
Solving the Next Adaptation Problem
with Prometheus

Konstantinos Angelopoulos, Fatma Başak Aydemir, Paolo Giorgini, John Mylopoulos
University of Trento

Trento, Italy
email: {k.angelopoulos, fatmabasak.aydemir, paolo.giorgini, john.mylopoulos}@unitn.it

Abstract—Dealing with multiple requirement failures is an
essential capability for self-adaptive software systems. This ca-
pability becomes more challenging in the presence of conflicting
goals. This paper is concerned with the next adaptation problem:
the problem of finding the best next adaptation in the presence of
multiple failures. ‘Best’ here means that the adaptation chosen
optimizes a given set of objective functions, such as the cost
of adaptation or the degree of failure for system requirements.
The paper proposes a formal framework for defining the next
adaptation problem, assuming that we can specify quantitatively
the constraints that hold between indicators that measure the
degree of failure of each requirement and control parameters.
These constraints, along with one or several objective functions,
are translated into a constrained multi-objective optimization
problem that can be solved by using an OMT/SMT (Optimization
Modulo Theories/Satisfiability Modulo Theories) solver, such as
OptiMathSAT. The proposed framework is illustrated with the
Meeting Scheduler exemplar and a second, e-shop case study.

I. INTRODUCTION

Self-adaptive software systems operate in uncertain environ-
ments and adapt their behaviour when their requirements are
failing. Adaptation is accomplished through one or more feed-
back (aka Monitor-Analyze-Plan-Execute, or MAPE) loops
that support monitoring the performance of the system and the
environment (M), determining the root cause(s) of failures (A),
selecting an adaptation (P), and carrying out the adaptation (E).

This paper focuses on the next adaptation problem, con-
cerned with the selection of a new adaptation to address one
or more failures. One of the main challenges for any adaptation
mechanism is to select an optimal adaptation relative to one
or more objective functions, such as minimizing cost of
adaptation, minimizing degree of failure, and/or maximizing
customer value. The paper advances our previous work [1]
by proposing a new framework named Prometheus1 that does
not just choose a good adaptation for the failing requirements,
but actually selects an optimal one, relative to user-specified
objective functions. In particular, given an analytical model
that describes the relation between requirements success rates
and control parameters, and given a set of failing requirements,
the adaptation mechanism searches for new values for control
parameters that reduce the degree of failure, while optimiz-
ing given objective functions. If there are several objective
functions, the adaptation chosen optimizes them lexicographi-
cally [2], i.e. best adaptations are selected relative to the most

1In Greek mythology, Prometheus is the archetypical controlling personal-
ity, setting goals and making sure they get fulfilled.

important objective function, among those best adaptations
are selected relative to the second most important objective
function, etc.

The rest of this paper is structured as follows. Section II
presents the research baseline for this work. Section III de-
scribes how finding the optimal next adaptation can be formu-
lated as a constrained multi-objective optimization problem.
Section IV introduces the Prometheus adaptation framework.
Fi In Section V we compare Prometheus with !"#$ℎ&#.
Finally, in Section VI we contrast our proposal with related
work, while in Section VII we conclude.

II. RESEARCH BASELINE

This section presents the research baseline of our paper.
Goal Models. In continuation of our previous work [1] we use
goal models for representing stakeholder requirements. A goal
model captures both functional and non-functional require-
ments, referred as hard goals and soft goals respectively. Hard
goals are AND/OR-refined until each goal is operationalized
by tasks. Along with goals, domain assumptions represent
preconditions that must hold for the system to operate properly.
For example, in Fig. 1, the goal Collect Automatically cannot
be satisfied unless the domain assumption Participants use the
system calendar holds. Soft goals represent desired qualities of
the system-to-be. In spite of their qualitative nature, soft goals
can be operationalized by quality constraints that quantify
the degree to which they are fulfilled. For example, Fast
Scheduling may be operationalized by the quality constraint
duration(Schedule Meeting) ≤ 6hrs. Alternatively, quality
goals can be operationalized by optimization constraints,
named quality attributes. For instance, Fast Scheduling may
be operationalized by minimizing the time it takes to schedule
meetings.

A goal model for a self-adaptive system captures all
functional requirements for the system-to-be. The system at
runtime can switch among alternative refinements where this is
possible, in order to guarantee the satisfaction of all root goals.
However, choices among alternatives can be constrained. For
instance, as Fig. 2 shows, if the timetables are collected
automatically then the meeting’s date must be selected auto-
matically by the system as well. Such relationships are called
goal constraints and capture dependencies among goals.

Monitoring requirements is a crucial task for adaptation
mechanisms. Awareness Requirements (AwReqs) [3] impose

978-1-4799-8710-8/16/$31.00 ©2016 IEEE

constraints over the success/failure of other requirements
(including other AwReqs). When an AwReq is violated a
new adaptation is triggered. For instance, if the goal Collect
Timetables is not fulfilled more than twice a week then '(1
and '(4 fail. At runtime each AwReq is associated with
a variable named indicator which measures the degree of
success of the monitored requirement.

G1: Collect
Timetables

t3: by system

t2: by e-mailt1: by phone

VP2

FhM

(AR1) notTrend
Decrease(7d,2)

DA1: Participants use
the system calendar

OR

G4: Collect
automatically

AND

(AR4) NeverFail

Fast
Scheduling

Minimize
scheduling time

Figure 1. Meeting-Scheduler goal model fragment

Software Adaptation. The mandate of a self-adaptive system
is to operate in uncertain environments and when one or more
of its requirements fail, switch to an alternative configuration
in order to recover. The set of all alternative configurations is
referred as adaptation space. More specifically, an adaptation
space is composed of a set of control parameters that influence
the values of indicators. Control parameters are divided in
Variation Points () *$) and Control Variables (+) $) [4].
The first, is related to the explicit OR-refinements of the goal
model. For instance,) *3 in Fig. 2 is assigned with values
within the range {,7, ,8} depending on which of the two tasks
is chosen for satisfying .6. On the other hand, +) $ specify
the amount of a resource that is used for the fulfilment of
a goal. For example, the +) from how many participants
(/ℎ0) indicates from what percentage of the required par-
ticipants to a meeting does one need to get timetables in
order to fulfil the goal Collect Timetables. Clearly, this is a
control variable because the lower its value, the easier it will
be to fulfil the goal Collect Timetables. Changing the values
of control parameter can result in change of success rates of
certain indicators and quality attributes. For example, when
/ℎ0 is increased 13 decreases whereas 2 3",4 ,&54
increases.

The feasibility of satisfying all goals varies as the envi-
ronment changes (e.g. system’s workload increases). In cases
where a requirement (constantly fails to be fulfilled it is sub-
stituted by a new one (′. For example, if ('(3)64748/"&9
depicted in Fig. 2 fails for more than two days, then it is substi-
tuted by a relaxed requirement ('(3′):;<<4$$$(",4(90%).
The latter is referred as Evolution Requirement (EvoReq) [5]
These requirements apply when certain preconditions, pro-
vided by the stakeholders, are satisfied.
Optimization Modulo Theories. The satisfiability modulo
theories (SMT) problem is the problem of deciding the sat-

t3: by system
t8: schedule

automatically

G6:Find Date

t7: schedule
manually

VP3

+

DA1: Participants use
the system calendar

OR
AND

(AR3) NeverFail

Figure 2. Goal constraint

isfiability of a quantifier-free first-order logic formula with
respect to some decidable theory. When the theory includes
linear arithmetic over the rationals (LRA), the first order logic
formula whose satisfiability is questioned consists of atomic
propositions and linear arithmetic constraints.

Optimization Modulo Theories over LRA is the problem of
finding solution(s) to an SMT(LRA) formula which optimize
one or more rational-valued objective functions. There are very
efficient SMT(LRA) and OMT(LRA) solvers, which com-
bine the power of contemporary SAT solvers with dedicated
linear-programming decision and minimization procedures.
For instance, the solver OptiMathSAT [6] was able to handle
problems with thousands of Boolean/rational variables in less
than 10 minutes each.

In our work the logic formulas are the boolean refinements
of the goal model. Therefore, the solver needs to find a set
of tasks among all the alternatives in order for the root goal
to be fulfilled. As opposed to traditional goal reasoning [7]
approaches the selection is guided by a set of cost-functions
that must be optimized as we will see in the next section.

III. THE NEXT ADAPTATION PROBLEM

In this section we describe how the problem of choosing
values for control parameters when indicators fail can be for-
mulated as a constrained multi-objective optimization problem.
Then, we provide an instance of this problem based on the
Meeting-Scheduler exemplar.

As explained in the previous section, tuning a control
parameter results in a change of value of certain indicators
and quality attributes. Therefore, after every diagnosis, the
available goals and tasks are annotated with the potential
contributions that can provide to the associated indicators as
shown in Fig. 3. In this example the full form of the goal
model (the possible values for +) $ are represented as =(-
refinements) is captured along with impact of each goal or
task to indicators and quality attributes based on the control
parameter profile presented in Table I. More specifically,
increasing /ℎ0 from 70% to 100% will result in a decreased
13 by 1.5%, whereas increasing the percentage of maximum
allowed conflicts (0+') over the number of invitees from
20% to 40% increases 13 by 1.6%. Each alternative results in
different amount of time that the goal Find Date requires to be

fulfilled and therefore there is an annotation with the value of
the quality attribute 2 3",4 ,&54 for each of them. The
values of Table I as well as those for the quality attributes are
provided by domain experts and can be updated if necessary
to increase precision.

Table I
CONTROL PARAMETER PROFILE.

Δ!" Δ#3(%)
$!% ±0.08
'ℎ$ ∓0.05

) "3{*+,-.*,/0*112 → .*3+*112} +6

Each time one or more indicators fail, the goal model must
be annotated based on what were the previous values of the
control parameters and the control parameter profile.

schedule
automatically

MCA = 0%

schedule
automatically
MCA = 10% schedule

automatically
MCA = 20%

schedule
automatically
MCA = 30%

schedule
automatically
MCA = 40%

current value
find_date_time=0.3h

ΔΙ3 = -1,6%
find_date_time=0.1h

ΔΙ3 = -0,8%
find_date_time=0.2h

ΔΙ3 = + 0,8%
find_date_time=0.4h

ΔΙ3 = + 1,6%
find_date_time=0.5h

OR

schedule
manually

OR

ΔΙ3 = + 6%
find_date_time = 1h

Collect
Timetables
FhM = 50%

Collect
Timetables
FhM = 60%

Collect
Timetables
FhM = 100%Collect

Timetables
FhM = 70%

current value

OR

ΔΙ3 = +1%

ΔΙ3 = +0,5%

ΔΙ3 = -1,5%

…

……

…

…
…

…

VP3

Figure 3. Goal model annotated with contributions

When the measured value of an indicator 1!" is below the
threshold 1#" by (" = 1#" − 1!" , a new adaptation is triggered
in order to minimize (" (ideally, it should be zero) for every
indicator.

Definition 1 (Indicator Cost-Function): Let >$ =
{1!, 1#, (,':′}, be the diagnosis for the indicator I, where
1! is its measured value, 1# is its threshold, (= 1#−1! and
':′ the set of all available goals or tasks that can contribute
to the current value of I positevely, negatively or zero. An
Indicator Cost-Function / $ is defined as / $ = (+

∑
Δ1 ,

where
∑

Δ1 is the sum of contributions that I will receive by
the next adaptation.

According to Fig. 3 if the next adaptation includes /ℎ0 =
60% and schedule manually is selected,

∑
Δ13 = 0.5 + 6 =

6.5%. Therefore, the indicator 13 is going to be increased by
6.5%. The target of the adaptation mechanism is to minimize
all Indicator Cost-Functions. However, due to the presence of

conflicting contributions among the indicators the adaptation
mechanism needs to settle for a trade-off. Towards this di-
rection, we prioritize all indicators using Analytical Hierarchy
Process (AHP) [8], [9], eliciting weights that represent their
importance.

Definition 2 (Global Cost-Function): Let F be the set
of all Indicator Cost-Functions and W the set of their re-
spective weights. A Gobal Cost-Function /% is defined as
/% =

∑
@" × / $

" , where @" ∈ A and / $
" ∈ / .

The role of the adaptation mechanism is twofold. First, a
configuration of the goal model must be found so that the root
goal is satisfied while the Global Cost-Function is minimized.
In other words, the next adaptation problem consists of a
combination of two different problems a) satisfiability of all
constraints and b) multi-objective optimization. Such com-
bined problems are solved by reasoning technologies, notable
Satisfiability and Optimization Modulo Theories (SMT/OMT)
[6].

In Fig. 3, apart from the contributions to the indicators, goals
and tasks are also annotated with certain kinds of costs. For
example, the value selection for 0+' includes the amount
of time it takes to schedule a meeting’s date (find date time),
whereas the value for /ℎ0 determines the time it takes
to collect timetables (<B994<,&B# ,&54 = /ℎ0 × 0.02).
Stakeholders, usually require the satisfaction of their goals
with the minimal cost adaptation. This means that the total
time for scheduling a meeting (,B,"9 $<ℎ43;9&#C ,&54 =
<B994<,&B# ,&54 + 2 3",4 ,&54) must also be minimized.
The Next Adaptation Problem can encompass optimizations
relative to other costs, such as ,B,"9 $<ℎ43;9&#C ,&54.

Definition 3 (Next Adaptation Problem): Let * =
{/%, D'1, ..., D'&, ':′} be a tupple where /% is a global
cost-function, D'1, ..., D'& a set of quality attributes, and
':′ the new adaptation space that includes all the available
control parameters. The Next Adaptation Problem refers to
finding an optimal configuration over the goal model that
minimizes /% and lexicographically optimizes each quality
attribute (based on stakeholder preferences), wrt to the avail-
ability of goals and tasks in ':′.

The process followed to formulate the Next Adaptation
Problem is the following. First, all AwReqs and control pa-
rameters must be elicited, as well as the control parameter
profile that captures the relationship between the two. For
every AwReq there is a threshold 1# and an indicator 1! that
measures the actual success rate at runtime. Then, the design-
ers select an initial configuration over the goal model and as
we will see in the next section the Prometheus framework
automatically annotates each task of the goal model with the
contributions Δ1 to every indicator that influence in the same
manner as in Fig.3. This process is elaborated with the use
of CGM-tool [10], which is built on the top of OptiMathSAT
and allows the definition of cost-functions the values of which
depend on the configuration of the goal model. These cost-
functions are provided by Definition 1 and 2 along with the
quality attributes of the system.

Environment

OptiMathSAT

Evolution Manager

Failure Manager

Diagnostic Component

M
od

el
 M

an
ag

er

EvoReqs

Adaptation
Space

logs

goal
model

CP
profile

monitorsactuators

Target System

optimal
adaptation

Indicator values

Figure 4. The Prometheus framework

IV. PROMETHEUS FRAMEWORK

In the previous section we presented how the adaptation
process is modelled as an optimization problem using goal
models and a quantitative information about the relationship
between control parameters and indicators. This section de-
scribes the steps of the adaptation process at runtime as well
as the proposed Prometheus framework, whose architecture is
shown in Fig. 4.

Prometheus interacts with the target system and its envi-
ronment through monitors and actuators that are responsibility
of the system designers to build and usually are application-
specific. The internal mechanism of Prometheus consists of
five components described below.

Diagnostic Component This component reads the system
logs and reasons about the root causes of the identified failures.
More specifically, discovers denied domain assumptions or
failing tasks that could not be performed. These domain
assumptions and tasks are marked as denied in the new
available adaptation space constraining the available options
for finding the optimal next adaptation. For instance, if the
domain assumption >'1 in Fig. 2 is denied then ,3 cannot
be selected as an option for collecting timetables and due to
a goal constrain neither ,8 can be selected for finding a date.
Therefore, the diagnostic tool is responsible for eliminating all
the solutions that are unfeasible due to unsatisfied precondi-
tions, component failures or unavailable resources.

Failure Manager This component reads the system logs and
measures the success rates of each indicator. When the mea-
sured value of one or more indicators is found below the
threshold imposed by the associated AwReq a new adaptation
is triggered and a new configuration over the goal model must
be chosen.
Evolution Manager This component reads system logs and
checks if any precondition holds, if it does, the goal model is
updated in accordance with the EvoReq.
Model Manager This component stores the control param-
eter profile of the system and the elicited goal model. Each
time a new adaptation is triggered the goal model is annotated
with the impact values of each goal to the indicators.
OptiMathSAT This component receives the annotated goal
model along with the new adaptation space that excludes a
certain amount of alternative configurations. Based on this
model and the measured values of the indicators produces an
optimal next adaptation.

As we mentioned earlier our work provides an implemen-
tation of the MAPE loop that has been proposed as a refer-
ence framework in order to engineer self-adaptive systems.
Prometheus is an implementation of this framework where
the Failure Manager along with the Diagnostic Component
perform the Analyze task whereas OptiMathSAT performs the
Plan task.

To give a better understanding of how the framework
operates, we describe every step followed for finding the next

G0:Schedule
Meeting

Low Cost

minimize
daily cost

Good
Participation

maximize
average participation

G1: Collect
Timetables

t3: by system

t2: by e-mailt1: by phone

G2: Book Meeting

G3: Manage
Meeting

t11: edit
meeting

t10:cancel
meeting

t9:confirm
meeting

t13:e-mail changes
to participants

t12:send
reminder

VP2
FhM

Fast
Scheduling

Minimize
scheduling time

(AR1) notTrend
Decrease(7d,2)

NoR

(AR3) NeverFail

t8: schedule
automatically

G6:Find Date

t7: schedule
manually

VP3

G5: Find Location

t4: select
from list

t5:select from
suggestions

VP1

HfM
RfM

MCA

-

+

Goal TaskSoft-Goal Quality Constraint

AwReq

Key:

Control Variable

+
Refinement binding

-
Conflict edge

Domain Assumption
Refinement

DA1: Participants use
the system calendar

AND

AND

AND

OR

OR

OR
G4: Collect

automatically

AND
G7: Book Room

t6: schedule
online meeting

(AR4) NeverFail

(AR2) SuccessRate(80%)

G8: send
additional
reminders

DA2: Participants use
not punctual

AND
AND

Figure 5. Meeting-Scheduler goal model

adaptation. The steps are:
1) Collect system logs. The success or failure of the exe-

cuted tasks is recorded in logs collected by the designed
monitors.

2) Detect failures. The Failure Manager compares measured
values of the indicators with those that are imposed by
their associated AwReqs. If one or more failures are
detected a new adaptation is triggered.

3) Find root causes. The diagnostic tool provides the new
adaptation space which excludes the goals that caused
the detected failures and marks as denied the domain
assumptions that do not hold any more.

4) Apply EvoReqs. The Evolution Manager updates the goal
model with EvoReqs if any of the preconditions specified
applies.

5) Annotate the goal model. The Model Manager annotates
the goal model based on the control parameter profile.

6) Find Optimal Next Adaptation. OptiMathSAT produces
an optimal adaptation.

7) Apply new adaptation. The new adaptation is applied
to the target system by the actuators.

V. EVALUATION

In this section we describe the Meeting-Scheduler and
e-shop exemplars as well as the evaluation process of
Prometheus by using failure scenarios.

A. The Meeting-Scheduler Exemplar

The main goal of the Meeting-Scheduler application is
to receive meeting requests and produce meeting bookings.
Fig. 5 captures system goals. For the top goal to be satisfied,
timetables must be collected (satisfy .1), make a booking for

every meeting (satisfy .2) and allow the meeting organizers
to manage their meetings (satisfy .3). The timetables can be
collected by phone, by e-mail, or automatically by the system.
However, the third option is available only if the meeting
participants are using the system calendar. Next, booking a
meeting involves finding a location and an appropriate date.
The system offers at the same time the opportunity to book a
room or schedule an online meeting in case rooms are not
available. A room can be selected from the entire list of
existing rooms or from the suggested rooms by the system
(,4 and ,5 respectively). In the same manner, a date can be
selected manually by the meeting organizer or the system
selects one automatically (,7 and ,8 respectively). A date
though can be selected automatically only if the timetables
are collected automatically and vice versa. Finally, meeting
organizers can confirm, cancel and edit their meetings (,9,
,10 and ,11 respectively), while the system is responsible for
notifying the participants in case a modification takes place
(,13) and send more reminders in case the participants are not
punctual enough.

To monitor the success of these requirements, four AwReqs
are placed over certain goals that are prone to failure. '(1
dictates that goal .1 must not fail more than twice a week and
'(4 imposes on '(1 to never fail. Next, '(2 prescribes that
at least for 80% of the meetings a room must have successfully
be found and '(3 that .6 must always be fulfilled.

In addition to /ℎ0 and 0+' we presented in the previous
section, other control parameters are available to regulate the
success rate of the indicators associated to the aforementioned
AwReqs. First, the goal Book Room is related to two +) s that
control the number of local rooms ((20) and hotel rooms
(E20) reserved for meetings. The number of additional

Table II
CONTROL PARAMETER PROFILE.

Δ!" Δ#2(%) Δ#3(%) Δ#4(%)
$!% 0 ±0.08 0
'ℎ$ 0 ∓0.05 0
45$ ±2.1 0 0
65$ ±2.7 0 0
7-4 0 0 0

) "1{,4 → ,5} +2 0 0
) "1{,5 → ,4} −2 0 0
) "2{,1 → ,2} 0 0 −2
) "2{,1 → 84} 0 0 +6
) "2{,2 → ,1} 0 0 +4
) "2{,2 → 84} 0 0 +6

) "2{84 → ,1}(DA1 is true) 0 0 −5
) "2{84 → ,2}(DA1 is true) 0 0 −6
) "2{84 → ,1}(DA1 is false) 0 0 +5
) "2{84 → ,2}(DA1 is false) 0 0 +3

) "3{,7 → ,8} 0 −2 0
) "3{,8 → ,7} 0 +6 0

reminders 6B(associated to task ,12 is yet another +) .
Along with the +) s there are three) * s that stem from the
=(-refinements of the goal model. In Table II the full control
parameter profile for the Meeting-Scheduler application is
presented.

! I2 = 72%, I3 = 94%, I4 = 87%
C u r r e n t C o n f i g u r a t i o n :
VP1= t5 , VP2= t3 , VP3= t 8
MCA=10 , FhM=70 , NoR=0 , RfM=6 , HfM=4
! DA1 = f a l s e DA2 = f a l s e
! No EvoReqs a p p l y
P1 : MCA=20 , FhM=78 , NoR=0 , RfM=12 , HfM=3

VP1=t4 , VP2= t1 , VP3= t 7
P2 : MCA=20 , FhM=78 , NoR=0 , RfM=3 , HfM=10

VP1=t5 , VP2= t1 , VP3= t 7
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Outpu t
P1 : I2 =79.9% , I3 =100%, I4=92%

t o t a l c o s t = 90
a v e r a g e p a r t i c i p a t i o n = 91.6%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

P2 : I2 =78%, I3 =100%, I4=92%
t o t a l c o s t = 230
a v e r a g e p a r t i c i p a t i o n = 91.6%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

Figure 6. Prometheus Output

In Fig. 5 three soft goals are specified to capture the
non-functional requirements of the system. The Low Cost
soft goal is associated with the quality attribute 3"&9F <B$,.
The cost of a hotel rooms is 20e and the daily cost for
calls is <"99 <B$, = 30e if timetables are collected by
phone, otherwise <"99 <B$, = 0e. Therefore 3"&9F <B$, =
20 × E20 + <"99 <B$, is a quality attribute that must be
minimized. Next, the soft goal High Participation is asso-
ciated with the quality attribute "748"C4 G"8,&<&G",&B# =
80 + 0.2 × /ℎ0 − 0.2 × 0+' + 5 × 6B((%) which
must be maximized. When) *3 = ,7 then 0+' = 20.
Finally, the soft goal Fast Scheduling is associated with the

quality attribute ,B,"9 $<ℎ43;9&#C ,&54 which calculated as
described in Section IV.

! I2 = 72%, I3 = 94%, I4 = 87%
C u r r e n t C o n f i g u r a t i o n :
VP1= t5 , VP2= t3 , VP3= t 8
MCA=10 , FhM=70 , NoR=0 , RfM=6 , HfM=4
! DA1 = f a l s e DA2 = f a l s e
! No EvoReqs a p p l y

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Outpu t
I t e r a t i o n 1
Z : I2 =72.54% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=6 , HfM=6

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 150

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

I t e r a t i o n 2
Z : I2 =73.58% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=6 , HfM=8

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 190

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

I t e r a t i o n 3
Z : I2 =74.46% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=10 , HfM=8

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 190

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

I t e r a t i o n 4
Z : I2 =75.84% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=14 , HfM=8

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 190

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

I t e r a t i o n 5
Z : I2 =79.44% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=18 , HfM=10

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 230

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

I t e r a t i o n 6
Z : I2 =82.5% , I3 =100%, I4=92%
Z : MCA= 20 , FhM=70 , NoR=0 , RfM=22 , HfM=10

VP1=t5 , VP2= t1 , VP3= t 7
t o t a l c o s t = 230

a v e r a g e p a r t i c i p a t i o n = 90%
t o t a l s c h e d u l i n g t i m e = 6 . 6 h r s

Figure 7. 9*3:ℎ/3 Output

To evaluate our approach we implemented a simulation
of the Meeting-Scheduler application. In this simulation
we encoded a failure scenario and inserted it as input to
bothPrometheus and !"#$ℎ&# integrated with the D;"9&"
as described in [11]. Both frameworks are requirement-based
and this has been our main motivation for carrying out this
comparison. However, !"#$ℎ&# uses qualitative information

G4: Order Be
Placed

G3:Stock Be
Checked

G2:Order Be
Checked Out

G1:Products
Be Selected

G0:Products
Be Sold

t1:search
product

t7:send order to
retailer

t6:Pay Order

t5:Login

t4:View in
Multimedia

mode

t3:View in
textual mode

t2:add
product
to cart

G5:Details Be
Viewed

t10:collect
delivery

information
t10:confirm

order

t9:Remove
out of stock

items

DA1: Retailer is
available

G6:Make new
Order

AND

AND
AND

AND

AND

OR

OR

NoS

High
Performance

response time < 2.5ms

Low Cost

minimize
operational cost

Low Order
Cancellation Rate

minimize
cancellation rate

High Usability

maximize
usability

(AR1) ComparableSuccess
(t3,10)

(AR2) SuccessRate(95%)

(AR3) SuccessRate(95%)

VP1

VP2

t8:Send order to
wholesaler

DA2: Wholesaler is
available

AND

G7: Order
from retailer

G8: Order from
wholesaler

OR
VP3

Figure 8. E-shop goal model

for capturing the impact of control parameters on indicators
and does not optimize as opposed to the quantitative and
optimizing approach of Prometheus. Moreover, the default
adaptation algorithm of !"#$ℎ&# selects randomly a control
parameter that contributes positively to the treated failure,
which is increased by a predefined amount of units. In order
also to demonstrate the importance of lexicographic optimiza-
tion we execute the adaptation process of Prometheus with
and without optimizing quality attributes. Among the quality
attributes cost is optimized first, participation second and
scheduling time third. In Fig. 6 the results of the simulation are
presented. *2 marks the next adaptation and the consequent
output of Prometheus when only the Global Cost-Function is
optimized whereas *1 also optimizes (lexicographically) with
respect to quality attributes. Finally, ! in Fig. 7 indicates the
next adaptation and output produced by !"#$ℎ&#.

The results in Fig. 6 and Fig. 7 show that Prometheus
performs better than !"#$ℎ&# since it exploits quantitative
relations between control parameters and indicators. On the
other hand, !"#$ℎ&# changes by a fixed amount randomly
chosen control parameters that is known to improve the
failing indicators [12]. This means that it would take more
iterations for !"#$ℎ&# to fix a failure or to minimize it.
More specifically, in the simulated failure scenario it took six
steps until 13 and 14 converges to the best possible value
whereas 12 slightly overshoots. Moreover, the results indicate
that the qualities of the system are not taken into account while
deciding the next adaptation. The large number of iterations

for the indicators to converge to their prescribed thresholds,
implies that !"#$ℎ&# is not suitable for rapidly changing
environment, since by the tame a good solution is found the
failing indicators might be different. Given the result of the
simulation, lexicographic optimization can provide the same
results for the failing indicators as the optimization of the
Global Cost-Function only, but also considerably improves
quality attributes, such as ,B,"9 <B$, in this case.

B. The E-shop Exemplar

The main goal of the e-shop application is to place orders
of goods that clients buy online. Fig. 8 captures the goals
for this system. For the top goal to be satisfied the customer
must select the product they would like to order (goal .1) and
check-out the order (goal .2). The customer is able to search
for products they are interested in (task ,1), view the details of
the product (goal .5) in textual mode (task ,3) or multimedia
mode (task ,4). For an order to be checked out the customer
must fist login (task ,5). Then, the product’s availability is
checked (goal .3). The goal .3 can be fulfilled either by
making a new order (goal .6) or by removing the selected
item from the stock list (task ,9). The product is ordered either
from a retailer (goal .7) or from a wholesaler (goal .8). A
precondition for sending an order to a retailer or a wholesaler
(tasks ,7 and ,8 respectively) requires a retailer or a wholesaler
to be available (>'1 and >'2 respectively).

For the requirements of this exemplar we elicited three
AwReqs. '(1 prescribes that multimedia mode for viewing
product details must by used 10 times more than textual model

and according to '(2 this constraint must not fail more than
80% of the times. Next, the goal .2 must not fail more than
95%.

The elicited AwReqs are related to three control parameters.
'(2 can be controlled by changing the value of) *1, or in
other words switching textual to multimedia mode and vice
versa and the number of servers (6B:) that are deployed to
host the webpage of the e-shop. Finally,) *1 and) *2 can
be used to control the success of '(3.

Table III
CONTROL PARAMETER PROFILE.

Δ!" Δ#2(%) Δ#3(%) response
time(ms)

cancellation
rate(%)

7-; ±1.2 0 ∓200 0
) "1{,3 → ,4} 3 0 +1000 0
) "1{,4 → ,4} 3 0 +200 0
) "1{,4 → ,3} −1 0 +1 0
) "1{,3 → ,3} −0.2 0 0 0
) "2{86 → ,9} 0 +3.4 0 +4
) "2{,9 → 86} 0 0 0 −4
) "3{87 → 88}
(DA1 is false)

0 +1.2 0 0

) "3{88 → 87}
(DA2 is false)

0 +0.8 0 0

In Fig. 8 four soft goals are specified to capture non-
functional requirements for the e-shop exemplar. First,
High Performance is associated with the quality attribute
84$GB#$4 ,&54 of the deployed servers, which in this case
is not only minimized but also constrained to be lower than
2.5s. The disposal of more servers results in lower response
time. Next, High Usability is associated to the quality at-
tribute ;$"H&9&,F which takes the value 5 when the website is
viewed in multimedia mode and the value 3 when text mode
is selected. Next, Low Cost relates to the quality attribute
BG48",&B#"9 <B$, = $48748 <B$, + B8348&#C <B$,, where
$48748 <B$ = 120 × 6B: and B8348&#C <B$, is the cost of
making a new order which is 1200e in case the products are
ordered from a wholesaler and 1000e in case it ordered from a
retailer. The prices might vary through time since they depend
on which products are mostly sold in a particular period of
time and in what quantities. Therefore, it is responsibility
of the domain experts to update this numbers. Finally, Low
Order Cancellation Rate is associated with the quality attribute
<"#<499",&B# 8",4.

As for the Meeting-Scheduler exemplar also in this case we
simulated a failure scenario and we compare the responses of
Prometheus and !"#$ℎ&#. The control parameter profile is
presented in Table III whereas the outputs of Prometheus and
!"#$ℎ&# are depicted in Fig. 9 and Fig. 10 respectively.

The results in Fig. 9 and Fig. 10 show that both frameworks
managed to find good solutions for the failing indicators.
However, as in the previous case Prometheus managed to find
optimal solutions for the soft goals as well.

C. Discussion

The experiments ran on a computer with an Intel i5 pro-
cessor at 2.5GHz and 16GB of RAM. Both =G,&0",ℎ:'I

! I2 = 93%, I3 = 94%
! r e s p o n s e t ime = 4000ms
! c a n c e l l a t i o n r a t e = 10 %
C u r r e n t C o n f i g u r a t i o n :
VP1= t4 , VP2=G6 , VP3=G7
NoS=3
! DA1 = f a l s e DA2 = t r u e
! No EvoReqs a p p l y

P : NoS=4
VP1=t4 , VP2=G6 , VP3= t 8

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Outpu t
P : I2 =99.6% , I3 =95.2%

u s a b i l i t y = 5
r e s p o n s e t ime = 1400ms
c a n c e l l a t i o n R a t e =6 %
c o s t = 1920 eu ro

Figure 9. Prometheus Output

! I2 = 93%, I3 = 94%
! r e s p o n s e t ime = 4000ms
! c a n c e l l a t i o n r a t e = 10 %
C u r r e n t C o n f i g u r a t i o n :
VP1= t4 , VP2=G6 , VP3=G7
NoS=3
! DA1 = f a l s e DA2 = t r u e
! No EvoReqs a p p l y
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Outpu t
I t e r a t i o n 1
Z : NoS=4

VP1=t4 , VP2= t9 , VP3= −
Z : I2 =97.2% , I3 =97.4%

u s a b i l i t y = 5
r e s p o n s e t ime = 4000ms
c a n c e l l a t i o n R a t e = 14 %
c o s t = 480 eu ro

Figure 10. 9*3:ℎ/3 Output

[6] and its extension +.0 − ,BB9 [10] which has been the
basis of the Prometheus prototype have been tested in terms of
scalability and can handle up to 8000 nodes in negligible time.
Compared to !"#$ℎ&#, Prometheus is able to select among
all the equivalent solutions the one that optimizes the quality
attributes of the system as well.

The main bottleneck of the approach is deriving the control
parameter profile, which is a human-driven process and the
time overhead depends on the amount of the control parame-
ters and the level of expertise of the software designers. How-
ever, related work [13] can be integrated with our approach in
order to correct at runtime the values of the control parameter
profile.

Another aspect to consider is the human intervention in the
decision-making process. In safety critical systems there are
unpredictable occasions where human decision must override
those of the adaptation mechanism. Such systems are out of
the scope of this work. However, exploring the human factor

in the adaptation process and the preconditions that must be
satisfied for overriding the automated decisions is part of our
future work.

VI. RELATED WORK

In the field of requirements-driven adaptation many ap-
proaches that use goal models as a guide for deciding the next
adaptation have been proposed. First, Wang et al. in [14] pro-
pose the use of the same diagnostic tool [15] as in our work to
identify failing tasks and and select an alternative configuration
over the elicited goal model based on qualitative contributions
from hard goals to soft goals. This work, similarly to ours, can
handle dynamic adaptation spaces, but qualitative reasoning
cannot provide precision nor does it support optimization, as
Prometheus does.

In [16] the authors propose the use of a cost-function
for optimizing the non-functional requirements of the target
system while minimizing the number of penalties taken for
violating Service Level Agreements. Compared to our work
the emphasis of this approach is given exclusively to non-
functional requirements whereas in our work we examine fail-
ures mainly for functional one and find the next adaptation that
minimizes/maximizes any additional quality attribute of the
system through lexicographic optimization. Both approaches
elicit control parameters from goal models. However, our
approach selects which of them must be tuned based on the
control parameter profile that describes the quantitative impact
on the indicators and the availability in the adaptation space.
On the other hand, the compared approach prioritizes the
available control parameters and the selection is based on
qualitative information about the impact on the goals.

Another goal-based approach is described in [13]. Here,
goal reasoning techniques [7] are applied for selecting the
best alternative over the goal model with respect to the level
of satisfaction of the quality attributes that are present. The
authors make the assumption that the preferences based on
which the goal reasoning is performed might be inaccurate
or might vary as the environments keeps changing. Their
proposed solution to this problem is to apply a PID controller
for finding the right contributions of each alternative to the
monitored goals. This approach can be complementary to our
work for correcting inaccuracies of in the control parameter
profile.

On the side of architecture-based approaches, Rainbow [17]
has an adaptation space of predefined strategies and when
one or more quality attributes, such as response time and
operational cost, are not satisfied their imposed thresholds,
the strategy that maximizes the overall utility is selected. In
the same research line, in [18] the authors propose the use of
probabilistic model checking techniques to compose dynam-
ically adaptation strategies taking also into account latencies
about when the impact of a change in a control parameter will
appear to the system’s output. Our approach does not take into
account such latencies. However, we take into consideration
that the adaptation space is dynamic whereas Rainbow and

its extension make the assumption that each control parameter
has always the same impact on the system’s goals.

Recent work [19], proposes an automated solution by apply-
ing formal control theory in order to derive an adaptation. The
solution is based on on a simple and qualitative dynamic model
which is identified online. However, the proposed solution in
[19] works only for systems where a single goal is related
to a single control parameter, and therefore cannot handle
multiple failures. An extension of this work [20] deals with the
presence of multiple objectives but it is limited to the fact that
each of them can be controlled by a single control parameter.
Moreover, as dependencies among control parameters are not
taken into account as in our work with the use of goal
relationships.

VII. CONCLUSIONS

We have proposed a framework that can compose an optimal
adaptation when one or more requirements fail. The optimal
nature of the produced adaptation refers to the minimization of
the degree of failure of the system’s functional requirements
while non-functional properties of the system are optimized
lexicographically according to stakeholder priorities.

Our proposed framework is built on top of a diagnostic com-
ponent that reads the logs of the monitored system and reasons
about the causes of failure. Failing domain assumptions and
tasks define the new adaptation space where all the potential
solutions lie in. Then, each alternative of the adaptation space
is annotated with the quantitative impact that will bare to
the indicators. Finally, the OptiMathSAT solver finds the best
alternative in the new adaptation space.

The contribution of this work, is a requirements-driven
approach that determines optimal adaptations for multiple
failures and with respect to multiple objective functions.
Moreover, we have demonstrated experimentally that our pro-
posal performs better than a qualitative, requirements-driven
framework (!"#$ℎ&#), and also established that our proposal
works for real world-size problems.

Of course, our proposal needs further evaluation with larger
case studies to determine how usable it is by designers of
adaptive software systems.

ACKNOWLEDGMENT

This work has been supported by the ERC advanced
grant 267856 Lucretius: “Foundations for Software Evolution”
(April 2011 - March 2016, http://www.lucretius.eu).

REFERENCES

[1] K. Angelopoulos, V. E. S. Souza, and J. Mylopoulos, “Dealing
with multiple failures in zanshin: a control-theoretic approach,” in
9th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2014, Proceedings, Hyderabad,
India, June 2-3, 2014, 2014, pp. 165–174. [Online]. Available:
http://doi.acm.org/10.1145/2593929.2593936

[2] H. Isermann, “Linear lexicographic optimization,” Operations-Research-
Spektrum, vol. 4, no. 4, pp. 223–228, 1982.

[3] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,
“Awareness requirements for adaptive systems,” in 2011 ICSE
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24,
2011, 2011, pp. 60–69. [Online]. Available: http://doi.acm.org/10.1145/
1988008.1988018

[4] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System
identification for adaptive software systems: A requirements engineering
perspective,” in Conceptual Modeling - ER 2011, 30th International
Conference, ER 2011, Brussels, Belgium, October 31 - November
3, 2011. Proceedings, 2011, pp. 346–361. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24606-7 26

[5] V. E. S. Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos,
“Requirements-driven software evolution,” Computer Science-Research
and Development, vol. 28, no. 4, pp. 311–329, 2013.

[6] R. Sebastiani and P. Trentin, “Optimathsat: A tool for optimization
modulo theories,” in Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I, 2015, pp. 447–454. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21690-4 27

[7] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reason-
ing with goal models,” in Conceptual Modeling—ER 2002. Springer,
2003, pp. 167–181.

[8] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” Software, IEEE, vol. 14, no. 5, pp. 67–74, Sep 1997.

[9] T. L. Saaty, “Desicion making by the analytic hierarchy process:
Theory and applications how to make a decision: The analytic
hierarchy process,” European Journal of Operational Research,
vol. 48, no. 1, pp. 9 – 26, 1990. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/037722179090057I

[10] C. M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos,
“Multi object reasoning with constrained goal model,” arXiv preprint
arXiv:1601.07409, 2016.

[11] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, On the
Move to Meaningful Internet Systems: OTM 2012: Confederated
International Conferences: CoopIS, DOA-SVI, and ODBASE 2012,
Rome, Italy, September 10-14, 2012. Proceedings, Part I. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, ch. Requirements-
Driven Qualitative Adaptation, pp. 342–361. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-33606-5 21
[12] ——, “Requirements-driven qualitative adaptation,” in On the Move to

Meaningful Internet Systems: OTM 2012. Springer, 2012, pp. 342–361.
[13] X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-tuning of software systems

through dynamic quality tradeoff and value-based feedback control
loop,” Journal of Systems and Software, vol. 85, no. 12, pp. 2707–2719,
2012.

[14] Y. Wang and J. Mylopoulos, “Self-repair through reconfiguration: A re-
quirements engineering approach,” in Automated Software Engineering,
2009. ASE ’09. 24th IEEE/ACM International Conference on, Nov 2009,
pp. 257–268.

[15] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos, “An
automated approach to monitoring and diagnosing requirements,” in
Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’07. New York,
NY, USA: ACM, 2007, pp. 293–302. [Online]. Available: http:
//doi.acm.org/10.1145/1321631.1321675

[16] P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based adaptive
systems: a quantitative approach,” in 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2014, Proceedings, Hyderabad, India, June 2-3, 2014, 2014, pp. 7–16.
[Online]. Available: http://doi.acm.org/10.1145/2593929.2593935

[17] S. Cheng, D. Garlan, and B. R. Schmerl, “Architecture-based self-
adaptation in the presence of multiple objectives,” in Proceedings of
the 2006 international workshop on Self-adaptation and self-managing
systems, SEAMS 2006, Shanghai, China, May 21-22, 2006, 2006, pp.
2–8. [Online]. Available: http://doi.acm.org/10.1145/1137677.1137679

[18] J. Cámara, D. Garlan, B. R. Schmerl, and A. Pandey, “Optimal planning
for architecture-based self-adaptation via model checking of stochastic
games,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, April 13-17, 2015, 2015, pp. 428–435.
[Online]. Available: http://doi.acm.org/10.1145/2695664.2695680

[19] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-

ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 299–310.

[20] ——, “Automated multi-objective control for self-adaptive software
design,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, 2015, pp. 13–24.

