%/$
#0

$)
./
(%
$/

!"@"A#B"'
A"CD"EB'B#F"$G%%

&@#HIJ"'
A"CD"EB'B#F"$G%% '"KGAB'"AAGAE &(('K"AEG@#H'

(#B#

)GLLD@*+#B"'
K"AEG@#H'(#B#

&(('+#KB#*@,E'
K"AEG@#H'(#B#

-"@('A"CD"EB'
B#F"$G%%

&@#HIJ"'
A"CD"EB'
B#F"$G%%

.M#L*@"'
+#KB#*@'(#B#

.M#L*@"'+G$
K*HGB'(#B#

-"@('
#DB/GA*J#B*G@

-"@('
A"0"+B*G@

.AAGAE?

&DB/GA*J#B*G@'"0"+B*G@'"CD"EB

-BGA"'
A"EKG@E"

&+B*N*BI
2-
"3
#(
*.

!$
$#

!$
$#

.M+HDE*N"'
1#B"O#I

.@(

-B#AB

2#A#HH"H'
1#B"O#I

3"EE#1"'

3"EE#1"'PGO

-"CD"@+"'PGO'
4"1"@(5G@$("H"1#B*G@

-"K#A#B*G@'G%'(DB*"E

-B#AB6

-B#AB7

.@(6

.@(7

'"CD"EB'
B#F"$G%%

8#*B'A"CD"EB

9#B#'G:0"+B;@B"AL"(*#B"

.AAGAE?

<"E

5G

5G

<"E

.AAGAE?

=*@('G%'(DB*"E

5G
<"E

9#B#'#EEG+*#B*G@

Fig. 2: Example of a SecBPMN2-ml collaboration model

(A, E ,G,D,P, sequenceFlow, dataAssociation, executor)
where:
(a) A is a finite set of activities,
(b) E ⊆ Es∪Ee∪E i is a finite set of events, Es∩Ee∩E i = ∅,
(c) G is a finite set of gateways,
(d) D is a finite set of data objects,
(e) P ⊆ Ppool ∪P lane is a finite set of participants,Ppool ∩

P lane = ∅,
(f) sequenceFlow ⊆ (A ∪ G ∪ E \ Es)× (A ∪ G ∪ E \ Ee) is

the sequence flow association,
(g) dataAssociation ⊆ D×A×{input, output} is the data

association,
(h) executor ⊆ P × (A∪ E ∪ G) is the executor association.

Where: (a) is a set of activities A; (b) is a set of events E
that contains: a set of start events Es, that specifies where the
business processes start; a set of end events Ee, that indicates
when the business processes finish; a set of intermediate events
E i, that specifies when the business processes wait events
to happen. The set G, point (c), contains the gateways, i.e.,
elements used to create variants in the sequence of activities
executed. The set D, point (d), contains the set of data objects,
i.e., the documents needed as input or outputted by activities,
while the set P , point (e), contains the participants, i.e., the
actors who execute the activities. Participants are divided in
pools Ppool, i.e., independent actors, and lanes P lane, i.e.,

sub-division of pools. The sequenceFlow association, point
(f), connects executable elements, i.e., A, E and G; from now
on AEG = A ∪ E ∪ G. Association dataAssociation, point
(g), connects data objects with activities, and specifies if data
objects are used as input or are outputted by the activities.
Association executor connects executable elements to the
participant who executes them. Such association is implicit
in BPMN 2.0, when an executable element is inside a pool or
a lane.

Following Definition 1, the business process executed by the
participant Pilot in Fig. 2 is defined as a tuple with A={Generate
request take-off, Analyze request take-off, ... }, Es={Start1}, Ee =
{End1}, G= {Errors?}. D ={Request take-off} and Ppool = {Pilot}
P lane={Captain, Co-pilot}. In Fig. 2 sequenceFlow connects, for
example, Generate request take-off with Analyze request take-off;
dataAssociation connects Request take-off with activity Generate
request take-off and the value input. Association executor corre-
lates, for example, Captain with Generate request take-off activity,
meaning that the Captain executes the activity Generate request
take-off.

Definition 2 specifies the conditions for a well-formed
business process.

Definition 2 (Well-formed business process).
A BPMN 2.0 business process
(A, E ,G,D,P, sequenceFlow, dataAssociation, executor) is

157157157

well-formed iff:
(a) |Es| = 1,
(b) |Ppool| = 1, and
(c) ∀x.x ∈ AEG → ∃! p ∈ Ppool.(x, p) ∈ executor.

Where: (a) it has one start event; (b) it has one pool; (c)
all executable elements are executed by only one pool. Points
(b) and (c) are derived from BPMN 2.0 standard: they prevent
a business process to be executed by multiple pools. Point
(a) is needed for the automated verification, however, it does
not limit the expressiveness because multiple start events can
be substituted with a single start event, linked to a parallel
gateway, in turn linked to all the activities connected to the
original start events.

Business processes in Fig. 2, for example, are well formed
because they have 1 start event each, 1 pool each, and all
activities are associated with a single pool.

Collaboration models are the core part of BPMN 2.0, they
allow modeling more business processes and the communi-
cations between them. In such models communications are
represented with message flows (thick dashed arrows), while
the contents of the communications are represented by the
message elements. For example, the execution of Send request
take-off creates a communication channel from the Pilots to the
Tower control operator where the Request message is sent.

Definition 3 formally specifies a collaboration model: a set
of business processes that exchange messages through message
flows.

Definition 3 (BPMN 2.0 collaboration model).
A BPMN 2.0 collaboration model is a tuple (BP ,M,MF)
where:
(a) BP = {bp1...bpn} is a finite set of business processes in

which
bpi = (Ai, Ei,Gi,Di,Pi, sequenceFlowi, dataAssociationi,
executori)
is the i-th bp in BP and 1 ≤ i ≤ n = |BP|,

(b) M is a finite set of messages,
(c) MF ⊆ (Ai ∪ Ppool

i) × (Aj ∪ Ppool
j ∪ Ej) × (M) is the

message flow relation, where i ̸= j and 1 ≤ i ≤ |BP|
and 1 ≤ j ≤ |BP|, and

(d) L ⊆ AEG ∪D ∪ P ∪M× l is a labeling relation.

Where: (a) is a set of business processes; (b) is a set of
messages; (c) is a message flow relation that represents the
communications between business processes. A message flow
links a pool or an activity of a business process to a pool, an
activity or an event of another business process, to a message
that is exchanged. In the collaboration model a labeling
relation, (d), associates a string to executable elements, data
objects, messages and participants. In Fig. 2 two business
processes are connected with three message flows that transmit
the messages Request, Rejection and Authorization.

B. SecBPMN2 - modeling language
SecBPMN permits to specify eight security annotations

defined in RMIAS [6], namely: accountability, auditability, authen-
ticity, availability, confidentiality, integrity, non-repudiation and privacy.

Security annotations are represented with a solid orange circle,
with a black icon, that changes depending on the type of secu-
rity annotation. We have added 3 security annotations, namely
separation of duties, bind of duties and non-delegation. The added
security annotations originated from our collaboration with
security experts and practitioners, and from our experience
of applying the language to numerous case studies. For some
security annotations it is possible to specify attributes, called
security properties, to specify further details.
Separation of duties is a security principle used to formulate
multi-person control policies, requiring two or more different
people to be responsible for the completion of a task or set
of related tasks [27]. If the set of people changes during the
process execution, separation of duties is dynamic, otherwise,
separation of duties is static. Such security principle is repre-
sented with Separation of duties security annotations, while the
static/dynamic property is represented with a boolean security
property called "dynamic”. For example, in Fig. 2 a separation
of duties security annotation is linked to Captain and Co-pilots
because a person cannot execute simultaneously the activities
of captain and co-pilot. In this case we have dynamic separation
of duties because, a person, in different flights, can be the
Captain or the Co-pilots.
Bind of duties requires the same person to be responsible
for the completion of a set of related tasks [28]. Bind of
duties can be either static or dynamic. Such security concept
is represented by the Bind of duties security annotation and
it shares the same security property of separation of duties
security annotation.
Non-delegation requires that a set of actions shall be executed
only by the users assigned. It is represented by the Non-
delegation security annotation. For example, in the business
process in Fig. 2, since Non-delegation is linked to Analyze
request take-off, the activity will be executed only by the Tower
control operator, and no one else.

Definition 4 specifies a SecBPMN2-ml collaboration model
as an extension of a BPMN 2.0 collaboration model with
security annotations.

Definition 4 (SecBPMN2-ml collaboration model).
A SecBPMN2-ml collaboration model is a tuple
(CM,SA, SecAss, SAType) where:
(a) CM is a collaboration model,
(b) SA is a finite set of security annotations,

(c) SecAss ⊆ (SA)× (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪
|BP|⋃
i=1

Ppool
i ∪M∪

MF) , and
(d) SAType ⊆ SA× { Accountability, Auditability, Authentic-

ity, Availability, Confidentiality, Integrity, NonRepudiation, Privacy,
BindOfDuties, SeparationOfDuties, NonDelegation } is a rela-
tion that associates a type to each security annotation.

Where: (a) is a BPMN 2.0 collaboration model; (b) is a set
of security annotations; (c) is a security association relation
that connects each security association with an element among
activities, data objects, pools, message flows and messages;
(d) is an association which is used to determine the type

158158158

of the security association. For example, in Fig. 2, SA is
composed of two security annotations and SecAss contains
the link between the security associations and the elements
of the collaboration, i.e., the links between the bind of duties
security association and Captain and Co-pilot lanes and between
the Non-delegation security annotation and Analyze request take-
off activity.

We consider a SecBPMN2-ml collaboration model well-
formed when all security annotations are correctly associated
with BPMN 2.0 elements.

Definition 5 (Well-formed SecBPMN2-ml collaboration
model).
A SecBPMN2-ml collaboration model (CM,SA, SecAss) is
well-formed iff:
(a) ∀bp.bp ∈ BP → bp is well formed,
(b) ∀(sa, t1).((sa, t1) ∈ SecAss ∧ SAType(sa) ̸=

BindOfDuties ∧ SAType(sa) ̸=
SeparationOfDuties) → !(sa, t2).(sa, t2) ∈
SecAss.t1 = t2, and

(c) ∀(sa, t).(sa, t) ∈ SecAss →
(i) if SAType(sa) = Accountability

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Pi),

(ii) if SAType(sa) = Auditability

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪
|BP|⋃
i=1

Pi ∪MF),

(iii) if SAType(sa) = Authenticity

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪
|BP|⋃
i=1

Pi ∪M),

(iv) if SAType(sa) = Availability

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪MF),

(v) if SAType(sa) = Confidentiality

then t ∈ (
|BP|⋃
i=1

Di ∪MF),

(vi) if SAType(sa) = Integrity

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪MF),

(vii) if SAType(sa) = NonRepudiation

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Ei ∪MF),

(viii) if SAType(sa) = Privacy

then t ∈ (
|BP|⋃
i=1

Ai ∪
|BP|⋃
i=1

Di ∪
|BP|⋃
i=1

Ei),
(ix) if SAType(sa) = BindOfDuties

then t ∈
|BP|⋃
i=1

Ppool
i ,

(x) if SAType(sa) = SeparationOfDuties

then t ∈
|BP|⋃
i=1

Ppool
i , and

(xi) if SAType(sa) = NonDelegation

then t ∈
|BP|⋃
i=1

Ai.

Where: (a) all the business processes in the SecBPMN2-
ml collaboration model are well formed; (b) each security

annotation, that is not bind of duties or separation of duties, is
linked to one and only one element of the business processes;
(c) security annotations are associated with a subset of BPMN
2.0 elements. Bind of duties and separation of duties can be
linked only to pools, defined in (ix) and (x), because they
specify properties on performers of business processes. While
non-delegation, point (xi), can be associated only to activities:
the only element of BPMN 2.0 that can be delegated to
another participant. For space limitations we do not describe
the constraints on the security annotations previously defined
in SecBPMN, a complete description can be found in [22].

C. SecBPMN2-Query

SecBPMN2-Q is a modeling language expressly thought
for the specification of procedural security policies. It builds
on top of SecBPMN-Q [22], a query language (part of
SecBPMN) that differently from other approaches [4], [7]
is aimed at verifying security policies over business process
models. SecBPMN2-Q extends SecBPMN-Q with BPMN 2.0
and the vast range of security annotations of SecBPMN2-ml.

SecBPMN2-Q extends SecBPMN2-ml with three relations:
negative flows, walk and negative walk. All of them connect two
SecBPMN2-ml elements among activities, events or gateways.
Negative flow relation matches all business processes in
which the target element is never executed right after the
source element. Walk relation matches all business process in
which the target element is executed after the source element.
Negative walk relation is the negation of walk relation, i.e., it
matches all the business processes in which the target element
is never executed after the source element.

SecBPMN2-ml assigns a specific semantics to the label “@"
which matches all elements of the same type irrespective of
the label.

A SecBPMN2-Q security policy represents a class of busi-
ness processes, therefore, its verification consists in checking
if a business process fits in the class defined by the security
policy. With the relations introduced in SecBPMN2-Q and the
usage of “@" it is possible to define complex constraints and
model a vast range of security policies.

Fig. 3 shows an example of SecBPMN2-Q security policy
that matches all business processes in which: (a) the Tower
control operator executes Analyze request take off, and it does not
delegate the activity or part of it to other participants; (b) after
that it sends an Authorization message to any participants who
executes Store response.

Definition 6 specifies a SecBPMN2-Q security policy as
SecBPMN2-ml collaboration model with negative sequence
flow, walk and negative walk relations.

Definition 6 (SecBPMN2-Q security policy).
A SecBPMN2-Q security policy is a tuple
(SecCM,NSF,Walk,NWalk) where:
(a) SecCM is a SecBPMN2-ml collaboration model,
(b) NSF ⊆ (AEGi)× (AEGi) with 1 < i < |BP|,
(c) Walk ⊆ (AEGi)× (AEGi) with 1 < i < |BP|, and
(d) NWalk ⊆ (AEGi)× (AEGi) with 1 < i < |BP| .

159159159

!
"#
$
%&
0'
#(
)&#
*0

#+
%&
,)
#& !"#$%&''

(')*'+,'
,#-'9.//

0

!*,1.(2&#,2."

3,.(''
('+4."+'

!
5#$-

52$67#(6

8'9'"6

:."96'$'9#,2."

:'9#,2;''5#$-

:'9#,2;''+')*'"7''<.=

Fig. 3: Examples of a SecBPMN2-Q security policy.

Where: (a) is a secBPMN2 collaboration model; (b) is
a Negative Sequence Flow (NSF) relation; (c) is a walk
relation; (d) is a negative walk (NWalk) relation. Negative
sequence flow, walk and negative walk relations connect two
elements of the same business process, this is indicated with
the same variable in the subscript of the elements of the
ordered couples.

IV. VERIFICATION OF SECURITY POLICIES

The verification of security policies consists in checking
if business processes satisfy the constraints defined in the
policies. To perform this check, we defined a label corre-
spondence function, to check whether the constraints in the
security policies can be applied to a business process, a
walk existence functions, to check if a walk connects two
SecBPMN2 elements, and a security enforcement verification,
which checks if a security annotation of a policy is enforced
in a business process.

Definition 7 specifies the correspond function, which checks
if two elements of SecBPMN2 have compatible labels and they
are of the same type.

Definition 7 (Label correspondence check).
correspond :
(AEG∪D∪M∪P)×(AEG∪D∪M∪P) → {true, false}
elempol, elemcoll -→ true iff:
(a) (elempol and elemcoll) are elements of the same type, and
(b) L(elempol) = L(elemcoll) ∨ L(elempol) = “@".

In Definition 7 we check if: (a) two elements are of the same
type; (b) if the labels of the two elements are identical or if
the label of the security policy contains a “@" and, therefore,
it matches every elements.

The oneWalk function in Definition 8 checks if there exists
at least one walk between two elements in a collaboration
model.

Definition 8 (Check walk existence).
oneWalk : Walk × SecBPMN2−ml → {true, false}
(s, t), coll -→ true iff:
(a) ∃x.x ∈ AEGcoll.correspond(x, s),
(b) ∃y.y ∈ AEGcoll.correspond(y, t) ∧ x ̸= y, and
(c) exists a walk from x to y in coll.

Where oneWalk function returns true if: (a), (b) there
exists two distinct, correspondent elements in the SecBPMN2
collaboration model; (c) the elements are connected by at least
a walk. The walk concept is not specified since is a well-known
concept in graph theory [29].

Definition 9 defines a function that verifies if the security
annotations of the policy specify stricter constraints than the
security annotations of the business process.

Definition 9 (Security annotation enforcement verification).
enforces :
(SecBPMN2−Q× SecBPMN2−ml → {true, false}
pol, coll -→ true iff:
∀(sapol, elempol).(sapol, elempol) ∈ SecAsspol →
∃(sacoll, elemcoll).(sacoll, elemcoll) ∈ SecAsscoll.
correspond(elempol, elemcoll) ∧ SAType(sapol) =
SAType(sacoll)∧
(a) SAType(sapol) = BindOfDuties ∨ SAType(sapol) =

SeparationOfDuties →
(i) dynamic(sapol) ↔ dynamic(sacoll), and

(ii) sapol and sapol are connected to the same elements;
(b) [check enforcement of SecBPMN security annotations]

Definition 9 specifies that all security annotations in a
security policy are enforced if, for all of them, there exists
at least one security annotation in the SecBPMN2-ml collabo-
ration model that is connected to a correspondent element, see
Definition 7, and has stricter security properties. Definition 9
defines the checks for the security annotations we introduced
in this paper, for the security annotations previously defined
for SecBPMN, please refer to [22]. For bind of duties and
separation of duties, point (a), the value of dynamic security
property shall be the same, we use dynamic functions that
returns true if dynamic security property is set to true, (point
(i)); and the two security policies shall be connected to the
same elements, point (ii).

Definition 10 specifies a function that verifies a SecBPMN2-
Q security policy against a SecBPMN2-ml collaboration
model.

Definition 10 (Security policy verification).
verifySecurityPolicy :

160160160

SecBPMN2−Q× SecBPMN2−ml → {true, false}
pol, coll -→ true iff:
(a) ∀x.x ∈ AEGpol∪(D)pol∪(M)pol∪(P)pol∃y ∈ AEGcoll∪

(D)coll ∪ (M)coll ∪ (P)coll.Correspond(x, y),
(b) ∀(x, y).(x, y) ∈ sequenceFlowpol → (x, y) ∈

sequenceFlowcoll,
(c) enforces(pol, coll),
(d) ∀walk.walk ∈ Walkpol → oneWalk(walk, pol, coll),
(e) ∀nWalk.nWalk ∈ NWalkpol →

oneWalk(nWalk, coll) = false, and
(f) ∀(x, y).(x, y) ∈ NSFpol ↛ ∃(x1, y1).(x1, y1) ∈

sequenceFlowcoll.correspond(x, x1) ∧
correspond(y, y1) .

A SecBPMN2-Q security policy is verified in a SecBPMN2-
ml collaboration model if: (a) for all the elements of the
security policy there exists at least one elements with a
correspondent label; (b) for all sequence flow relations in the
security policy there exists a sequence flow in the collaboration
model between two correspondent elements; (c) all security
annotations of the security policy are enforced; (d) for each
walk relation of the security policy there exists a walk in the
collaboration model; (e) for each negative walk relation of the
policy no walk connects the two elements; (f) for each negative
sequence flow there is no correspondent sequence flow in the
collaboration model.

V. AUTOMATED VERIFICATION WITH STS-TOOL

We developed STS-Tool [25] a software that supports the
framework proposed in this paper. STS-Tool contains graphical
editors that permit to model SecBPMN2-ml business processes
and SecBPMN2-Q security policies. The software is written
in Java, it is based on the Eclipse framework2 and on the
Graphical Editing Framework (GEF) 3.

STS-Tool integrates SecBPMN2, and the framework de-
scribe in this paper with a wider framework, which helps
security analyst from the definition of early security require-
ments until their implementation [23], [20]. Such integration
increases the range of possible applications of SecBPMN2.

When dealing with real-world scenarios, business processes
can be considerably large, with hundreds of elements and tens
of participants. Hence automating the verification of security
policies against business processes becomes essential. We
developed, and integrated in STS-Tool, a software engine on
top of a planner for verifying business processes with security
choices against security policies. Planners are software engines
that generate plans, i.e., sets of actions, that respect a set of
constraints and achieve a set of goals. We chose planners over
Petri nets and model-checking based approached, because of
their greater expressiveness.

We generate set of constraints from a business process so
that the possible plans generated are the possible executions
of the business process. For example, the business process in
Fig. 2 executed by Co-pilot is transformed to a set of constraints

2https://eclipse.org
3https://eclipse.org/gef/

for which the generated plans are: (i) Generate request take-off,
Analyze request take-off, Report errors , etc.; (ii) generate request
take-off, Analyze request take-off, Add personal data, etc. Security
policies, on the other hand, are transformed to goals, i.e., in
predicates that must be true once the plan is executed. For
example, the policy in Fig. 3 is transformed to a goal that
specifies that: (i) the message Authorization is sent from any
activity executed by Tower control operator; (ii) Analyze request
take-off is executed before the message is sent; (iii) Analyze
request take-off is linked to a non-delegation security annotation.
Thus, if is possible to find a plan that reaches the goals, then
the business process satisfies the security policy.

We use K [8] as a planning language to define such
constraints and goals, which is supported by DLV K [8], a
software that generates plans from a K specification.

Any Task of SecBPMN2 is transformed into a K predicate
task(<Element name>) with a parameter which is the name of
the element.

An Exclusive gateway is transformed into gatewayExclu-
sive(<Element name>) predicate while all other gateways are
transformed into inclusiveGateway (<Element name>) predicate,
since parallel, event based and complex gateways behave as
inclusive gateways, i.e., is possible to execute more than one
outgoing sequence flow.

All Events are transformed into event(<Element name>) predi-
cate. We do not distinguish between different types of events
since all type of events have the same impact in terms of
sequence of elements executed in a business process.

Data objects, Data reference, Data input and Data output are
transformed into Data object(<Element name>) predicate, which
represents the physical storage of information. Messages are
transformed in the predicate message(<Element name>).

Participants, both lanes and pools are transformed into partic-
ipant(<Element name>) predicate.

The sequence flow relation is transformed into a predicate
sequenceFlow(<Source>, <Destination>) where the first parameter
is the element source of the sequence flow, and the second
element the target of the sequence flow.

The Message flow relation is transformed into the predicate
messageFlow(<Source>,<Destination>,<Message>). Similarly to the
sequence flow predicate, this predicate has two parameters that
specifies the source and the target of the relation, moreover
it requires a third parameter which specifies which is the
message sent with the message flow.

SecBPMN2 uses one Data association relation to specify if
a data object is used by another element and the direction of
the association (incoming or outgoing from the element) to
specify if the data object is read or written. We generate two
predicates depending if the data object is read, readDO(<Data
object name>,<Element name>), or written, WriteDO(<Data object
name>,<Element name>). The two predicates use the same pa-
rameters: the name of the data object and the name of the
element which use the data object.

When an element is placed inside the scope of a participant
an Ownership relation is specified between the two elements.
We generate a similar predicate, i.e., owns(<Name pool>,<Element

161161161

name>), to specify the same concept in K. The ownership
relation is not limited to elements such as tasks and data
objects, but binds together also lanes specified inside pools.

We generate a predicate for each type of security annota-
tions, with the security properties specified as parameters.

We do not generate predicates for Artifacts, such as group and
textual annotations, since, they are irrelevant for the execution
of the business process.

Listing 1 shows an example of a K representation of a
SecBPMN2-ml collaboration model. In K strings that start
with an upper case letter are considered variables, while strings
that start with a lower case letter are constants. The former
represents any activity, while the latter represents specific
activities. Lines 1-3 define the message and the sequence flow
fluents. The sequence flow fluent requires two activities as
parameters and represents the sequence flow between two
elements. The message flow fluent requires as parameters
two activities and a message, and represents the message
flow between two activities. Lines 4-7 represent part of the
collaboration model in Fig. 2. In particular, Lines 4-6 represent
the sequence flow between the Add captain’ personal data and
Send request take-off, and the message flow containing the
message Request between the latter activity and Analyze request
take-off. Lines 7 specifies the security annotation linked to the
activity Analyze request take-off.

1 f l u e n t s :
2 sequenceFlow (T1 , T2) r e q u i r e s a c t i v i t y (T1) , a c t i v i t y (T1)

.
3 messageFlow (T1 , T2 ,M) r e q u i r e s a c t i v i t y (T1) , a c t i v i t y (T1

) , message (M) .
4 i n i t i a l l y :
5 sequenceFlow (add c a p t a i n ’ p e r s o n a l da t a , send r e q u e s t

t ake−o f f) .
6 messageFlow (send r e q u e s t t ake−o f f , a n a l y z e r e q u e s t t ake

−o f f , r e q u e s t) .
7 nonDel (a n a l y z e r e q u e s t t ake−o f f) .

Listing 1: A K specification of part of the SecBPMN2-ml
business process in Fig. 2

Listing 2 shows the K goal generated from the security
policy in Fig. 3. Lines 2-3 contain the predicate executed that
indicates the activity specified in the first parameter must be
executed by the participant indicated by the second parameter.
For example Line 2 instructs the planner to find a plan in
which the activity Analyze request take-off is executed by Tower
control operator. Line 4 specifies that the plan will contain a
message sent by any activity to Store response and transmitting
the message Authorization. Lines 5 specifies that the activity
Analyse request take-off shall be annotated with a non-delegation
security annotation. Line 6 instructs the planner to find a plan
where path1 is executed. path1 is defined as a set of constraints
(Lines 8-9), where path1_1 becomes true after Analyze request
take-off is executed and path1 becomes true if path1_1 is true
and activity X is executed. Activity X is the same activity of
Line 4, i.e., the one that sends the Authorization message to
activity Store response. Line 7 specifies the maximum number
of actions the generated plan shall contain; we set this as the
number of all SecBPMN2-ml elements in the business process.
This parameter does not influence the generated plans, if it is

high enough, i.e., as high as the longest possible execution,
which is the number of elements in the business process.
1 goa l :
2 e x e c u t e d (a n a l y z e r e q u e s t t a k e o f f , t ower c o n t r o l

o p e r a t o r) ,
3 e x e c u t e d (s t o r e r e s p o n s e , A) ,
4 s e n t (X, s t o r e r e s p o n s e , a u t h o r i z a t i o n) ,
5 nonDel (a n a l y z e r e q u e s t t ake−o f f) .
6 p a t h 1
7 ? (1 0) .
8 caused pa th1_1 a f t e r exec (a n a l y z e r e q u e s t t a k e o f f) .
9 caused p a t h 1 a f t e r exec (X) , pa th1_1 .

Listing 2: Example of a K goal generated from Fig. 3

VI. EVALUATION

The purpose of this evaluation is twofold: (i) showing the
effectiveness of the framework in verifying security poli-
cies against business processes through a real case study,
and (ii) showing that the framework scales well with large
SecBPMN2-ml models.

Findings from the case study. We evaluated the framework
using the System Wide Information Management (SWIM) [9]
Air Traffic Management (ATM) case study, which is a variant
of the case study “The emerging European Air Traffic Man-
agement systems" of the project Aniketos [2].

We analyzed a set of requirement documents that specify
SWIM ATM business processes, after which we modeled four
large business processes: management of external services,
usage of external services, negotiation of the flight plan, and
landing. We modeled 60 security policies, in particular, 7 of
them with at least a Separation of duties security annotation,
1 with at least a Bind of duties security annotation, and 6
security policies with at least one Non-delegation security
annotation.

We followed the security verification process of Fig. 1
iterating multiple times the inner cycle. After we modeled the
business processes and the security policies, we verified the
latter against the former. A set of security policies were not
satisfied, therefore, we analyzed again the documentation, in
the light of the security issues highlighted by the verification,
and we updated the business processes. The modifications of
the business processes consisted in changing the types of tasks
and events and in adding security policies. For what concerns
the security annotations introduced in this paper, we added 2
Separation of duties security annotations and 4 Non-delegation
security annotations. We iterated the cycle until all security
policies were verified.

The framework allows fast iterations in the inner cycle in the
process in Fig. 1. This permitted an incremental specification
of the business process models and the security policies,
facilitating the overall security analysis of the case study. The
process, proposed in this paper, is easy to follow and can be
used on all the stages of the software development life cycle.
On the other hand the process is not related to any software
engineering method, such as waterfall, incremental or spiral
and, therefore, it may be not intuitive to understand when to
use the framework.

162162162

SecBPMN2 was enough expressive to model all the business
processes of the case study. The complexity of the modeling
language, inherited from BPMN 2.0, may require a training
session for inexperienced modelers. However, from our experi-
ence, once familiarized with BPMN 2.0, the effort required for
learning how to use the security annotations and the relations
introduced in SecBPMN2 is minimal.

Scalability evaluation. We performed a scalability study to
evaluate how well the verification software engine performs
overs large models and to find which factors of the problem,
i.e. elements of SecBPMN2-ml, influence its performance. We
used time as a metric to test the scalability of the software.
We identified 8 factors that increase the complexity of the
problem: the number of activities, participants, data objects,
events, processes, paths, message flows, and that of security
annotations.

The tests were executed with a Mac Book Pro early 2011,
with 8 GB of memory, Processor Intel Core i5 2,3 GHz,
powered by OS X Yosemite 10.10.2. The results of the tests
indicate that the impact of the factors grows linearly except for
the number of activities, which is polynomial, and for the num-
ber of processes, which is exponential. Fig. 4 shows the results
of the tests about the number of activities, while Fig. 5 shows
the results for the number of the processes. The results indicate
that the framework scales well: the exponential grown related
to the number of processes does not influence significantly
the overall scalability because, from our experience, even in
complex SecBPMN2-ml models, the number of processes is
frequently below 10. For further information on the results and
the DLV K files used for the tests, please refer to [26].

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

!" #!" $!" %!" &!" '!!"

!"
#
$%
#
&'
(

)*#+$,(-.(/012"1$&(

Fig. 4: Test results on number of activities.

VII. RELATED WORK

As far as our knowledge goes, there are no approaches
that cover the overall process proposed in this paper. In the
following, we describe the most known approaches that deal
with the verification of (security) requirements in business
processes.

Modeling business processes with security concepts. Many
graphical modeling languages extending BPMN [14] with

!"
#!!"
!!!"
(!!"
)!!"
'!!!"
'#!!"

!" '!" #!" "!" !!" #!" (!"

!!
"
#3
"
&$
(

)%"&#,('((),'*#&&#&(

Fig. 5: Test results on number of processes

security aspects have been proposed. SecureBPMN [5], pro-
posed by Brucker et al., captures security and compliance
requirements. Other extensions of BPMN also rely on security
annotated business process modelling [30], [19], [13] similarly
to SecBPMN2. However, differently from existing approaches,
ours allows the definition of custom security policies. Instead,
existing approaches, e.g. [30], [21], employ software engines
that check a fixed set of hard-coded security policies.

Modeling security policies. Graphical query languages have
been proposed to check if a process satisfies a query, which
can be interpreted as a policy. For instance, BP-QL (Business
Process - Query Language) [4] and BPQL (Business Process
Query Language) [7] allow to graphically define queries and
check which business processes satisfy the queries. These two
query languages are not based on BPMN 2.0, which makes
their applicability and, most importantly, their learning process
slower than that of, for example, SecBPMN2-Q that is based
on BPMN 2.0.

Other approaches are built on formal mathematical concepts
(e.g. first order or temporal logic), and can be used to
define business processes and/or queries. These languages are
expressive enough to include in the model security concepts.
For instance, the approach of Rushby [18] proposes a language
and a framework that checks if the code of the software
diverges from specified behaviors (i.e., policies). The main
drawback of these approaches is low usability, since they are
quite complex and require lot of effort for the formalization
of both business processes and security policies. In light of
real-world scenarios, whose dimensions get larger and larger,
it is nearly impossible to model business processes with such
languages.

Verification of security policies. Some approaches build on
logic languages (e.g., first-order, temporal, etc.) for deter-
mining compliance. These works are characterized by high
expressiveness, but poor usability, as they require a substantial
effort for formalizing business processes and security policies.
Ghose and Koliadis [11] enrich BPMN with annotations, and
calculate how much a business process deviates from another

163163163

one. Differently from our approach, theirs focuses only on
the structural differences with no consideration of security
requirements. Other works [3], [17] use extensions of Petri
nets to define business processes with security choices of
stakeholders. Petri nets modeling language is simple and easy
to use, but it does not include all the graphical constructs
of BPMN. This influences negatively the understandability
of models about medium-size or large business processes,
limiting applicability to only small-size business processes.

Planning languages. We built the software engine, which
verifies security policies against business processes, on top
of K. Other planning languages have been proposed. Stanford
Research Institute Problem Solver (STRIPS) [10] is one of
the first planning language. K is based on its syntax: it
extends STRIPS with, for example, the possibility to put more
than one executability conditions on actions. Action Defini-
tion Language (ADL) [16] and Planning Domain Definition
Language (PDDL) [12] are planning languages created on
top of STRIPS. We chose K instead of STRIPS, PDDL or
ADL, because of its expressiveness and because it generates
strategies from an incomplete description of the domain., i.e.,
when the description of the domain does not cover all the
possible situations. The second case is frequent in socio-
technical systems systems where the business processes are
not well defined and only a list of possible actions in known.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a framework for maintaining the security
policies satisfied in business processes during the evolution of
socio-technical systems. Every time an evolution step leads
to a change in the business processes or in the security
policies, the framework verifies the former against the latter
and possible security issues are solved.

The framework includes: (i) SecBPMN2-ml, a modeling
language for business processes with security aspects; (ii)
SecBPMN2-Q, a modeling language for procedural security
policies; (iii) a software engine for the verification of se-
curity policies against business processes. We evaluated the
framework with a case study from the air traffic management
domain.

Although mature and quite comprehensive, the framework
suffers from these limitations: (i) the SecBPMN2 is built on
top of BPMN 2.0, and inherits the complexity of the language;
(ii) limited scalability of the software engine, due to the
computational time that grows exponentially with the number
of processes.

Future work consider: (i) extending the modeling languages
to allow defining customizable security annotations, and (ii)
empirical evaluation of the framework with practitioners,
where they serve as modelers and decision makers.

Acknowledgement This research was partially supported by
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 653642 - VisiON.

REFERENCES

[1] Managing cyber risks in an interconnected world: Key findings from
the global state of information security survey 2015. Technical report,
PWC, September 2014.

[2] Aniketos Website. Last visited October ’15. http://aniketos.eu.
[3] V. Atluri and W. Huang. An Extended Petri Net Model for Supporting

Workflows in a Multilevel Secure Environment. In Database Security
X ’96, pages 199–216.

[4] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business
processes with BP-QL. Information Systems, 33(6):477–507, 2008.

[5] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. SecureBPMN:
Modeling and Enforcing Access Control Requirements in Business
Processes. In SACMAT ’12.

[6] Y. Cherdantseva and J. Hilton. A Reference Model of Information
Assurance and Security. In Proc. of ARES, pages 546–555, 2013.

[7] D. Deutch and T. Milo. Querying Structural and Behavioral Properties
of Business Processes. In DPL ’07, pages 169–185.

[8] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under
incomplete knowledge. In CL ’00, pages 807–821.

[9] Eurocontrol. System wide information management (swim), April 2013.
[10] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the

application of theorem proving to problem solving. In Proc. IJCAI’71,
pages 608–620.

[11] A. Ghose and G. Koliadis. Auditing Business Process Compliance. In
ISOC ’07.

[12] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL - the planning domain definition
language. Technical Report TR-98-003, Yale Center for Computational
Vision and Control„ 1998.

[13] M. Menzel, I. Thomas, and C. Meinel. Security Requirements Spec-
ification in Service-Oriented Business Process Management. In ARES
’09, pages 41–48.

[14] OMG. BPMN 2.0, Jan 2011.
[15] E. Paja, F. Dalpiaz, and P. Giorgini. Managing Security Requirements

Conflicts in Socio-Technical Systems. In ER ’13, pages 270–283.
[16] E. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation calculus. In Proc. KR ’89, pages 324–332.
[17] J. L. Rasmussen and M. Singh. Designing a Security System by Means

of Coloured Petri Nets. In ICATPN ’96, pages 400–419.
[18] J. Rushby. Using Model Checking to Help Discover Mode Confusions

and Other Automation Surprises. Reliability Engineering and System
Safety, 75:167–177, 2002.

[19] M. Saleem, J. Jaafar, and M. Hassan. A Domain- Specific Language for
Modelling Security Objectives in a Business Process Models of SOA
Applications. AISS ’12.

[20] M. Salnitri, A. Brucker, and P. Giorgini. From Secure Business Process
Models to Secure Artifact-Centric Specifications.

[21] M. Salnitri, F. Dalpiaz, and P. Giorgini. Aligning Service-Oriented
Architectures with Security Requirements. In OTM ’12, pages 232–249.

[22] M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and Verifying Security
Policies in Business Processes. BPMDS ’14, pages 200–214.

[23] M. Salnitri, E. Paja, and P. Giorgini. Preserving compliance with security
requirements in socio-technical systems. In Proc. of CSP, pages 49–61,
2014.

[24] Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini. Designing secure
business processes with secbpmn. Software & Systems Modeling, pages
1–21, 2015.

[25] Mattia Salnitri, Elda Paja, Mauro Poggianella, and Paolo Giorgini. Sts-
tool 3.0: Maintaining security in socio-technical systems. pages 205–
212, 2015.

[26] SecBPMN Website. Last visited October 2015.
http://www.secbpmn.disi.unitn.it.

[27] R.T. Simon and M.E. Zurko. Separation of duty in role-based environ-
ments. In Proc. of CSFW, pages 183–194, 1997.

[28] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC - A Workflow
Security Model Incorporating Controlled Overriding of Constraints.
IJCIS, 12:2003, 2003.

[29] R. Wilson. Introduction to Graph Theory. 1986.
[30] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel.

Model-driven business process security requirement specification. JSA,
55(4):211 – 223, 2009.

164164164

