
Multi-Objective Risk Analysis with Goal Models
Fatma Ba�ak Aydemir, Paolo Giorgini, John Mylopoulos

University of Trento
Trento, Italy

email: {fatmabasak.aydemir, paolo.giorgini, john.mylopoulos}@unitn.it

Abstract—Risks of software projects are often ig-
nored and risk analysis is left for later stages of project
life-cycle, resulting in serious financial losses. This pa-
per proposes a goal-oriented risk analysis framework
that includes inter-dependencies among treatments
and risks in terms of likelihood and generate optimal
solutions with respect to multiple objectives such as
goal rewards, treatment costs, or risk factor. The Loan
Origination Process illustrates our approach and a
detailed analysis of the visual notation is provided.

Index Terms—risk analysis, goal modeling, satisfia-
bility modulo theories, optimization modulo theories,
multi-objective optimization

I. Introduction

Risk analysis should be an integral part of any develop-
ment project for complex socio-technical systems intended
to operate within an uncertain environment. Yet studies
show that risks are highly underestimated in IT projects
leading repeatedly to disastrous financial losses, delays,
or total failures [1]. Risk analysis involves risk assessment
and management, the activities for the first comprise risk
identification and evaluation whereas the latter requires
the selection of treatments to prevent or at least ameliorate
to the implications of risks [2].

Existing approaches to risks identify situations that may
lead to risks, assess the impact of risks on the system, and
introduce treatments to mitigate the impact. The treat-
ments may refine existing design, or even change the initial
requirements [3]. However changing the requirements in
later stages of software development adds additional cost,
thus integrating risk analysis with requirements analysis
has financial benefits in addition to leading to more robust
designs [4].

Goal models have been used to capture and hierarchi-
cally structure requirements for sociotechnical systems.
Higher level goals capture stakeholder needs whereas lower
level goals capture strategies for fulfilling higher-level ones.
The structure of goal models supports systematic analysis
techniques to determine solutions to root-level goals [5].
Goal models can also be used to reason about security
and trust for a system-to-be [6]–[8].

Considering the advantages of goal-oriented require-
ments engineering and integrating risk analysis with re-
quirements analysis, Asnar et al. [9] proposes a goal-risk
analysis framework. Goal-risk models capture stakeholder
requirements, risks, and treatments, and support their
analysis to find the optimal solutions with respect to cost.

This approach focuses on avoiding risk while minimizing
cost.

Alternative ways of managing risk include taking risks
in exchange of possible greater benefits, accepting risk,
and preparing a contingency plan. For the former, the
solutions are optimized with respect to a utility function
of stakeholder goals, for the latter, treatments to impact
of risks should be modeled and analyzed. Cost is a factor
that cannot be ignored for both cases. So a thorough risk
analysis requires multi-objective optimization and various
types of analysis to identify alternative solutions. In many
cases, the analysts consider trade–o�s between cost, risk
aversion, utilities, and so on.

We adopt Asnar’s framework, and extend it with con-
strained goal model [10] in order to support multiple types
of risks analyses for di�erent risk management strate-
gies. Our extension exploits Satisfiability Modulo Theo-
ries/Optimization Modulo Theories (SMT/OMT) solvers
to support e�cient reasoning and discovery of solutions
for risk analysis problems. We define multiple objective
functions such as maximum goal reward, minimum risk
factor, maximum risk prevention, minimum cost, and
minimum damage on risk models and discover globally
optimal solutions with respect to multiple objectives.

The rest of the paper is structured as follows. Section II
presents the research baseline of this work. The modelling
framework is presented in Section III, and Section IV
explains SMT/OMT-based risk analysis in detail. Sec-
tion V compares the contribution to related work in the
literature, while Section VI concludes.

II. Research Baseline

Goal and Risk Models. Goal models have been widely
used to capture and analyze requirements. Goal mod-
els allow a hierarchical representation for requirements,
where high–level goals can be AND- or OR- refined into
sub-goals. Besides goals and refinements, softgoals and
tasks are included as first class concepts in many goal–
oriented frameworks (NFR [11], KAOS [12], i* [13], and
Tropos [14]). Van Lamsweerde explicitly models the goals
of an attacker, an agent that creates security risks for the
systems goals [15]. Anti-goal modeling starts by negating
some of the goals of the system that are vulnerable to an
attack. By asking ‘why?’ question more higher–level goals
of the attacker are discovered. Then, the high–level goals
are AND- and OR- refined to identify the low–level goals



that are more concrete. The generated goal model is called
anti-model. We adopt the notion of anti-goals to model the
goals behind the intentional risks, which are created as a
result of the actions of another system.

Asnar et al. [9] provides label propagation algorithms
to asses risk in goal models. The goal models have asset,
event, and treatment layers. The asset layer includes the
goals of systems. The event layer includes events related
to the system goals. Lastly, the treatment layer is the
layer for countermeasures and treatments against risks
that are introduced in the event layer and a�ect the asset
layer. We propose a goal-oriented risk analysis technique
where we borrow concepts such as goal, risk, impact, and
treatment from [9] and enrich the metamodel with interde-
pendencies and additional concepts. Asnar et al. discover
optimal solution with respect to a single objective, which
is cost, using label propagation algorithms. This paper
uses SMT/OMT reasoning to discover optimal solution
with respect to multiple objectives such as minimized
likelihood, impact, treatment cost, and maximized gal
reward.
SMT/OMT Reasoning. A satisfiability modulo theory
(SMT) problem is the problem of assigning values to a set
of variables of a set of first order logic formulas. If there is
an assignment for variables that satisfies all formulas, the
problem is satisfiable (SAT), otherwise it is unsatisfiabile
(UNSAT). Optimization Modulo Theories (OMT) prob-
lems is a combination of SMT and optimization problems.
In this case, the aim is find an assignment that minimizes
(or maximizes) a given objective function while satis-
fying the formulas [16]. OptiMathSat is an SMT/OMT
solver developed by Sebastiani and Trentin [17]. Nguyen
et al. propose constrained goal models by combining
SMT/OMT reasoning and goal models to find optimal
solutions in goal models and use OptiMathSat as the
backend reasoner [10]. The framework proposed by Nguyen
et al. is a general-purpose goal modeling framework with
multi-objective optimization capabilities. This paper’s fo-
cus is risk analysis, so the meta-model includes concepts
and relations from the risk modeling domain.

III. Risk Modeling

We follow the three layered approach of Asnar et al. [9]
for modeling risk in goal models, and we keep the names
for the sake of convention: asset layer, event layer, and
treatment layer. These layers are shown in green, red, and
blue, respectively, in our meta-mode presented in Fig. 1.
Details of the meta-model are explained below.

A situation represents a partial state of the world [18].
In our goal modeling framework, situations are used as
binary propositions that either hold true or false. Goals
are desired situations. Stakeholder goals are represented
in the asset layer. Goals without any parents (top goals)
are business objectives that have associated rewards with
them. The reward of a business objective is the utility
gained from the achievement of the objective. Once the

business objectives are identified, they are refined into
more concrete child goals. Refinement nodes aggregate
child goals and connect them with a parent goal. A parent
goal may have multiple refinements, and it is satisfied
when at least one of its refinement nodes is satisfied. A
refinement node is satisfied when all child goals associated
with the refinement goals are satisfied. Finally, the leaf
goals with no incoming edges from refinement nodes are
tasks that have associated costs. If a goal is labelled
mandatory, it must be satisfied by any proposed solution.
Otherwise, a goal is preferred and is to be satisfied by a
solution if it is not in conflict with any elements of that
solution.

To illustrate our modeling framework, we model the
Loan Origination Process (LOP) [9] in Fig. 2. The process
is initiated by a loan application and ends with a decision.
The bank’s ultimate motive is, of course, to earn income,
and this is to be achieved by handling loan applications,
and ensuring loan repayment. The topmost layer is the
asset layer, goals are depicted as oval nodes, while refine-
ment nodes are shown as black-filled circles. Child nodes
are connected to refinement nodes, which then relate them
to parent nodes. One example is G7: Ensure loan repayment,
which is refined in to G8: Ask mortgage and G9:Monitor

usage of loan. We omit numerical values from the model
presented for visual simplicity. If the reward of all top
goals are the same, the attribute values can be omitted.
Similarly, all leaf goals (tasks) have a cost, which can be
filled with relative (for example, within a scale of 1–5) or
absolute values (230 for G9).

Risks, anti-goals, and other situations that lead to risks
are modeled in the event layer. A situation models a
partial state of the world [18]. An anti-goal is an undesired
situation of the system being modeled, yet it is desired
by another system, which may be malicious, such as S2:

Forgery from external attack presented in an octagon node
in Fig. 2. Similar to goal refinement, an anti-goal refine-
ment links a set of child anti-goals to their parent anti-
goal. A parent anti-goal may have multiple refinements
as alternative ways of being achieved. The parent anti-
goal is achieved when at least on of its refinements is
achieved. A refinement is achieved when all child anti-goals
connected to the refinement are achieved. For example,
in Fig. 2 S2: Forgery from external attack is refined into
S3: Information system is phished and S4: Credentials are

obtained. A risk is a situation that harms one or more
goals of the system being modeled with a possibility of loss.
Each risk has an associated likelihood as the probability
of the risk to happen. An intentional risk rises due to
an anti-goal. In our illustrative example the risk S12:

Electronic application is forged exists due to the anti-goal
S2: Forgery from external attack. The directed edge with
dotted line and black arrowhead from the anti-goal to
the risk indicates an increase likelihood relation. Increase
likelihood relation is only allowed between and anti-goal
an a risk. Incidental risks are caused by external factors
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Figure 1: Meta–model for risk modeling in goal models
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Figure 2: Illustrative example: Loan Origination Process (LOP). See Fig. 3 for the legend.



that can’t be controlled, such as S13: Economic recession.
Impact captures the e�ect of a risk on a goal. A risk may
have di�erent impacts on di�erent goals. During modeling,
the severity of the impact can be modeled in terms of
absolute values such as monetary loss, or in terms of a
relative scale can be used such as the five value scale
used by CORAS [19]. In our illustrative example, S12:

Electronic application is forged has an impact on the goal
G6: Receive electronic application. In order to reduce the
number of model elements, we omit the impact node
between a risk and a goal, and use a directed dashed edge
with a white arrowhead to represent has-impact relation.
An anti-goal may increase the severity of an impact on a
goal through increase severity relation. In LOP example
S13: ID Document faked anti-goal increases the impact of
S12 on G6.

Treatment layer includes treatments which are goals in-
tended to mitigate the impact and/or reduce the probabil-
ity of the risk. Treatment refinement links child treatments
to parent treatment. Similar to other types of refinements,
the parent treatment may have multiple refinements, each
indicating an alternative way of achieving the parent.
Treatment objectives are top treatments, and treatment
tasks are the leaf treatments and they have a treatment
cost attribute. Treatments mitigate the severity of an
impact via decrease severity to recover after the occurrence
of a risk. On the other hand tretments may also aim for
prevention, decreasing the likelihood of the risk through
decrease likelihood relation. In the example presented in
Fig. 2 the treatment layer is the bottom layer in which
treatment are presented in hexagonal nodes. T1:Use digital

signature treatment decreases the likelihood of S12: Elec-

tronic application is forged (prevention). T6:ire underwriters

reduces the severity of the impact of S5: Debtor defaults

on G7: Ensure loan repayment.
Visual Notation. We follow the guidelines presented by
Moody [20] for ‘good’ graphical notation. First, we use the
horizontal position (planar variable) to distinguish layers,
thick dashed lines clearly separates the three layers. The
topmost layer is the asset layer, where stadium shaped
nodes are goals, black filled dots are goal refinements and
directed straight edges with black arrows are aggregation
links of child goals to refinement nodes, and refines re-
lations from the refinement nodes to parent goals. The
straight edge is overloaded, yet the usage is inline with
the conventional use, successfully conveys the semantics,
yet decreases the visual clutter. Another symbol overload
in this layer is the representation of goals where we do not
di�erentiate the symbols for business objectives, middle
goals, and tasks (top, middle, and leaf goals, respectively).
Again, in this situation the symbol overload does not cause
ambiguity for it is easy to di�erentiate the concepts by
checking the incoming and outgoing edges. Among these
three constructs two of them have numerical attributes.
We propose placing the values in square brackets after
the text when modeling on paper or a board, and ability

to toggle the display of the values when modeling with a
software tool to keep visual simplicity.

The middle layer is the event layer. We keep the con-
vention of using house-shaped nodes for representing risk.
A semantically immediate solution would be to use fire
shaped nodes for risks, however this reduces the text area
available for the description, and might introduce di�culty
when using analog tools. Instead we opt for red color
to signify danger. Even though incidental and intentional
risks can be di�erentiated by perceptual configuration
due to the incoming edges from anti-goals, we increase
the thickness of the border of incidental risks (use as a
retinal variable) to emphasize the distinction. Anti-goals
are represented as parallelograms in [15], we prefer using
octagons for the text are can be used more e�ectively. For
anti-goal refinement we use the same visual elements as
the goal refinements to preserve graph economy by keeping
the number of graphical notations low. Dashed edges with
white double triangle arrowheads are used to represent the
increase likelihood relation (from anti-goals to risk nodes),
double triangle arrowhead signifies an increase and in-
creases the visual distance from other edge types together
with the line type and arrowhead color. Increase severity
relation is represented by dotted edges with white double
triangle arrowheads. Although the visual distance is one
(line type) between the representation of this relation and
the former one, target constructs are di�erent (the target
of the former is a risk node, whereas the latter aims
to has impact edge), helping perceptual configuration.
Has impact relation is represented by dashed and dotted
line with a white triangle arrowhead, for the white the
arrowhead is a construct from the event layer, yet this
relation does not signify an increase so a single triangle
is chosen. According to the principle of dual coding, com-
plementing the graphical notation with text annotations
convey information more e�ectively, yet using edge labels
creates usual clutter, we propose using tool-tips for edge
labels for software tool support.

The bottom layer is the treatment layer. We use cloud
shape nodes for the conventional octagonal nodes used
in [9] is from the same shape family (polygons) as nodes
used in the event layer therefore they are too similar. We
use the color blue to fill the nodes to smooth out the
danger implied by the nodes in the event layer. There
are two inter-dependencies whose sources are treatments,
one is decrease likelihood whose target is a risk node and
the other is decrease severity whose target is an impact
edge. We use open triangle arrow heads to emphasize
the decrease, vary the line types to increase the visual
distance. Fig. 3 summarizes our visual notation.

Three layered approach also helps managing the com-
plexity of the models, enabling modularization, thus fo-
cusing on specific layers both in analog and digital tools.
Considering all edge and node types, our notation exceeds
the cognitive limit of six categories, yet this is an open
problem present in other graphical notations [21].
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Figure 3: Legend for the visual notation

IV. Risk Analysis

Risk models are instrumental to comprehend, capture,
and convey goals of a system, risks that may harm these
goals, anti-goals that may create these risks or increase the
severity of their impact on system goals, and treatments
that prevent or mitigate the risks. The structure of the
models enables systematic analysis to extract information
that is not trivial for the analyst. Risk analysts are in-
terested in multiple questions to asses and manage risks.
Risk assessment includes setting likelihood and impact of
each risk, which is done during modeling, and calculat-
ing the risk factor as the product of these two values.
Once the risk assessment is done, the analyst has several
strategies to manage risk. The first strategy is to avoid
risk, that is, selecting a solution with the minimal risk
factor. The second strategy is to prevent risk, that involves
utilizing treatments to decrease the likelihood of the risk
(or prevent the risk from happening). The third strategy
is to mitigate the impact of the risk through treatments.
Apart from the risk management strategies, the analyst
may be interested in the reward of the system-to-be, giving
a higher priority to utility rather than risks. The budget
for the project is a constraint of which the analyst should
keep track, so the analyst may opt for minimizing the cost,
trading cost for risk factor. Below we provide a list of
questions that help risk analyst to asses risk and select
a strategy for risk management.
Q1. Which solution has the maximum goal rewards?
Q2. Which solution has the minimum task costs?
Q3. Which solution has the minimum risk factor?
Q4. Which solution has the minimum risk likelihood?
Q5. Which solution has the maximum recovery?
Q6. Which solution has the maximum prevention?
Q7. Which solution has the minimum treatment cost?

SMT/OMT reasoning is a powerful scalable approach
that combines multi-objective optimization and satisfiabil-

ity. We transform our models into SMT-LIB language [22]
to pass the models as input to the external solver Opti-
MathSAT [17].

((·n
j=1Gj) ¡ R) · (R æ Gparent) (1a)

Task Cost =
ÿ

G

ite(Gi, costGi , 0) (1b)

Reward =
ÿ

G

ite(Gi, rewardGi , 0) (1c)

Formulas (1a) to (1c) presents the propositional en-
coding of the asset layer. Formula (1a) states that a
refinement node R is achieved if and only if all sub-
goals that are connected to the refinement node is sat-
isfied (((·n

j=1Gj) ¡ R)), and the satisfaction of the
refinement R implies the satisfaction of the parent goal
G. Formulas (1b) and (1c) are numeric pseudo-boolean
functions that define the Task Cost and Reward func-
tions, respectively. ite(Gi, costGi , 0) denotes an if-then-
else term, which is evaluated as cost of the task Gi, if
Gi is achieved, 0 otherwise.

The transformation to SMT-LIB is trivial for For-
mula (1a). In order to represent the if-then-else term for
the cost and reward functions, soft–assertions are used
with the syntax as the following, (assert-soft (not

G3) :weight 5 :id task.cost). This soft–assertion in-
troduces a cost when G3 holds true. For all task costs
the same id (:id cost) should be used. In order to find
the total task cost of a solution, we declare a task cost
function, which is the sum of the cost attributes of all
tasks that holds true within a solution. This is achieved
i. declaring a real function (declare-fun taskcost ()

Real). ii. asserting the id of the task costs as the
value of this function (assert (= reward (- task.cost

0))) (Formula (1b)). In order to find the solution with
the minimum task cost (minimize taskcost) command
is used. Similarly, to find the solution with the maxi-
mum reward, we define a reward function that returns
the reward of the business objectives that are assigned
to be true in a given solution, achieved by the fol-
lowing two statements: (declare-fun reward () Real)

(assert (= reward (- bo.reward 0))). The optimiza-
tion command is stated as (maximize reward).

The previous paragraph explains how to formalize our
models and provide the input to the reasoner to answer Q1
and Q2, that are general concerns when reasoning on goal
models. The third question aims to help decision making
in presence of risks. A risk factor is the product of the like-
lihood and the severity of the impact of a risk. A lower risk
factor indicates a safer decision. Consider two tasks G13:

Assessed by credit Bureau and G14: Assessed in house from
the illustrative example which are connected to the same
parent node through di�erent refinement nodes, so they
are alternatives to each other. G13 is under the risk of S8:

Inaccurate credit rating by Credit Bureau with a likelihood
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of 5% which may lead to a loss of §10000 whereas G14

is also under the risk of S9:Mispredict monetary condition

with a likelihood of 10% and a possible loss of §8000.
Out of these two alternative tasks G13 is safer due to its
lower risk factor (§500 versus §800). Selecting a solution
with the minimal risk factor is a result of adopting risk
avoidance strategy for risk management.

Fig. 4a is a sample from the illustrated example
presented in the previous section, Fig. 4b presents the
propositional encoding of the Risk Factor objective
function and how risk factor of an individual task is
calculated. Once the risk factor is calculated for each
impact on a task, the numerical value is presented in
the SMT-LIB language similar to the presentation of
task cost, however here we introduce an additional
model element, which is set to true when both the task
and the risk holds true in the model. The reason is
that the analyst may choose the ignore some risks if
she believes that they will not occur at run-time. So
the calculated risk factor values are aggregated in the
Risk Factor function only if the task is included in the
solution where the risk is considered in the model by
the analyst, as shown by the second line of Fig. 4b.
In SMT-LIB, an individual risk factor is represented
as (assert-soft (not RF-G13-S8) :weight 500 :id

task.risk.factor), and those individual values are
aggregated by (declare-fun riskfactor () Real)

(assert (= riskfactor (- task.risk.factor 0))).
Finally, the optimization scheme is set to minimize

riskfactor to receive the solution that has the lowest
risk factor.

Q4 searches for the solution that has the minimum
chance of encountering a risk, regardless of the impact of
the risk. Formula (3a) presents the associated risk likeli-
hood of G13. Similar to risk factor encoding, we introduce
an additional element (rlG13) to ensure that only likelihood
of risks that are considered by the analyst are included
(Formula. (3b)). The soft-assertion (assert-soft (not

rl-G13) :weight 0.05 :id task.risk.likelihood) is
the translation of the if-then-else pseudo boolean function
used in Formula (3c). The objective function returns the
sum of the values for tasks that are included in the solution
(tasks are set to be true). Here our assumption is that
each impact edge comes from independent risks, therefore

we sum the probabilities. More complex representation of
risks in the event layer requires a change in the definition
of this objective function in the future.

risk.likelihoodG13 = 0.05 (3a)
rlG13,S8 ¡ (G13 · S8) (3b)
Risk Likelihood =

ÿ

G

ite(Gi, risk.likelihoodGi , 0) (3c)

Q5 aims to find a solution including not only the
stakeholder goals but also treatments to mitigate the
impacts on the risks on goals. The mitigation of a treat-
ment on an impact is represented by a decrease severity
inter-dependency, and the numerical attribute indicates
how much the treatment recovers the impact of the risk
on a task. For the analysis, the important point is to
achieve treatment objects that recovers tasks that are also
included in the solution. From the illustrative example,
it does not make sense to achieve the treatment ‘verify
ID documents with the government bodies’ (T7) that
decreases the severity of the impact to §5000 just because
there is a risk of fake documents (S6) unless the goal of
verifying loan applications (G11), which is a�ected by the
risk, is part of the solution. Therefore we introduce a new
element for each decrease severity relation, which is set
to be true when the target treatment and the source risk
are true, and the task that is under that risk is included
in the solution (Formula (4a)). For all decrease severity
inter-dependencies, the total recovery is aggregated by
the pseduo-boolean function presented in Formula (4c). In
order to avoid misleading solutions due to the numerical
values, it is important to put a constraint during modeling
a mitigation on an impact cannot be higher than the
severity of the impact of the risk.

tr ≠ risk ≠ goalT7,S8,G13 ¡ (G13 · S8 · T7) (4a)
recT7,S8 = 5000 (4b)
Recovery =

ÿ

T,G,S

ite(tr ≠ risk ≠ goalTi,Sj ,Gk , recTi,Sj , 0)

(4c)
Total or partial prevention of a risk (decreasing the

likelihood) decreases i. the risk factor of a�ected goals.
The purpose of asking Q6 is to discover solutions including
goals and treatments that has the minimum total risk
factor. The main di�erence between Q3 and Q6 is the
former does not consider treatments so the focus is to find
a solution within the asset layer with the lowest risk factor.
On the other hand Q6 considers treatments which lead
to di�erent solutions within the asset layer, for example
among two alternative solutions with risk factor 3 and 5
the solution for Q3 is the first alternative, however if there
is a treatment that reduces the second risk factor to 2,
the solution for Q6 is the second alternative. In order to
answer Q6, we first need to calculate the likelihood of the



risk for each combination of treatments that decreases its
likelihood. Then, for each new likelihood, a new risk factor
is calculated for each task that is a�ected by that risk.
Once pre-processing calculates these values, we transform
the model, similar to the approached presented in Fig 4.
The main di�erence is that, for each calculated value,
a new element is created, which is set to true when all
considered treatments, risk, and the task is true, and other
treatments that prevents that risk but not considered are
false. The pseudo-boolean function for the prevented risk
factor aggregates the new risk factor values for the new
elements that holds true.

Algorithm 1 creates necessary SMT/OMT formulas.
Before running the reasoner, we need to declare all possible
likelihoods of a risk resulting from combining di�erent
treatments that reduce its likelihood. Lines 3 to 5 in in
Algorithm 1 calculates the likelihood after prevention by
all possible combinations of treatments that are related to
a given risk.

1 initialization;
2 foreach task t of asset layer do
3 foreach impact i of risk r on t do
4 M = {Treatments decreases likelihood of r}

foreach N µ M do
5 calculate new likelihood of r ;
6 calculate risk factor after prevention;
7 declare a new element n;
8 n ¡ (t · r· {

w

treatments œ N}·
¬{

x

treatments œ M \ N});
9 assert risk factor after prevention for n;

10 end
11 end
12 end

Algorithm 1: Minimizing total risk factor with
prevention

Q7 focuses on the objective of minimizing the cost of
treatments selected as part of the solution. The trans-
formation from the models to SMT/OMT clauses are
quite similar to the transformation of the asset layer.
Formula (5a) presents the cost function for treatments.

Treatment Cost =
ÿ

T

ite(Ti, costTi , 0) (5a)

Custom objective functions. Risk analysis plays an
important role in project management for projects of all
sizes from IT projects to governmental decisions. There
are two main strategies to follow for risk management,
the first strategy is to avoid risk, selecting solutions that
have low risk factor. An analyst who is interested in
risk avoidance tries to answer Q3. The second strategy
is to accept risk, but either prevent it from happening
(Q6) or mitigate its impact (Q5). Cost is an important
factor for deciding the risk management strategy. In some

cases risk prevention is cheaper than recovery, for example
preventive health measures are usually cheaper, that’s
the reason behind governments’ investments in public
vaccination campaigns to prevent an epidemic so that they
would not need to face with the cost of treating infected
masses. In some other cases, the opposite is true. Instead
of keeping several backup servers all the time to prevent
any service disruption, a bank may prefer to pay for a
recovery service in case of a down-time. Safety critical
systems give the highest priority to prevent risks, so they
ask Q4 and Q6 first, and may give cost a lower priority.
The analyst may also give the utility gained from the
achievement of goals a high priority. A start-up may choose
to roll a product to the market even though such move
is associated with a high risk factor, yet the reward of
their business objectives is too tempting. A thorough risk
analysis requires combining these analyses, such as finding
the solution with the minimal total cost of treatments
and goals that has the minimal risk factor with maximum
risk recovery. Depending on the objectives of the analysts
several queries may be constructed.

Using SMT/OMT reasoning the analyst may set the
optimization scheme for the solution in three ways. When
there is a clear ordering of objectives, the analyst may
opt for lexicographic optimization. The reasoner orders
the solution according to the order of objectives, so the
optimum solutions with respect to the first objective is
returned first. If there are multiple solutions with the same
objective value, the solutions are then ordered with respect
to the second objective and so on. An example order of
objectives is the following.
( minimize t a s k c o s t )

( minimize task . r i s k . f a c t o r . prevented )

( maximize reward )

The analyst may also construct a single multi-objective
optimization function such as 0.6 ú task.cost + 0.4 ú
treatment.cost and minimize or maximize that function.
The third option is to combine these techniques together,
having multiple objective functions ordered clearly.
Additional constraints. Constrained goal models and
SMT/OMT reasoning allow applying additional con-
straints on solutions. For example, it is possible to set
a constraint on the total budget of the solution, where
the total budget is the sum of task and treatment costs.
The reasoner returns the solution with maximal recovery
whose total cost is less than §100000 in the following
example. Another example is for the consideration of risks,
the analyst may choose to ignore risks whose likelihood
is under a certain threshold, or allow risk factor up to a
certain value. Additional constraints can be asserted as
both hard and soft constraints in SMT-LIB.

( a s s e r t < to ta lCos t 100000)

( maximize recovery )

Security risk analysis. Anti-goals [15] and obstacle
analysis [23] are used to analyze risk that is caused by



malicious actors. existing reasoning techniques can be
applied in the event layer to determine whether a risk
holds or not. In this paper our focus is on finding optimal
solutions with respect to loss, cost, and rewards.
Opportunity analysis. An opportunity is a probabilistic
situation that has a positive impact on stakeholder goals.
Opportunity identification and analysis is conducted dur-
ing new product development [24], our approach can be
used to discover optimal solutions with respect to gain.
Opportunity factor is calculated similar to risk factor, and
it is desired to be maximized.
Tool support. We have implemented a proof-of-concept
tool to demonstrate our approach. The tool is a standalone
application based on Eclipse Modeling Framework. The
graphical models are translated into SMT-LIB language,
which are then provided to the SMT/OMT solver. The
results retrieved by the solver are highlighted in the
graphical model, and a report on the solution is provided.
Scalability. We set up an experiment to test the scal-
ability of our approach, running the experiment run on
a Windows 64 bit machine with Intel(R) Core(TM) i7-
3770 CPU 3.40Ghz and 8GB of RAM, and collected the
reasoning time reported by OptiMathSAT to find the so-
lution. For the experiments, we use OptiMathSAT version
1.3.10. Starting from an initial input model of 22 elements,
we kept replicating the input model and connecting to
the same parent node. The solver returned the results for
the largest model with 17275 model elements uder 400
miliseconds showing a linear trend. Our results are parallel
to those reported in [10], [17].

V. Discussion and the Related Work

Asnar et al. [9] propose Goal–Risk (GR) Framework for
modeling and reasoning about risk during requirements
engineering process. The models have three layers for
goals, events, and treatments. The framework provides ex-
tended versions of label propagation algorithms presented
in [25] and finds optimal solutions with respect to a single
objective such as cost. Our framework provides multi-
objective optimization, so the systematic reasoning can
answer more questions related to solutions with respect
to risk factor, risk prevention, and risk mitigation.

KAOS [12], i* [13], NFR [11], and Tropos [14] are goal
modeling frameworks for general requirements engineering
purposes. KAOS is later extended with anti-goals [15] to
explicitly model malicious stakeholder goals and obsta-
cles [26] to model incidental risks. Mayer et al. [27] model
business and IT assets and the corresponding security
goals and requirements as an extension of i* [13]. Coun-
termeasures are applied to mitigate risks to reduce any
impact of the risks on business assets. Liu et al. [7] propose
a framework to analyze security and privacy requirements
based on i* [13] and NFR framework [11]. The focus of
their analysis is to explore alternative solutions based on
threats, vulnerabilities, and countermeasures. Secure Tro-
pos [28] is a formal framework based on Tropos to model

security requirements. Matulevicius et al. extend Secure
Tropos syntax and semantics to handle security risks in
[29]. Recently Siena et al. [30] model risks in open source
software in terms of situations, risks, and goals and use
label propagation algorithms to check whether the goals
are satisfied. Their models do not include treatments for
risks. Later Costal et al. [31] combine i* and RiskML [30]
to align business goals and risk in open source software
and use existing reasoning methods [32] to analyze the
achievement of stakeholder goals. The reasoning focuses
on propagating the impact of risks to related goals. None
of these approaches find optimal solutions, their focus
is whether satisfaction of goals is a�ected by risks. Our
approach is complimentary to these, our focus is to dis-
cover high-risk solutions, solutions within a limited bud-
get, solutions that maximize prevention and mitigation.
Pitangueria et al. [33] use OMT–based reasoning to find
a risk-aware solution for the multi-objective next release
problem [34], yet they do not use goal models or any
hierarchically structured representation of requirements,
so they do not capture and reason on the hierarchy and
the interdependencies among requirements.

Feather et al. [35] propose Defect Detection and Pre-
vention (DDP) as a three layered (objectives, risks, and
mitigation) approach similar to GR Framework. Each risk
has a likelihood as the probability of occurrence, and the
severity of a risk is represented by an impact relationship
between the risk and an objective. Our meta-model is
more expressive than DDP models, capturing the inter-
dependencies among treatments and risks.

CORAS [19] is a risk analysis framework that models,
analyzes, and treats risks. In CORAS, each risk is analyzed
independent of system or malicious actor objectives. Each
risk has a single impact and likelihood, so the e�ect of
the same event on multiple objectives are considered as
separate risks. CORAS also does not find optimal solutions
with respect to multiple objectives.

The meta-model includes multiple attributes for costs,
rewards, likelihoods, and other values which are impor-
tant to find the optimal solutions within a model with
respect to the optimization scheme. Finding the absolute
or relative values for these attributes are beyond the scope
of this paper, Saaty [36] provides a background on how
to set these values in hierarchic structures, Liaskos et
al. [37] demonstrates this technique on goal models. Delphi
method [38] is another method that can be used by a group
of analysts to iteratively set those values and reach an
agreement.

VI. Conclusions

This paper presents a multi-objective goal-oriented risk
modeling and analysis framework by extending Asnar
et al. [9] with constrained goal models [10]. We pro-
vide a meta-model enhanced with inter-dependencies in
the model elements that determines the optimality of a



solution. Our visual notation follows the design princi-
ples summarized in [20]. We transform goal–oriented risk
models to SMT/OMT to discover optimal solution with
respect to multiple objectives. Our proof-of-concept tool
automatically maps the models into SMT/OMT formulas
and retrieves solutions from the back–end reasoner. We
investigate a pre-defined set of questions for analyzing risk
yet our approach is flexible so that the analyst may define
her own objective function and search for the optimal
solution with respect to this custom objective function.

Limitations. SMT/OMT–based reasoning can handle
linear arithmetic over rationals, it is a limitation for our
framework. We overcome this limitation by pre-processing
our models before transformation to SMT-LIB formulas,
yet using combinations of treatments increases the number
of formulas. Our graphical models su�er from the complex-
ity problem of goal models. Building large goal models is
an error-prone manual activity where the modeller loses
grasp of what her model says as it gets bigger. We use
layers to decrease the number of visible elements when
the focus is on a single layer.

Future Work. We intend to further develop our proof-
of-concept modeling tool into a prototype to in order to
conduct usability analysis for the tool and validation for
our overall approach. We plan to validate our approach
with a real case study in the near future. The conceptual
model provided can be extended with actors as well as
social interactions, to support reasoning on global as well
as local models.
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