
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Implicit Culture Framework

for behavior transfer.

Definition, implementation and applications.

Aliaksandr Birukou

Advisor:

Prof. Paolo Giorgini

Università degli Studi di Trento

Co-Advisor:

Prof. Enrico Blanzieri

Università degli Studi di Trento

Nov 2008-March 2009

Abstract

People belong to different communities: business communities, Web 2.0 communities,
religious communities, scientific communities, just to name a few. Everyone can belong
to and acquire experience in more than one community. This experience is related to
the community activity and comes in the form of best practices, behavior, implicit (tacit)
knowledge, ways of using artifacts, etc. All these accumulates and evolves over time and
slowly becomes a part of the culture of the community. If community activity is very
specific, it can be reflected also in the specificity of the community culture. Newcomers
in such community might suffer from what is called “culture shock”, i.e. a feeling of
confusion when not able to grasp what is common for old-timers. This occurs because
part of the community culture is not explicit, i.e. not readily available, and it is very
hard to extract valuable information from it. Such information can be used for increasing
economic and social benefits of the community members (e.g., for performing recurring
tasks, easier integration of newcomers, better quality of life). Moreover, the awareness of
the community culture could help the community to handle the turnover of members and
structural changes, while preserving the culture. All these introduce the need for transfer
of culture between or within communities.

Currently, there is no domain-independent approach for discovering, representing, trans-
ferring, and preserving community culture. Moreover, taking into account the amount of
information accumulated by communities, computer aided tools for such representation
and transfer are of utmost importance. A key property of such tools should be their non-
intrusiveness, i.e. they must be as much integrated in the community practices as possible.
Research challenges in solving these problems include, but are not limited to: 1) providing
a generic approach for dealing with community culture; 2) designing a framework and
computer aided supporting tools for transferring culture; 3) implementing the framework,
applying and evaluating it in different domains.

This thesis addresses the problem of culture transfer. First, we formalize the notion
of culture, which includes behavior, knowledge, artifacts, best practices, etc., and provide
a classification of problems that involve culture. Second, using this formalism, we pro-
pose the Implicit Culture Framework, which is an agent-based framework for transferring
behavior between community members or between communities. Then we describe three
applications developed using the IC-Service in the domain of recommendation systems:
a system for web search, a system for software pattern selection, and a system for web
service discovery. Finally, we present the results of the evaluation of the applications with
real users and with ad-hoc user models.

Keywords
culture, communities, behavior transfer, agents, recommendation systems

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The problem . 2
1.3 Challenges and objectives . 3
1.4 The solution . 3
1.5 Contribution of the thesis . 4
1.6 Structure of the thesis . 5

2 State of the Art 7
2.1 Culture in computer science . 7
2.2 Explicit and implicit knowledge . 9

2.2.1 Implicit and explicit culture . 11
2.3 Knowledge, behavior and culture transfer 11

2.3.1 Behavior transfer in AI . 11
2.3.2 Transferring implicit knowledge . 12
2.3.3 Knowledge and culture transfer in organizations 13

2.4 Concluding remarks . 15

3 Formal Definition of Culture 17
3.1 The concept of culture . 17

3.1.1 Culture in historical perspective . 18
3.1.2 Defining culture . 19
3.1.3 Mapping between existing definitions and our definition 20
3.1.4 Culture and the individual . 21
3.1.5 Culture and two individuals . 22
3.1.6 Culture and the group . 22
3.1.7 Culture of an individual vs. culture of the group 22

3.2 A formal definition of culture . 23
3.3 Dynamics of culture . 29
3.4 Problems involving culture . 35
3.5 Measures for comparison of cultures . 39

3.5.1 Measuring culture as a snapshot . 40
3.5.2 Measuring culture evolution . 41
3.5.3 Example . 42

i

3.6 A case study . 43
3.6.1 Scenario description . 43
3.6.2 Applying our approach . 45
3.6.3 Discussion . 45

3.7 Concluding remarks . 46

4 Implicit Culture Framework 49
4.1 The problem of the transfer of culture . 50
4.2 Meta-model . 52

4.2.1 Cultural theory . 53
4.3 General architecture of a SICS . 53
4.4 Detailed architecture of a SICS . 55

4.4.1 Cultural Actions Finder . 56
4.4.2 Scene Producer . 56

4.5 IC-Service . 59
4.5.1 The IC-Service architecture and invocation scenarios 59
4.5.2 The cultural theory . 64
4.5.3 Developing recommendation systems using the IC-Service. Lessons

learned . 66
4.5.4 Implementation and integration details 67

4.6 Applying the Implicit Culture Framework in a particular scenario: a method-
ology . 68

4.7 Concluding remarks . 69

5 Applications of the Implicit Culture Framework 71
5.1 Web search . 71

5.1.1 Applying the Implicit Culture Framework 73
5.1.2 The Implicit system . 74
5.1.3 Agent architecture and communication mechanism 78
5.1.4 Related work . 86

5.2 Software pattern selection . 88
5.2.1 Software patterns . 88
5.2.2 Applying the Implicit Culture Framework 90
5.2.3 The IC-Patterns system . 91
5.2.4 Related work . 97

5.3 Web service discovery . 98
5.3.1 Applying the Implicit Culture Framework 99
5.3.2 The system for web service discovery 100

5.4 Concluding remarks . 103

6 Experimental evaluation 105
6.1 Objectives and the evaluation methodology 105

6.1.1 Objectives of the evaluation . 105
6.1.2 The user model . 106
6.1.3 Dimensions and metrics . 109

ii

6.2 Quality and performance evaluation . 110
6.2.1 Web search . 110
6.2.2 Software pattern selection . 112
6.2.3 Web service discovery . 117

6.3 Evaluation with real users . 119
6.4 Scalability evaluation . 120
6.5 Discussion . 121

7 Related work 125
7.1 Recommendation systems . 125
7.2 Collaborative filtering . 126
7.3 Stigmergy . 127
7.4 Social navigation . 127
7.5 Concluding remarks . 128

8 Conclusion 129
8.1 Future work . 130
8.2 Dissemination of results . 130

Bibliography 133

A The language used in the Implicit Culture Framework 145

B The list of publications 147

iii

List of Acronyms

CBR Case-Based Reasoning

FIPA Foundation for Intelligent Physical Agents

JADE Java Agent DEvelopment framework

MAS Multi-Agent System

SICS System for Implicit Culture Support

v

Chapter 1

Introduction

1.1 Motivation

In different areas of their lives, people form and become part of different communities.
Examples include, but are not limited to business communities, hobby communities, Web
2.0 communities (e.g., in Flickr, Delicious, CiteULike, Bibsonomy), and communities of
software users (e.g., BitTorrent, Firefox, OpenOffice). Such communities are often called
communities of practice and are defined as “... groups of people who share a concern
or a passion for something they do and learn how to do it better as they interact regu-
larly” [152]. People in a community of practice interact and develop shared competence
and experience related to their activity [153]. The accumulated experience is probably the
most important result of the community interactions and it comes in the form of behav-
ior, best practices [125], ways of using community artifacts [88] and addressing recurring
problems [152], and implicit or explicit knowledge [12, 106]. In other words, we can speak
about the culture developed by a community.

Information about the culture can be used for improving the state of affairs of the
community, e.g. by providing economic and social benefits to community members. For
example, we can use the culture to facilitate the integration of newcomers into the com-
munity; to transfer and share knowledge, behavior and experience within or between
communities; to discover and characterize communities. Benefits and impact achieved
from more effective use of the community culture are not always the same, but, rather,
depend on the community. For instance, sharing experience of university professors in
writing grant proposals would attract more money to the university. For the users of a
system, learning best practices and usage patterns would help them to use the system
in a more efficient way. Dimitrova et al. [42] states unawareness of current trends in the
community, and difficulties in finding users’ role in the group among possible difficulties
in online communities of users of social software. According to the authors, these difficul-
ties ultimately reduce “[...] the effectiveness of the community to create, share, evaluate
and evolve knowledge”. Moreover, in many cases it is critical to preserve the community
culture in spite of the turnover of members and other changes in the community struc-
ture. For instance, the software release process should not depend on the people currently
working in the company [132]. Finally, some communities can benefit from acquiring the
culture of another community. For instance, a university network administrator has to

1

2 CHAPTER 1. INTRODUCTION

acquire the knowledge about peculiarities of the network; PhD students would like to use
the knowledge of more senior members of the research group about the state-of-the-art;
a researcher that needs to go to a conference could ask colleagues for suggestions about
hotels and airlines flying there.

1.2 The problem

A substantial part of the community culture is implicit, i.e. not readily available to
all community members, even though sometimes accessible by single individuals. Still,
as we have already pointed out, in many cases the culture should be preserved even if
the community changes. Thus, the problem of dealing with culture of communities can
be formulated in terms of discovering, representing, transferring, and preserving culture.
Instances of this problem are described in the literature as transfer of knowledge and re-
tention of experience in organizations [14], leveraging company’s knowledge [106], sharing
implicit knowledge in communities of practice [60, 102].

Different approaches address some aspects of the above-mentioned problem. Nonaka
and Takeuchi [106] highlight the importance of knowledge for the organizations and pro-
pose a theoretical framework for knowledge creation. The framework implements the
resource-based approach and describes elements of knowledge creation and their inter-
actions that lead to creating new knowledge. Another approach is legitimate peripheral
participation, i.e. actively involving newcomers into social practices of communities. It
is proposed by Lave and Wenger [88] as an approach that facilitates acquiring of existing
sociocultural practices by new community members. In computer science, examples in-
clude recommending friends and communities in Facebook and LinkedIn, using forums,
blogs, FAQ lists. There are also social navigation systems that help communities to share
their experience in web search [130], in using educational resources [26, 51], etc. Knowl-
edge management in general deals with organizing, creating, capturing and transferring
knowledge, trying to ensure its availability for future users. However, as we discuss in
Chapter 2, knowledge management approaches mainly focus on the “codifiable” part of
the body of knowledge. Also, the notion of culture is broader than the notion of knowl-
edge, thus the problem of culture management is broader than the problem of knowledge
management.

We argue that a more systematic computer science approach that includes engineering
aspects is required to capture, represent, make explicit, and transfer elements of culture.
As a result, communities will get more economic and social benefits from the use of their
culture. On one hand, a conceptual framework should be introduced to represent and
transfer elements of culture. On the other hand, software systems that automate such
transfer should be developed in order to effectively manage information about culture.
An important property of such systems should be their non-intrusiveness, in other words
they must be as much integrated in the community practices as possible.

1.3. CHALLENGES AND OBJECTIVES 3

1.3 Challenges and objectives

The problem of discovering, representing, transferring, and preserving community culture
raises a number of challenges. Such challenges include but are not limited to:
C1. How to determine the scope of the community culture, i.e. what is the content of
culture and how to distinguish the culture of the community from cultures of community
members?
C2. What are the causes and means of spreading the community culture?
C3. How to transfer some elements of culture, while preventing the transfer of some other
element?
C4. How to manage community culture so as to keep it within certain bounds or preserve
certain aspects?
C5. How to provide methodologies, computational models and software tools for discov-
ering, representing, transferring, and preserving community culture?
C6. How to develop software for communities taking into account their cultures?

We refine some of the listed challenges into more specific objectives of the thesis (in
parentheses for each objective, we specify the related challenges):
O1. How to define a culture of a community? (C1) Moreover, how to provide an oper-
ational definition that can be applied to practical problems, including computation and
measurement of culture? (C6)
O2. How to devise an engineering approach for discovering, representing, transferring,
and preserving community culture? (C5)
O3. How to design and implement the architecture of a general-purpose framework sup-
porting the approach? (C5)
O4. How to develop computer aided tools, supporting the framework, for discovering,
representing, transferring, and preserving elements of culture? (C5)
O5. How to apply the tools in practice, for instance, for developing systems? (C6)

1.4 The solution

With respect to the stated objectives, the thesis is developed as follows.
First, we formalize the notion of a community culture and define it as a set of traits that

are shared by the community and are transmitted. The definition and formalization of the
notion of community culture and the classification of problems that involve culture address
objective O1. Consistently with the literature, we define traits as “characteristics of human
societies that are potentially transmitted by non-genetic means” [103]. Behavior, beliefs,
knowledge, norms, rules, values mentioned by many authors as elements of culture, in our
formulation are just particular kinds of traits. Traits also include community artifacts,
habits, best practices, etc. The list of traits given here is not exhaustive. If something is
seen as a potential culture element, is not innate (the requirement of being transmitted
by non-genetic means), can be owned by an individual and shared by the community
members, it can be classified as a trait. The transmission dimension points to a way of
spreading culture. The sharing dimension is required for two reasons: (1) to go from the

4 CHAPTER 1. INTRODUCTION

set of personal traits of an individual to the culture of a community, and (2) to filter out
traits which only pertain to the community as a whole, but not to individuals. Examples
of latter traits include marriage habits and birth rate. Apart from the definition of culture,
in this part of the thesis, we propose a classification of problems that involve culture and
occur in various research and application domains.

Second, we focus on behavior as an important aspect of culture and propose the Im-
plicit Culture Framework, an agent-based framework for transferring behavior between
community members or between communities. The Implicit Culture Framework addresses
objectives O2 and O3. It includes a meta-model for defining the application domain, a
general architecture of System for Implicit Culture Support (SICS) for behavior transfer,
a detailed architecture of SICS modules, algorithms for their functioning, an implemen-
tation and guidelines for applying the architecture in practice. We define implicit culture
relation as a relation between a set and a group of agents such that the elements of the
set behave according to the culture of the group. The SICS architecture performs the
transfer of behavior required for achieving the implicit culture relation.

Third, we describe the IC-Service, a general-purpose and domain-independent im-
plementation of the SICS architecture and algorithms. It was developed using modern
technologies, such as web services and JavaBeans. The IC-Service addresses objective O4.
The IC-Service supports behavior transfer that is specified by a pre-defined configuration
for the domains that can be represented using the concepts used in the Implicit Culture
Framework, namely the concepts of agent, action, object and attribute.

Finally, using the proposed solution we present three applications based on the Implicit
Culture Framework in the domain of recommendation systems: a system for web search,
a system for software pattern selection, and a system for web service discovery. The
developed applications address objective O5.

1.5 Contribution of the thesis

The thesis improves the state of the art in several directions.
First, the notion of culture of a community is formally defined in an operational way,

and an engineering approach dealing with culture is proposed. This includes discovering,
representing, transferring, and preserving culture of a community. Using the proposed
formalism it is possible to compute and measure culture in different scenarios and to
develop applications adapted to the culture of their users.

Second, a classification of problems involving culture is proposed. The classification
helps to treat such problems in a systematic way, e.g. for finding generic problems occur-
ring in different domains and then providing a common solution.

Third, we propose the Implicit Culture Framework that includes a meta-model, the
SICS architecture for behavior transfer, a general-purpose and domain-independent imple-
mentation of the SICS architecture, and a methodology for its deployment. The Implicit
Culture Framework implements an engineering approach for behavior transfer between
or within agent communities. Thus, it addresses the need for approaches that transfer
culture.

Fourth, we would like to emphasize the development of the IC-Service. The IC-Service

1.6. STRUCTURE OF THE THESIS 5

has been applied in different applications, some of them are presented in the following
chapters [18, 19] and some of them are out of the scope of this thesis [15, 111, 133],
although we briefly mention them in Chapter 8.

Finally, three applications of the proposed approach in the area of recommendation
systems are developed and evaluated. The applications illustrate that our approach can
be applied and improves quality of recommendations in different domains.

1.6 Structure of the thesis

The thesis has the following structure: in Chapter 2 we present the state-of-the-art that
include research on culture and sociality in computer science, implicit and explicit knowl-
edge in knowledge management, and existing approaches for transferring behavior, im-
plicit knowledge, and culture in various disciplines.

In Chapter 3 we review the notion of culture as it comes in anthropology and social
science, and propose a formal definition of culture of a set of agents. We then add
the temporal dimension to consider dynamics and evolution of culture and propose a
classification of problems that involve culture. We conclude that chapter with a set of
measures for comparison and assessment of cultures of different communities or cultures
of the same community in different moments of time.

In Chapter 4 we consider the problem of culture transfer in terms of the proposed for-
malism and introduce a narrower problem of transferring such important aspect of culture
as behavior. We then describe the Implicit Culture Framework, an agent-based frame-
work for behavior transfer within or between communities and we argue that transferring
behavior can lead to knowledge and experience transfer. We present a general architecture
of a SICS, which implements the behavior transfer. We then describe a detailed archi-
tecture of SICS and algorithms we use inside the architecture. We continue this chapter
with the description of the IC-Service, an implementation of the SICS architecture and
present a methodology of using the Implicit Culture Framework in different scenarios.

In Chapter 5 we present three applications of the Implicit Culture Framework in the
domain of recommendation systems. Section 5.1 describes Implicit, a recommendation
system for web links. The IC-Patterns system, a system for recommending software
patterns in communities of software developers and architects, is presented in Section 5.2.
An application of the Implicit Culture Framework to web service discovery is provided
in Section 5.3. For each application we first introduce the reader to the domain, then
show how the domain is formulated in terms of agents, objects, actions and attributes,
used in the Implicit Culture Framework, and then describe the system. In Section 5.4 we
compare the applications.

Chapter 6 contains the description of the objectives, methodology, and results of the
evaluation of the developed applications. The measures used in the evaluation include
performance, scalability and quality of recommendations.

Chapter 7 overview related work in the following research areas: recommendation
systems, collaborative filtering, stigmergy, social navigation. For each area we show the
similarities and differences between the area and our approach.

The conclusions of the thesis are given in Chapter 8.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this chapter, we review the state of the art. We start with the discussion of computer
science approaches that address culture and sociality in Section 2.1. Then we present the
notions of implicit and explicit knowledge from the literature on knowledge management,
and briefly discuss the implicit-explicit distinction for culture in Section 2.2. In line
with our focus on transfer, in Section 2.3, we review existing approaches for transferring
behavior, implicit knowledge, and culture. Finally, we conclude this chapter in Section 2.4

2.1 Culture in computer science

Carley [31] considers culture as the distribution of information (ideas, beliefs, concepts,
symbols, technical knowledge, etc.) across the population and proposes a model for
knowledge transfer based on interactions. In that model, the probability of an interaction
between two agents is based on the principle of homophily, i.e. the greater the amount of
knowledge they share the more probable the interaction is. During an interaction, agents
exchange facts, so after the interaction one of the agents might know more than before
the interaction. The knowledge transfer in these settings can be seen as a particular
kind of culture spread. This work is further extended in the Construct project [74, 73].
For instance, one of the recent applications of Construct studies the effects of different
methods of information diffusion on spreading beliefs and knowledge about illegal tax
schemes in different American cities [72]. With respect to the definition of culture we give
in Chapter 3, this model of information diffusion is complementary, because it models
transmission of elements of culture (e.g., beliefs, knowledge) in a society.

Axelrod [7] considers culture as a list of features or dimensions. Each feature represents
an individual attribute that is subject to social influence and can have different values
called traits. Two individuals have the same culture if they have the same traits for all
features. Similarly to the work by Carley, feature of an agent can change its value during
an interaction and the probability of interaction is based on the homophily.

The notion of trait we use in our formalism is similar to the notion of feature used by
Axelrod and also includes ideas, beliefs and technical knowledge used as culture elements
by Carley. Both theories by Carley and by Axelrod are based on the assumption that
culture changes as a result of an interaction. Thus, in our terms, interaction in that sense

7

8 CHAPTER 2. STATE OF THE ART

can be considered as a particular kind of transmission: there are two agents participating,
it takes place in some specific state and it leads to the appearance of some cultural element
in one of the agents.

Epstein and Axtell [47] study the emergence of the group rules from local ones defined
at an agent’s level in an artificial society of simple agents living and consuming sugar
in an artificial environment called “Sugarscape”. The authors consider a culture of the
society as a string of binary cultural attributes and model cultural transmission both on
horizontal (between agents) and vertical (through generations) levels using simple rules.
However, they do not provide any formal definition of culture since the main focus of the
book is on the emergence of group rules from the local ones.

According to O’Reilly [109], the culture of an organization is considered as strong if
wide consensus exists about the content and participants believe in the importance of the
content. They also formulate this as a [not necessarily big] set of values that are widely
shared and strongly held. This is similar to the notion of strong culture, i.e. culture
shared by all pairs of agents in a group, we consider in our formalism.

Some approaches in the field of autonomous agents and multi-agent systems address
the issues of sociality in agent societies. Castelfranchi [33] elaborates the concept of
social action and stresses that it cannot be reduced to communication. In his view,
communication is just a particular kind of social action, and is used by agents because
agents are social. Ossowski [110] proposes social coordination architectures and social
interaction strategies for decentralized coordination in multi-agent systems. Shoham and
Tennenholtz introduce the concept of social laws in multi-agent environments [128]. They
define social laws as norms that restrict agent activities so as to achieve dynamically
acquired goals while not interfering with other agents. They further extend this work in
the direction of co-learning [127], when several agents simultaneously try to adapt to the
behavior of each other in order to reach a desirable state of the system. More recent work
of the authors studies the emergence of social conventions in agent societies in stochastic
settings [129]. Masolo et al. [95] provide a framework for providing a foundational ontology
of socially constructed entities. They consider not only social individuals, but also social
concepts, such as social roles. Omicini et al. [107] propose the use of the notion of artifact
to represent reactive entities (as opposed to pro-active entities, i.e. agents) in multi-agent
systems. In particular, artifacts can be used to address social issues of coordination,
organization, security in multi-agent systems. The application of artifacts to coordination
in multi-agent systems is discussed, for instance, in [108].

However, the issue of sociality alone does not help neither to understand what dif-
ferentiates one set of agents from another nor to grasp what are the peculiarities of the
behavior of agents of a specific society. Although in two different agent societies agents
can be able to communicate with each other and perform other social actions, these two
societies can be very different from each other. We claim that the concept of culture can
be used to describe and compare sets of agents.

More in line with our work on formalizing the notion of culture, Balzer and Tuomela [11]
study social practices and the dynamics of their maintenance in groups. They define
social practices as recurrent collective activities based on collective intentions. The paper
focuses on informal, non-normative practices, such as playing soccer on Sundays, going

2.2. EXPLICIT AND IMPLICIT KNOWLEDGE 9

to sauna on Saturday afternoon, shaking hands, sharing a ride to work. They also note
that the maintenance (change, preservation, renewal) depend on the success of a practice.
The main contribution of the paper is a mathematical model for the description of social
practices and their maintenance in groups.

Our model of culture is not limited to social practices. Moreover, it allows for inclusion
of normative practices as well. However, as a consequence, the model of Balzer and
Tuomela allows for a richer description of informal social practices. For instance, our
model does not permit expressing intentions, but allows operating on manifestations of
activities without going into details of underlying intentions. While authors show that
success of a social practice is important for its adoption, for our model it is irrelevant
whether a trait is successful in some sense. Our model just captures the fact that the
trait is a part of culture, no matter how it occurred. The model presented by Balzer and
Tuomela is defined for groups and then goes to the individual level, thereby implementing
top-down approach. In our model of culture, we start from a set of traits of an individual,
consider transmission as an important means of spreading culture, and then go to the
culture of a group. Thus, we implement bottom-up approach. Balzer and Tuomela,
while requiring sharing of a social practice within a group, and noting the importance
of transmission for spreading practice, include transmission into the model only to a
certain extent, namely, considering imitation as an example of transmission. Our model
of culture allows for different types of transmission as long as there is a predicate that
helps to distinguish occurred transmissions.

2.2 Explicit and implicit knowledge

The literature on knowledge management distinguishes two kinds of knowledge: explicit
and implicit. Implicit knowledge is often called tacit knowledge, but in this thesis we do
not make distinction between the two terms. Taking a “simple dictionary definition” from
Hildreth and Kimble [71], we can define explicit knowledge as “[...] the knowledge which
can be expressed clearly, fully and leaves nothing implied. An example might be knowledge
that can be formally expressed and transmitted to others through manuals, specifications,
regulations, rules or procedures [...]”. Implicit (tacit) knowledge is “[...] that which is
understood without being openly expressed; it is unvoiced or unspoken. An example
might be the knowledge that a native speaker has of a language.” Nonaka and Takeuchi,
in their influential work on managing knowledge in Japanese companies, define explicit
knowledge as the knowledge that “[...] can be articulated in formal language including
grammatical statements, mathematical expressions, specifications, manuals, and so forth,
[...] something formal and systematic, [...] can be expressed in words and numbers, and
easily communicated and shared in the form of hard data, scientific formulae, codified
procedures, or universal principles [...] [106, pp. viii, 8]. The implicit knowledge, according
to them, is “[...] something not easily visible and expressible. Implicit knowledge is
highly personal and hard to formalize making it difficult to communicate or to share with
others. Subjective insights, intuitions, and hunches fall into this category of knowledge.
Furthermore, implicit knowledge is deeply rooted in an individual’s action and experience,
as well as in the ideals, values, or emotions he or she embraces.” [106, p. 8]. In artificial

10 CHAPTER 2. STATE OF THE ART

intelligence, explicit knowledge of an agent is defined as the knowledge explicitly contained
in the formulas in their knowledge base, while implicit knowledge is that which can be
derived from those formulas [49].

As we can see, different authors agree on defining explicit knowledge as formally ex-
pressed knowledge, while there is no single definition for implicit knowledge. In fact,
Gourlay points out that the concept of implicit knowledge is not clearly defined [62, 63]
and reviews the use of the concept of implicit knowledge in the literature on knowledge
management, artificial intelligence, sociology, and practical intelligence. He lists six main
uses of the concept to describe the knowledge of an individual [63]:

1. someone can do something, but apparently cannot give an account;

2. someone claims they feel something of which they cannot give an account, but it is
not clear if subsequent events validate the claim;

3. someone can do something, but not give an account at that moment, but can, if
pressed, recall the explicit knowledge that was used tacitly when acting;

4. knowledge existing prior to the situation in which it is effective, and due to innate
(biological) characteristics;

5. knowledge existing prior to the situation in which it is effective, and due to cultural
factors;

6. situations where A knows something that B does not, but where it could be argued
A and B share the same practice.

It is also worth noting that some authors make distinction between tacit and implicit
knowledge. For instance, Baumard [12], cited in Gourlay [62], defines implicit knowledge
as something we might know, but do not wish to express. For him, tacit knowledge is
something that we know but cannot express ; it is personal, difficult to convey, and which
does not easily express itself in the formality of language and is thus non-communicable.
In general, it is hard to map these definitions to the above-mentioned classification of
implicit knowledge, but, for instance, use 3 corresponds to Baumard’s definition of implicit
knowledge, while use 1 corresponds to Baumard’s definition of tacit knowledge.

To complete the review of the implicit and explicit knowledge concepts, let us look
at the work on the duality of knowledge by Hildreth and Kimble [71]. They define hard
knowledge as ‘codifiable’ and soft knowledge as less quantifiable, which cannot be cap-
tured and stored so easily. Apart from tacit knowledge in Nonaka’s sense, soft knowledge
includes internalized experience, skills, internalized domain knowledge and cultural knowl-
edge embedded in practice. It is easy to notice that all these aspects of soft knowledge
are covered by the classification of implicit knowledge above, thus the definition of im-
plicit knowledge by Gourlay should include the definition of soft knowledge by Hildreth
and Kimble. Further describing the concepts of hard and soft knowledge, the authors
argue that in most cases one can not make clear distinction between hard and soft knowl-
edge. They suggest that each knowledge item contains some degree of both hard and
soft aspects, thus forming a duality of knowledge. In their view, these suggest that both
aspects should be taken into account when trying to manage knowledge, while existing

2.3. KNOWLEDGE, BEHAVIOR AND CULTURE TRANSFER 11

approaches in knowledge management usually able to deal only with hard, i.e. explicit,
aspect of knowledge. In our approach, we are trying to focus on both aspects of culture,
as introduced below.

2.2.1 Implicit and explicit culture

Going beyond knowledge, some authors suggest that there are explicit and implicit di-
mensions also in culture. For instance, Kroeber and Kluckhohn [85, p. 157], cited in
Kuroda and Suzuki [87], wrote:

All cultures are largely made up of overt, patterned ways of behaving, feel-
ing, and reacting. But cultures likewise include a characteristic set of unstated
premises and categories (“implicit culture”) which vary greatly between soci-
eties. Thus one group unconsciously and habitually assumes that every chain
of actions has a goal, and that when this goal is reached tension will be reduced
or disappear. To another group, thinking based upon this assumption is by no
means automatic. They see life not primarily as a series of purposive sequences
but more as made up of disparate experiences which may be satisfying in and
of themselves, rather than as means to ends.

Gillin and Gillin [58], cited in Kuroda ans Suzuki [87], use the terms “overt” and
“covert” to refer to the explicit and implicit dimensions of culture.

An interesting finding by Kuroda and Suzuki [87] is that while learning English, i.e.
an explicit part of American culture, Arab students also learned some patterned ways
of behavior and reasoning, belonging to the implicit part of American culture. In other
words, learning language also influences one’s identity.

2.3 Knowledge, behavior and culture transfer

In this section we review existing approaches for transferring knowledge, behavior, and
culture.

2.3.1 Behavior transfer in AI

The field of transfer learning problems is an AI field related to behavior and knowledge
transfer. The goal of transfer learning is to develop methods for using knowledge acquired
in a set of source tasks to improve performance in a related, but previously unseen target
task [124]. Below we review some existing approaches to transfer learning and compare
them with our approach.

Taylor and Stone [140] propose behavior transfer as a novel method that allows a learner
trained on one task to learn faster when training on another task with related, but different
state and action spaces. The method is a temporal difference learning method, which is a
type of reinforcement learning, and it is specific to reinforcement learning problems. The
authors show that for some tasks from RoboSoccer domain the behavior transfer method
reduces the training time for learners to reach certain level of performance. The training
time for behavior transfer is shorter than the training time to learn the task from scratch.

12 CHAPTER 2. STATE OF THE ART

Talvitie and Singh [139] consider a similar problem of reusing knowledge about some
tasks in other tasks. In the terms of Markov Decision Process (MDP), the algorithm they
propose allows to produce a mapping from the state space of a new problem to the state
space of an already known problem. The algorithm has been tested and proved effective
in two transfer learning problems: reusing knowledge for a more complex task than the
one already learned, and reusing knowledge for the same task, but without considering
some inputs (losing the use of some of agent’s sensors).

A multi-layered architecture named CAse-Based Reinforcement Learner (CARL) that
uses a novel combination of Case-Based Reasoning and Reinforcement Learning is pro-
posed by Sharma et al. [124]. The architecture is applied in the domain of Real Time
Strategy games and allows for transferring experience about game tasks. The authors
have shown that using the CARL architecture, the agent’s capability to perform transfer
learning is not just limited to speeding up learning, but can also lead to either better or
the same overall final performance in complex scenarios.

With respect to the topic of this thesis, the approaches discussed above focus on narrow
problems occurring in the context of multi-agent learning. More specifically, most of them
deal with learning some tasks using the reinforcement learning framework. Therefore, the
applicability of the approaches is constrained by the applicability of the reinforcement
learning. We see the approach proposed in this thesis as a more general, and more
applicable to agent societies that involve humans as opposed to artificial agents. However,
it is most probable that for the domains that involve only artificial agents, the approaches
described above work better as they are more specialized. Another difference is in the
way how past experience is used. The key challenge for the behavior transfer approach
is mapping a value function from one problem representation to another, typically larger.
The key issue in our approach is to determine the similarity between the states of the
environment as faced by an agent at the moment and by some other, similar, agent in the
past.

2.3.2 Transferring implicit knowledge

Existing approaches for transferring implicit knowledge include implicit learning [63],
social learning [153], and socializing [71]. Here, implicit learning is “[...] a cognitive
phenomenon in which people acquire new knowledge without conscious intent or awareness
[...]” [137]. Social learning can be defined from the books by Wenger [88, 153] as learning
by social participation in the community, i.e. by acquiring sociocultural practices of
the community and by construction of an individual’s identity through the community.
Socialization is not defined, but rather used in a general sense, referring to the process
of integrating into community so as to behave in a way that others in the group think is
suitable.

Nonaka and Takeuchi [106] propose a model for explaining the process of knowledge
creation. The model consists of the four steps: socialization, externalization, combina-
tion, and internalization. In the first step, socialization, implicit knowledge is transferred
between individuals through observation, imitation and practice. Then, in the external-
ization step, implicit knowledge is translated into documents and procedures by using
analogy or metaphor. In the third step, the explicit knowledge is reconfigured by sorting,

2.3. KNOWLEDGE, BEHAVIOR AND CULTURE TRANSFER 13

adding, combining and categorizing processes and is spread within an organization. In
the last step, internalization translates explicit knowledge obtained by individuals into
their implicit knowledge. This process repeats over time, which leads to the phenomenon,
called “knowledge spiral”, that helps knowledge creation and sharing become a part of
the culture of an organization.

Hildreth and Kimble [71] point out that the management of hard knowledge is well
established in knowledge management field, and many tools and techniques available to
support this form of knowledge management. On the contrary, there are no tools for
managing implicit knowledge. However, the authors argue that communities of practice
should provide the means for transferring implicit knowledge. They also highlight the
importance of social aspect of the implicit knowledge.

Van den Hooff et al. [145] show that different authors agree that communities are an
effective environment for sharing implicit knowledge. Then, Van den Hooff et al. investi-
gate the impact of ICT on the knowledge sharing in communities of practice. Based on
the literature, they develop a theoretical model that identifies possible impacts of ICT on
knowledge sharing within a community. They test the model on two communities that use
ICT. The results of the investigation show that willingness and ability to share were not
found to predict knowledge sharing behavior, while knowledge sharing is directly influ-
enced by identification, trust, communality (shared information bases) and connectivity
(ability to communicate independent of time and place). They also show that face-to-face
communication is not pre-requisite for trust, even though it helps to develop trust. This
suggest that ICT can be used as a tool for knowledge sharing in distributed environments,
online communities being an example of those. They conclude that ICT has a positive
contribution to knowledge sharing in communities, but this contribution involves a set of
complex influences and relationships.

2.3.3 Knowledge and culture transfer in organizations

In the literature on organizations we can distinguish two directions related to our work.
The first direction deals with knowledge transfer, while the second direction deals with
acquiring organizational culture by newcomers. In this section, we briefly discuss existing
literature with respect to these two research directions.

Procedures for successful knowledge transfer help organizations to derive more value
from the intellectual assets accumulated within organizations. The benefits of knowledge
transfer include increases in performance, adaptation, collaboration and innovation [118].

Schreiber and Carley [118] study the effect of databases on knowledge transfer within
organizations. More specifically, they simulate interactions of expert and non-expert
agents in an organization with two kinds of databases: task database, which contains
knowledge in relation to tasks; and referential database, which contains the knowledge
about who in the organization is an expert on a certain topic. The results show that an
increase in task complexity leads to a decrease in group performance, while experience
improves performance. In addition, they show that the use of task database on simple
tasks improve organizational performance, while the use of referential database on these
tasks decreases performance. On the other side, the use of referential databases helps to
mitigate the drop of performance for non-experts working on complex tasks.

14 CHAPTER 2. STATE OF THE ART

Cataldo et al. [34] studies how breadth of skills, task experience, group experience,
and certain environmental attributes affect knowledge transfer within an organization
and among organizations. They implement a simulation model based on constructural
theory [31]. The results show that skills, task experience, and group experience are im-
portant factors affecting how knowledge is transferred in an organization. With respect
to inter-organizational knowledge transfer, the results indicate that uncertainty, environ-
mental competitiveness, and breadth of skill are important factors affecting knowledge
transfer.

Bender and Fish [14] discuss the transfer of knowledge and expertise in organizations
operating on a global scale. They advocate information technology as a necessary tool
for knowledge transfer and provide examples of such tools: e-mail, groupware, Internet,
intranet, and videoconferencing. They then identify some barriers for knowledge sharing:
first, people do not like to share their best ideas, second, people do not like to use other
people’s ideas, and third, people like to consider themselves experts and prefer not to
collaborate with others.

When a new person joins an organization, by reading regulations, norms, etc., they
very quickly grasp the explicit part of the culture of the organization. However, the
implicit part of organizational culture remains unknown to the newcomer. Examples of
elements of such implicit part of organization culture may include the following rules and
knowledge items:

• you do not go to the canteen between 12.30 and 13.00 because there is a huge queue;

• even though you can take 28 days of holiday a year, in practice employees take no
more than 15 days a year;

Wyatt-Haines [154] formulates the problem of a newcomer in organizational settings:

Culture has been described in many ways by many people:

• A set of guiding beliefs and philosophies

• The way we do things round here

• A way of thinking and acting

• Just the way things are

• The glue that holds the organization together

• Shared beliefs, customs and practices which are often accepted without
question

In light of this, it is a strange, yet sad, fact of organizational life that when
you join a new organization you are inducted into its systems and processes and
introduced to the key people, but it is left to you to learn about the culture.
Whereas, if an introduction to the culture was an overt part of the induction
process, your ability to fit in and perform in the expected manner would be
much accelerated.

Although there exist computational models of organizations (e.g., garbage can [38] and
NK [151] models, or, more recent approaches, [32] and [69]), we are not aware of computer
science approaches dealing with the problem of culture transfer in organizational settings.

2.4. CONCLUDING REMARKS 15

2.4 Concluding remarks

We have reviewed the state of the art with respect to addressing notions of culture,
sociality, knowledge in the literature. Existing computer science approaches consider
culture as distribution of information, set of features, and string of cultural attributes.
As we show in the next chapter, our definition of culture allows for various types of culture
content, including the above-mentioned knowledge, features, ideas, and beliefs. Current
approaches focus on the means of transmission of culture. Our formalism, as we show
in the next chapter, uses the notion of transmission to define culture. On the one hand,
we not address the issue about how transmission takes place. On the other hand, in
Chapter 4 we propose an approach for transferring some elements of culture. Transfer
can be seen as a kind of transmission, but it is usually directed and has some purpose.

We have introduced the implicit and explicit dimensions of culture and knowledge,
providing an extensive discussion on the implicit knowledge and showing why it is so
hard to capture. Implicit knowledge is addressed in the literature much broader than
implicit culture and approaches for dealing with it could provide some insights on how to
deal with implicit culture.

Finally, in line with our our focus on transfer, we have reviewed existing approaches
for transferring behavior, implicit knowledge, and culture. We have discussed how the
problem of behavior transfer is addressed in multi-agent learning, and why communities
of practice could become a tool for sharing implicit knowledge.

In the next chapter we review the notion of culture in anthropology and social sci-
ence and propose a formal definition of culture, emphasizing the aspects of sharing and
transmission, while trying to be generic when considering the content of culture.

16 CHAPTER 2. STATE OF THE ART

Chapter 3

Formal Definition of Culture

In the previous chapter, we discussed how culture is addressed in the computer science
literature. We start this chapter in Section 3.1, with a discussion of the concept of culture
in a variety of disciplines, including anthropology and social science. We also informally
introduce basic notions used through this chapter. In Section 3.2, we provide a formal
definition of the culture of a set of agents and of the related concepts, while in Section 3.3
we introduce states to investigate the dynamics of culture. Our goal is not to provide a
formalism or a reasoning framework per se, but, rather, to give an operational definition
of culture that can be used for computing and measuring culture in different scenarios.
Therefore, in Section 3.4, we classify the problems that involve culture and occur in various
research and application domains. We then define measures for culture in Section 3.5.
Through the chapter we use an example of culture of people from a fictitious country to
show how our approach can be used to deal also with culture in the anthropological sense.
To show that it is suitable for studying culture in Web 2.0 systems and other software,
in Section 3.6, we consider a case study of culture in one of Web 2.0 communities. We
conclude the chapter in Section 3.7.

3.1 The concept of culture

Culture is a slippery and ubiquitous concept. Initially, culture was associated with the
notion of civilization tout-court. At the end of the 30s Margaret Mead put in contrast
“culture” with “a culture”. “Culture means the whole complex of traditional behav-
ior which has been developed by the human race and is successively learned by each
generation”([98] cited in [25]). However, specificity of the notion of culture with respect
to a given human society was needed in order to study other societies. So the same cita-
tion goes on as: “A culture is less precise. It can mean the forms of traditional behavior
which are characteristic of a given society, or of a group of societies, or of a certain race,
or of certain area, or of a certain period of time” (cited in [25]). As a consequence, in the
anthropological literature culture has been introduced as the concept denoting the object
of study of cultural anthropology. Other definitions were proposed and they largely vary.
However, they seem to converge to the notion that culture is learned [7], it is associ-
ated with groups of people and its content includes a wide range of phenomena including

17

18 CHAPTER 3. FORMAL DEFINITION OF CULTURE

norms, values, shared meanings, and patterned ways of behaving [109, 99, 97, 24, 23, 85].
In anthropological literature the usefulness of the notion of culture as a scientific tool has
been attacked giving rise to the so-called “writing against culture movement” (see Bru-
mann [25] for a reaction against it). The culture as defined in anthropology usually refers
to societies defined in national or ethnic terms, however, the concept of culture has been
recently used for describing knowledge and behavior of other groups like in the concepts
of corporate culture or organizational culture [109, 69, 117]. Moreover, globalization has
brought about the problem of interaction of cultures. On the one hand, such interaction
leads to blurring boundaries between cultures, while on the other hand it leads to the
increasing need of cultural-aware managers and professionals. Recent anthropology text-
book definitions take into account the shift in meaning as, for example, in the definition
by Peoples and Bailey:

Culture is the socially transmitted knowledge and behavior shared by some group
of people (Peoples and Bailey [8, p. 23] cited in [25]).

3.1.1 Culture in historical perspective

Earlier authors define culture in the following ways (cited in Brumann [25]):

• Culture ... refers ... to learned, accumulated experience. A culture ... refers to those
socially transmitted patterns for behavior characteristic of a particular social group
(Keesing [78, p. 68]).

• Culture, or civilization, ... is that complex whole which includes knowledge, belief,
art, law, morals, custom, and any other capabilities and habits acquired by man as
a member of society (Tylor [143, p. 1]).

• The culture of any society consists of the sum total of ideas, conditioned emotional
responses, and patterns of habitual behavior which the members of that society have
acquired through instruction or imitation and which they share to a greater or less
degree (Linton [91]).

• A culture is the total socially acquired life-way or life-style of a group of people.
It consists of the patterned, repetitive ways of thinking, feeling, and acting that
are characteristic of the members of a particular society or segment of a society
(Harris [68]).

As we can see, definitions agree on the fact that culture consists of something that
is shared and/or learned by a group of people, but the content of the culture varies in
different definitions. Similarly to Axelrod [7], we see the content of the culture as a set
of traits1, which can refer to behavior, knowledge facts, ideas, beliefs, norms, etc. In
the anthropological literature traits are defined by Mulder as “characteristics of human
societies that are potentially transmitted by non-genetic means” [103].

Sperber [135] aims at reconciling the materialist point of view with the study of culture
and his solution is that culture is related to mental representations and, consequently, to

1Traits are further grouped in features in Axelrod’s formulation, i.e. each feature can take value from a set of specific
traits.

3.1. THE CONCEPT OF CULTURE 19

physical brain states. In Sperber’s view, cultural representation are mental representa-
tions which are widely shared within a human group, where “shared” means that individ-
uals belonging to the group have mental representations similar enough to be considered
versions of one another. Transmission, according to Sperber, is

[...] a process that may be intentional or unintentional, cooperative or non-
cooperative, and which brings about a similarity of content between a mental
representation in one individual and its causal descendant in another individual.

Imitation and communication are listed as two main means of cultural transmission, and
Sperber does not agree with defining communication as a coding process that is followed by
a symmetrical decoding process and which implies the replication of thoughts in the minds
of the audience. He suggests that communication is essentially a transformation process
and there are different degrees of transformation ranging from total loss of information to
duplication. The same property is advocated for the imitation. From Sperber’s point of
view, “[...] only those representations which are repeatedly communicated and minimally
transformed in the process will end up belonging to the culture” [135, p. 83] and he
points out that it is the epidemiology of these representation that should be taken into
account. As for transmission, Sperber suggests that the transformations in the process
of transmission of representations occur because of the cognitive modularity [136]. It is
worth noting that Sperber proposes to study and model the cultural phenomenon as the
epidemiology of specific representations and believes that culture is not possible without
cognition. So, Sperber emphasized both aspects that we think are important for culture:
sharing and transmission.

3.1.2 Defining culture

Looking closer at the definition of culture by Peoples and Bailey [8], it is worth noting that
it can be specified as composed of two separate dimensions: 1) knowledge and behavior
shared by a group; 2) knowledge and behavior (socially) transmitted. Following Peoples,
Bailey, and Sperber, we call “cultural” the traits that respect both the condition of sharing
and transmission.

Sharing in our terms means that individuals of a group have the same trait. We would
like to stress that some traits cannot be “owned” by individuals and only occur in a
group, e.g., low birth rate in a country. Another example is a property of culture of
being individualistic, collectivistic, or familistic. Such “society” traits are not covered by
our definition of cultural traits. This is not a limitation, in fact, from Sperber’s view of
representations as residing in minds of individuals it follows that each culture trait can
be owned by an individual. Moreover, we believe that such society traits can be added
as an extension to our model later, and some of them can be computed from the traits
of individuals. To summarize, there are two levels of traits: personal traits and society
traits, and at the moment we are modeling only personal traits.

Transmission of a trait in our terms means that the fact that some individual has the
trait and some course of actions lead to another individual acquiring the trait. In other
words, transmission is when a trait is transferred from one individual to another. Thus,
we define culture in the following way:

20 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Culture is a set of traits that are shared and transmitted.

In the following examples, we use knowledge and behavior as particular kinds of traits
to show that both sharing and transmission dimensions are important; indeed, we cannot
have culture without any of them. The examples are summarized in Table 3.1.

Pasta. As a positive example of culture let us mention pasta in the Italian food
culture. The knowledge and behavior related to cooking and consuming pasta are both
shared and transmitted.

Mendel’s experiments. In other cases, the transmission to some members of the
group does not necessarily imply sharing by the group. For instance, even that Mendel’s
pioneering work in genetics was published in 1866 and it was ignored for the following
thirty-five years. In this case, the results were transmitted to some people, and were
shared by them, including Mendel himself, but the results were not shared by the general
public during Mendel’s life, so they can be hardly considered a part of the culture of the
scientists at that time.

Explosion. Similarly, sharing of knowledge and behavior without transmission does
not constitute culture. For example, let us consider a group of people that witness an
extraordinary event, e.g., an explosion. These people share the knowledge about the event,
such as when and where it occurred, and may share some behavior such as fleeing, but the
knowledge about when and where the explosion occurred and the behavior of fleeing are
not culture until they are transmitted. For instance, if all the people who witnessed the
explosion die the next day, the knowledge about the explosion will disappear. However,
once transmitted, it can be transmitted again and again, and even evolve in a kind of
legend, which certainly can be considered a part of culture.

Robinson Crusoe. To give an example of knowledge and behavior that are neither
shared nor transmitted, let us consider a group of people from different cultures. As an
example of such a group, we could consider fictional characters of Robinson Crusoe and
Friday who in the beginning had nothing in common except for being on the same island.
However, as the time passed they worked out communication methods and there was even
transmission, e.g. of the behavior of salting the food, that lead to shared behavior. This
example, apart from showing that no culture is possible without transmission and sharing,
shows that the culture can evolve over time and motivates the study of the dynamic aspect
of culture we undertake in Section 3.3.

Example Sharing Transmission Conclusion
Pasta Yes Yes culture (all Italians do it and they are told to do it)
Mendel’s experiments No Yes no culture before the re-discovery of the experiments
Explosion Yes No no culture
Robinson Crusoe No No no culture

Table 3.1: Culture in the perspective of sharing and transmission dimensions.

3.1.3 Mapping between existing definitions and our definition

Existing definitions of culture are numerous (see, for instance, Brumann [25] for some
of them, or Kroeber [85] for even more) and involve different concepts. Here we show

3.1. THE CONCEPT OF CULTURE 21

how the concepts that occur in the definitions of culture most often can be related to our
definition.

Let us start from the fact that culture is considered to be learned (Mead [98],Keesing [78,
p. 68] cited in [25]). As we mentioned, a behavior is a particular kind of trait. Thus, in
our terms, a learned behavior is either a particular case of a transmitted behavior or a
behavior acquired by someone. Learning in the former case could be seen as one of the
means of transmissions, together with imitation and communication. In the case of an
individual acquiring the behavior alone, the behavior can hardly be considered a part of
culture, as we show in the following subsection.

It is often assumed [99], [68, p. 144], [78, p. 68], [91, p. 288], all cited in [25], that
culture contains patterns of behavior, i.e. behavior that repeatedly occurs across the
society. A pattern of behavior, or a patterned way of behaving is an intensional definition
of behavior, so it fits our definition. The culture content is normally considered to be
shared by the society members [91, p. 288], [8] and, as highlighted by Brumann, it is very
often only partially shared. As we see in the following, our definitions allow for culture
that is partially or, in our terms, weakly shared. Norms, rules, values are also named
as parts of culture [97, 24], [23, p. 44]. In our terms, norms, rules, values, knowledge
and beliefs [97, 143], shared meaning [109] are just particular kinds of traits. The list of
traits given here is not exhaustive, and if something is seen as a potential culture element,
it can be classified as trait if it is not innate (the requirement of being transmitted by
non-genetic means), can be owned by an agent and shared by a set of agents.

3.1.4 Culture and the individual

The relationship between culture and a single individual is twofold. On the one hand,
culture forms and changes some personal traits of the individual. On the other hand
the individual contributes to the development of the traits that are a part of culture, i.e.
cultural traits. We can see the process of the formation and changing of someone’s traits
as the development of the culture of a specific human being. Without social influence
the personal traits of an individual cannot become similar to the culture of the society.
For instance, there are serious doubts that feral children [30] are able to develop even
their own identity not speaking about culture. Nature against nurture debates [115] also
suggest that there is something beyond nature which makes someone human. Looking
on the individual-culture relationship from the other side, the culture of a person who
stops being part of a society is not evolving in the same way as the culture of the society.
Consider Robinson Crusoe whose personal traits were influenced by the cultural traits of
the society he belonged to, but since his arrival on the island he had not been contributing
to the evolution of the English culture anymore nor he received recent developments of
that culture as a result of transmission. All these strongly suggests that one person is not
enough to grasp the phenomenon of culture. In the case of languages, this is consistent
with Wittgenstein’s argument about the fact that it is not possible to have a private
language.

Let us consider examples of feral children and Robinson Crusoe in the perspective of
sharing and transmission dimensions, using knowledge and behavior as particular kinds
of traits. Feral children, for example the fictional character of Tarzan, grown by a group

22 CHAPTER 3. FORMAL DEFINITION OF CULTURE

of monkeys, do not actually share knowledge and behavior with other humans nor they
transmitted them. In the case of Tarzan the absence of sharing is even more evident,
because there is no group. Since the knowledge and behavior are not shared in the
example of feral children, it is impossible to talk about culture in that case. The case of
Robinson Crusoe is different, because even being alone, he preserves and tries to transmit,
for instance to Friday, the culture he acquired in his home country. While in the case
of feral children we can speak about attempts to produce culture, in the case of Crusoe
there are attempts to preserve culture.

3.1.5 Culture and two individuals

In case of two individuals, it is possible to speak about culture because it is possible
to define sharing and transmission. Similarly to the interpretation given by Sperber,
“sharing” in our approach means that two individuals have the same trait. For instance,
if both individuals are able to read in English, this trait can be a part of their culture.
If one of them is able to speak Japanese and the other one is not, then this behavior is
not shared and, consequently, is not a part of their culture. However, if the person who
speaks Japanese teaches another one to do it, this is a transmission. Moreover, since they
both have the behavior of speaking Japanese and this behavior has been transmitted,
this behavior becomes a part of their culture because it is both shared and transmitted.
In Robinson Crusoe’s case, an example of transmission would be teaching Friday to salt
food.

3.1.6 Culture and the group

The examples above show that a culture is tightly coupled with the group. Therefore,
we define a culture of a group of people, leaving the definition of culture per se to an-
thropologists. Let us see how it is possible to extend the ideas of defining culture for two
individuals, as presented in previous subsection, for groups that consist of more than two
people.

If we consider only two people, it is easy to determine if a trait is shared or not. With
more than two people it is not so simple. For instance, let us consider two individuals
from the previous example, they both can speak Japanese and English now. Let us
imagine that a third person, who speaks and reads only English, joined them. Is the
behavior of speaking Japanese still shared, even though there is a person who cannot
speak Japanese? Or only the behavior of reading in English, which all three have, is
shared? We will address this issue by introducing two definitions. We define a culture
as traits shared by at least two members of the group and transmitted to at least one
member of the group. We define a culture in a strong sense as the traits that are shared
by everyone and were transmitted to at least one member of the group.

3.1.7 Culture of an individual vs. culture of the group

Although we have shown that it is hard to speak about a culture in case of an individual,
we can speak about of the culture of an individual who leaves the group, as Robinson

3.2. A FORMAL DEFINITION OF CULTURE 23

Crusoe did, or who is a member of several groups. In these settings, individuals receive
some information related to the culture of the groups they do not belong currently. It
leads to the situation in which someone belongs to the group and has some traits that are
part of the culture of the group, and some traits which are not. For instance, while in Italy
speaking Italian language is a part of culture, some Italian could speak Japanese and this
behavior is not part of culture in Italy. So, the set of all cultural traits that a person has,
which could be probably called the culture of the person, is the union between projections
of the group cultures the person belongs to. In the example above, it would be the behavior
of speaking Italian and the behavior of speaking Japanese, projected, respectively, from
the Italian culture and from the culture of the people who attended courses of Japanese
or lived in Japan for a while. We should also note that sometimes there are traits that are
an essential part of the culture of some society, but cannot be attributed to individuals,
as in above mentioned examples of birth rate and individualistic/collectivistic/familistic
property of culture. In the following sections we do not consider such society traits and
focus only on those cultural traits an individual can possess.

3.2 A formal definition of culture

Consistently with AI literature, we define an agent as a “physical or virtual entity that
can act, perceive its environment (in a partial way) and communicate with others, is
autonomous and has skills to achieve its goals and tendencies” [52]. An agent can have
different cultural traits, which are characteristics of human societies that are potentially
transmitted by nongenetic means and can be owned by an agent. The requirement “can
be owned by”, which we add to the definition by Mulder [103], means that it is possible for
an agent to have a cultural trait. As we mentioned previously, different kinds of behavior,
beliefs, knowledge are particular kinds of cultural traits.

Let us consider the set of agents Ag and the set of traits T . Given an agent a ∈ Ag

we denote its set of cultural traits with Ta = {τi} ⊆ T and we use the predicate has(a, τ)
to represent the fact that the agent a has a trait τ ∈ Ta. In the following, we call the set
of traits of an individual the culture of an individual.

Example 1. Let Ag in our example be a set of people: Charlie, Pedro, Maria, and
Andrea are European citizens, and Toru is from Japan. Let T be a set of traits of different
types, as shown in Table 3.2. For each trait, we also put its abbreviation (used in the
figures in this section) in parentheses.

Table 3.3 lists the set of traits T , and the sets of traits of the specific agents of
Ag = {Charlie, Pedro, Toru,Maria, Andrea}.

We can write has(Maria,Dante Alighieri wrote Divine Comedy), or
has(Charlie,cappuccino is coffee), but not has(Andrea,eating with sticks). We will
use this example as a running example through the section �

Note that we do not introduce types of traits and use them in the example only
for convenience. One might propose a different classification of traits, e.g. putting
taking vacation in August as a norm. We believe that there is no single classification
and this suggests that our approach of dealing with generic traits rather than with specific
types of cultural content provides certain advantages.

24 CHAPTER 3. FORMAL DEFINITION OF CULTURE

trait type traits
knowledge Dante Alighieri wrote Divine Comedy(DA), latte macchiato is coffee(LM),

Meiji era was in 1868 1912(ME), cappuccino is coffee(CI)
behavior eating with sticks(ES), eating with fork(EF), taking vacation in August(TV A),

taking vacation in May(TV M)
norms, rules never put mayonnaise on pizza(NP), take only week of vacation per year(T1W),

never drink cappuccino after lunch(ND), never open umbrella inside building(NO)
beliefs Christianity(Chr), Buddhism(Bud)

Table 3.2: The set of traits T in Example 1.

set traits
T Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,

Meiji era was in 1868 1912, cappuccino is coffee, eating with sticks, eating with fork,
taking vacation in August, taking vacation in May, never put mayonnaise on pizza,
take only week of vacation per year, never drink cappuccino after lunch,
never open umbrella inside building, Christianity, Buddhism

TCharlie Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,
cappuccino is coffee, eating with sticks, eating with fork, taking vacation in August,
never put mayonnaise on pizza, Buddhism

TPedro Dante Alighieri wrote Divine Comedy, latte macchiato is coffee, cappuccino is coffee,
eating with fork, taking vacation in August, never drink cappuccino after lunch,
Christianity

TToru Meiji era was in 1868 1912, cappuccino is coffee, eating with sticks,
taking vacation in May, Buddhism

TMaria Dante Alighieri wrote Divine Comedy, latte macchiato is coffee, cappuccino is coffee,
eating with sticks, eating with fork, taking vacation in August, Christianity

TAndrea Dante Alighieri wrote Divine Comedy, latte macchiato is coffee, cappuccino is coffee,
eating with fork, taking vacation in August, Christianity

Table 3.3: Traits of agents in Example 1.

3.2. A FORMAL DEFINITION OF CULTURE 25

Charlie Toru

Maria

Andrea

Pedro

CI, ES, Bud

DA,LM,CI,ES,EF,TVA

DA,LM,CI,EF,TVA

DA,LM,CI,EF,TVACI,ES

CI

CI

DA,LM,CI,EF,TVA,Chr

DA,LM,CI,EF,TVA,Chr

DA,LM,CI,EF,TVA,Chr

Figure 3.1: The graph showing for which agents and traits the predicate sharing holds in Ex-
ample 1. The nodes are agents and labels on each edge denote traits that are shared by the
pair of agents connected by the edge. For instance, the edge between Toru and Andrea labeled
CI means that sharing(Andrea, Toru, cappuccino is coffee). The traits are abbreviated as in Ta-
ble 3.2, i.e., Dante Alighieri wrote Divine Comedy is abbreviated as DA, latte macchiato is coffee
as LM , cappuccino is coffee as CI, eating with sticks as ES, eating with fork as EF ,
taking vacation in August as TV A, Christianity as Chr, Buddhism as Bud.

Definition 1 (sharing) For each pair of agents ai, aj ∈ Ag and for each trait τ ∈ T , ai

and aj share the trait τ iff they both have such a trait:

has(ai, τ) ∧ has(aj, τ) ↔ sharing(ai, aj, τ).

Example 1 (continued). In the example, we can write sharing(Toru,Maria,

eating with sticks), or sharing(Pedro,Andrea, cappuccino is coffee), etc. To avoid
giving the complete list of tuples for which sharing holds, we represent them as a graph
where nodes are agents and labels on each edge denote traits that are shared by the pair
of agents connected by the edge, see Figure 3.1.

We can represent the restriction of sharing to specific agents and traits, like the set
{(ai, aj, τ)|τ = cappuccino is coffee, ai, aj ∈ {Charlie, Toru,Maria, Andrea, Pedro}}
as in Figure 3.2. This figure shows how one trait, cappuccino is coffee, is shared by the
set of agents. �

Let us assume that if an agent ai has a trait τ , the trait τ can be transmitted to
another agent aj and we use the predicate transmitted(ai, aj, τ) to represent this.

Axiom 1 ∀ai, aj ∈ Ag, ∀τ ∈ T : transmitted(ai, aj, τ) → sharing(ai, aj, τ)

Note that the axiom does not necessarily imply that if has(ai, τ) and has(aj, τ) then
transmitted(ai, aj, τ). We represent transmitted(ai, aj, τ) in a graph by a directed edge
from ai to aj labeled τ .

26 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Charlie Toru

Maria

Andrea

Pedro

CI

CI

CI

CICI

CI

CI

CI

CI

CI

Figure 3.2: The graph that shows for which agents the sharing predicate holds for the
cappuccino is coffee(CI) trait in Example 1.

Charlie Toru

Maria

Andrea

Pedro

ES

DA

DA

ES

Figure 3.3: The graph representing the transmitted predicate. Each edge shows direction of the trans-
mission of the trait in the label.

Example 1 (continued). Figure 3.3 shows the graph representing the transmitted

predicate in our example. The traits Dante Alighieri wrote Divine Comedy and
eating with sticks have been transmitted. On the contrary, the traits cappuccino is coffee

and never put mayonnaise on pizza have not been transmitted (the latter trait is not
even shared by any pair of agents). In particular, the Dante Alighieri wrote Divine Comedy

trait has been transmitted from Charlie to Maria, and from Maria to Andrea. Also,
the eating with sticks trait has been transmitted from Charlie to Toru and from Toru to
Maria. We can write transmitted(Charlie, Maria, Dante Alighieri wrote Divine Comedy).

We can represent a restriction of transmitted to the set {(ai, aj, τ)|ai, aj ∈ {Charlie,
Toru,Maria,Andrea,Pedro}, τ = Dante Alighieri wrote Divine Comedy} as shown in
Figure 3.4. �

Given a set of agents G ⊆ Ag and a set of traits TG ⊆ T we define the notions of weak
sharing and strong sharing.

Definition 2 (weak sharing) A set of traits TG is weakly shared by a set of agents G

iff for each trait τ ∈ TG there exists a pair of agents ai, aj ∈ G, ai 6= aj that share τ .

3.2. A FORMAL DEFINITION OF CULTURE 27

Charlie Toru

Maria

Andrea

Pedro

DA

DA

Figure 3.4: The transmission of the Dante Alighieri wrote Divine Comedy(DA) trait.

Definition 3 (strong sharing) A set of traits TG is strongly shared by a set of agents
G iff each trait τ ∈ TG is shared by all pairs of agents ai, aj ∈ G.

Example 1 (continued). Let us consider two sets of traits TG ={cappuccino is coffee,
eating with sticks,Dante Alighieri wrote Divine Comedy}, T ′

G = {cappuccino is coffee},
and the set G = {Charlie, Toru,Maria, Andrea, Pedro}. Using the sharing predicate
represented in Figure 3.1, we can see that the cappuccino is coffee trait is shared by each
pair of agents, so T ′

G is strongly shared by G. TG contains three traits that are shared by at
least one pair of agents: e.g., cappuccino is coffee, eating with sticks shared by Toru

and Charlie, Dante Alighieri wrote Divine Comedy shared by Charlie and Andrea.
So, TG is weakly shared by G. �

Property 1 Strong sharing implies weak sharing.

Proof. Strong sharing of a set of traits TG by a set of agents G means that for each
τ ∈ TG all pairs of agents ai, aj ∈ G share τ . Thus, the condition for weak sharing, i.e.
existence of one pair of agents ai, aj ∈ G, ai 6= aj that share τ is fulfilled. �

Given a set of agents G ⊆ Ag such that |G| ≥ 2, and a transmitted predicate we
introduce the notion of culture of G.

Definition 4 (culture of a set of agents) A non-empty set of traits TG ⊆ T is a cul-
ture of G iff

• the set TG is weakly shared by G,

• for each trait τ ∈ TG there exists an agent a ∈ Ag that transmitted τ to another
agent aj ∈ G, i.e. transmitted(a, aj, τ),

• for each agent a ∈ G there exists a trait τ ∈ TG such that has(a, τ).

In other words, for a set of agents, a culture is defined as a set of transmitted traits
weakly shared by agents, and each agent has at least one trait in the culture. Please,
note that since the traits are transmitted not necessarily within the set, the transmission
alone does not ensure sharing between the agents of G.

If TG is also strongly shared then it is a culture in a strong sense.

28 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Example 1 (continued). Considering G = {Charlie, Toru,Maria, Andrea, Pedro}
and the transmitted predicate as in Figure 3.3, T ′

G = {cappuccino is coffee} is not a cul-
ture because the cappuccino is coffee trait has not been transmitted. The same holds for
TG = {Dante Alighieri wrote Divine Comedy,cappuccino is coffee,eating with sticks}
because it contains the cappuccino is coffee trait. On the other hand, the set T ′′

G =
{Dante Alighieri wrote Divine Comedy,eating with sticks} is a culture since the traits
Dante Alighieri wrote Divine Comedy and eating with sticks have been transmitted
(from Maria to Andrea and from Toru to Maria, respectively), T ′′

G is weakly shared by
G and each agent has at least one trait in T ′′

G (Toru has eating with sticks, and others
have Dante Alighieri wrote Divine Comedy).

Let us consider a set G′ = {Pedro,Maria}, and the set TG′ = {eating with sticks}.
Although the trait eating with sticks has been transmitted to Maria, it is not a culture
of G′, because TG′ is not a weakly shared by G′.

Taking G′′ = {Charlie,Maria}, TG′′ = {eating with sticks} is a culture, because
even that it has not been transmitted within the set, it has been transmitted to Maria

from outside, it is shared by the set, and each agent has the eating with sticks trait.
Considering G′′′ = {Charlie,Maria, Andrea, Pedro}, TG′′′ = {cappuccino is coffee,

Dante Alighieri wrote Divine Comedy} is not a culture, because the cappuccino is coffee

trait has not been transmitted. The set T ′
G′′′ = {Dante Alighieri wrote Divine Comedy}

is a strong culture since the Dante Alighieri wrote Divine Comedy trait has been trans-
mitted (e.g. from Charlie to Maria), is owned by each agent, and the set T ′

G′′′ is strongly
shared by G′′′. �

Property 2 Given a set of agents G ⊆ Ag and TG, a culture of G, it is possible to find a
non-empty set G0 ⊆ G and a non-empty set TG0

such that TG0
is a strong culture of G0.

Proof. If |G| = 2 then all traits that are weakly shared are also strongly shared and
TG0

= TG is a strong culture of G0 = G. Otherwise, let us consider G′
0 = {a1, a2},

where a1 and a2 are two agents of G such that Ta1
∩ Ta2

∩ TG 6= ∅. The existence of
such a pair of agents is guaranteed, because ∀a ∈ G ∃τ ∈ Ta such that τ ∈ TG and
every τ ∈ TG is weakly shared, so there are at least two agents that share it. For T ′

G0
=

Ta1
∩ Ta2

∩ TG 6= ∅ being a culture of G′
0 it is necessary that ∀τ ∈ T ′

G0
∃a ∈ Ag, aj ∈ G′

0

such that transmitted(a, aj, τ). Since T ′
G0

is a subset of TG and TG is a culture of G, the
following holds: ∀τ ∈ T ′

G0
∃a ∈ Ag, aj ∈ G such that transmitted(a, aj, τ). Let us take

all τ ∈ T ′
G0

such that the corresponding aj is in G′
0. The set TG0

composed of these traits
is a strong culture of G′

0 because they are shared by both a1 and a2 and were transmitted
to at least one of them. If it happens that TG0

is empty, then let us take one trait τ0 from
T ′

G0
and add the corresponding aj to G0. For the resulting set G′

0 = {a1, a2, aj}, the set
TG0

= {τ0} is a strong culture, because all agents in G0 have this trait and it has been
transmitted to aj ∈ G0. �

Let us introduce sets T tr
ai

constructed in the following way: given an agent ai, T tr
ai

=
{τ : τ ∈ Tai

, ∃a ∈ Ag such that transmitted(a, ai, τ)}. In other words, the set T tr
ai

contains the traits that were transmitted to ai.

Property 3 Given two agents ai, aj ∈ Ag, if the set of traits of ai is a subset of or equal
to the set of traits of aj, it implies that T tr

ai
is a culture of the set of agents G = {ai, aj}.

3.3. DYNAMICS OF CULTURE 29

Proof. Let us show that T tr
ai

is a culture of G. The set T tr
ai

is a subset of Tai
and a subset

of Taj
, so each τ ∈ T tr

ai
is shared by the pair of agents ai, aj, so T tr

ai
is weakly shared by

G. Moreover, it is easy to see that for both ai and aj there are traits, namely the whole
set T tr

ai
, which are in T tr

ai
. From the definition of T tr

ai
it follows that for each τ ∈ T tr

ai
exists

a ∈ Ag that transmitted τ to ai ∈ G, i.e. the second condition of Definition 4 is also
fulfilled, so T tr

ai
is a culture of G. �

Property 4 If for two agents ai, aj ∈ Ag, TG = T tr
ai
∩ T tr

aj
is not empty, this implies that

TG is a culture of the set of agents G = {ai, aj}.
Proof. Let us show that TG = T tr

ai
∪T tr

aj
is a culture of G. Since T tr

ai
⊆ Tai

and T tr
aj

⊆ Taj
,

TG ⊆ Tai
and TG ⊆ Taj

, so TG is weakly shared by G and for both ai and aj any trait
τ ∈ TG is also in Tai

and Taj
. From the definition of T tr

ai
and T tr

aj
it follows that for each

τ ∈ TG exists a ∈ Ag that transmitted τ to some agent in G, i.e. the second condition of
Definition 4 is also fulfilled, so T tr

ai
is a culture of G. �

Property 5 TG is a culture of a set of agents G implies TG ⊆ ⋃

ai∈G

T tr
ai

.

Proof. By Definition 4, each τ ∈ TG has been transmitted to some agent aj ∈ G, so it is
in T tr

aj
and all τ ∈ TG constitute a subset of

⋃

ai∈G

T tr
ai

. �

3.3 Dynamics of culture

In the previous section, we defined culture of a set of agents, highlighting some important
properties a set of traits must possess to be a culture of the set of agents. Those definitions
considered an agent as a constant set of traits. However, we can hardly imagine that
the set of traits of an agent remain constant over time. Therefore, in this section, we
introduce the notion of state and use it to model changes in the set of traits of an agent
and consequently, changes in culture.

We assume that the world can be in different states and the set of traits of the same
agent can be different in different states. Let us consider the set of states S. Given an
agent a ∈ Ag and a state s ∈ S, we denote the set of traits of the agent a in the state
s with Ta(s) = {τi} ⊆ T and we use the predicate has(a, τi, s) to represent the fact that
the agent a has the trait τi ∈ Ta(s) in the state s.

We distinguish behavior as a particular kind of traits and assume that performing a
behavior by an agent changes the state of the world. In line with AI literature, we define
behaviors as “[...] reified pieces of activity in which an agent engages, for example sleep
or eat. In colloquial English an agent behaves in various ways; in technical AIese, an
agent has various behaviors” [123]. We define the set of all behaviors B ⊆ T and the
function perform in Ag × B × S → S. The intended meaning of this function is that an
agent, which has some behavior in some state, performs this behavior in this state and
the state of the world changes to another state. More specifically, sv = perform(a, τ, su)
means that has(a, τ, su) and the agent a performed a behavior τ in the state su and the
resulting state is sv. The fact that has(a, τ, su) does not imply that the agent a is able
to perform the behavior τ in the state su, because some preconditions for performing the

30 CHAPTER 3. FORMAL DEFINITION OF CULTURE

behavior may be not fulfilled in the state su. Note that since traits are not innate, by
assuming B ⊆ T we do not include innate behaviors, such as blinking when air is puffed
in someone’s eye.

At this point we would like to discuss the distinction between action and behavior.
In AI literature, an action is an atomic piece of activity, while behavior is perceived
as something more complex, and can include several actions. Therefore, our notion of
performing a behavior can really be decomposed into performing several actions. However,
we decided not to introduce explicit relations between actions and behaviors. Moreover,
the absence of such clear dependency in AI literature suggests that these relations are
hard or even impossible to formalize. Instead, we assume that behavior can represent an
atomic action or a more complex activity depending on the level of modeling granularity.
We can vary granularity of behaviors depending on the problem in hand and on the
domain. For instance, in Example 1, when someone needs to know whether agents are
working, it is possible to consider behaviors working and eating, or, even, working and
not working. However, if someone would like to have a closer look at eating habits of
the group, it is necessary to introduce finer granularity of the eating behavior, e.g. by
considering eating with sticks and eating with fork behaviors.

Let us introduce a specific behavior do nothing ∈ B that means that an agent does
not perform any other behavior in B and assume that each agent has this behavior in
every state. For simplifying notation we usually omit the behavior do nothing from the
description of the states of the agents. Performing do nothing does not change the state
of the world. We assume that it is not possible to perform more than one behavior
concurrently in the world, with the exception of do nothing, and if an agent performs a
behavior, all the other agents perform do nothing. Finally, we assume that the states
are ordered, we define recursively the order “is before” and the corresponding predicate
is before(su, sv) in the following way:

Definition 5 (is before) is before(su, sv) ↔ ∃a ∈ Ag, τ ∈ B, s ∈ S such that s =
perform(a, τ, su) ∧ (s = sv ∨ is before(s, sv)).

Analogously, “is after” is defined as:

Definition 6 (is after) is after(sv, su) ↔ is before(su, sv)

We also state the following axiom:

Axiom 2 For all agents a ∈ Ag, for all behaviors τ ∈ B and for all states su, sv ∈ S

sv = perform(a, τ, su) → is before(su, sv)

In the perspective of states we define sharing and transmitted predicates.

Definition 7 (sharing) For each pair of agents ai, aj ∈ Ag, for each trait τ ∈ T , and
for each state s ∈ S, ai and aj share the trait τ in the state s iff they both have such a
trait in s:

has(ai, τ, s) ∧ has(aj, τ, s) ↔ sharing(ai, aj, τ, s).

We also assume that agents do not lose traits when the state of the world changes, as
the following axiom says:

3.3. DYNAMICS OF CULTURE 31

set traits
T Dante Alighieri wrote Divine Comedy, Meiji era was in 1868 1912,

latte macchiato is coffee, cappuccino is coffee, eating with sticks,
eating with fork, taking vacation in August, taking vacation in May,
never put mayonnaise on pizza, never open umbrella inside building,
take only week of vacation per year, never drink cappuccino after lunch,
Christianity, Buddhism, telling , memorizing

TCharlie(s1) Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,
cappuccino is coffee, eating with sticks, eating with fork,
taking vacation in August, never put mayonnaise on pizza, Buddhism,
telling

TPedro(s1) Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,
cappuccino is coffee, eating with fork, taking vacation in August,
never drink cappuccino after lunch, Christianity

TToru(s1) Meiji era was in 1868 1912, cappuccino is coffee, eating with sticks,
taking vacation in May,Buddhism, memorizing

TMaria(s1) Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,
cappuccino is coffee, eating with sticks, eating with fork,
taking vacation in August, Christianity

TAndrea(s1) Dante Alighieri wrote Divine Comedy, latte macchiato is coffee,
cappuccino is coffee, eating with fork, taking vacation in August,
Christianity

Table 3.4: Traits of agents in Example 2. Differences with Example 1 are put in bold.

Axiom 3 For all agents a ∈ Ag, traits τ ∈ T , and states s ∈ S :

has(a, τ, s) → ∀sv : is after(sv, s) has(a, τ, sv).

Example 2. In this section, we consider the following example that is an exten-
sion of Example 1 in Section 3.2 with states. Again, we consider a set of people and
model them as agents with a set of traits and some behavior related to transmission,
in particular, telling and memorizing. In these settings, the set of agents is Ag =
{Charlie, Pedro, Toru,Maria, Andrea}, the set of all traits T is as shown in Table 3.4.
This table also lists the sets of traits of agents in the initial state s1.

The predicate sharing in the state s1 is identical to the predicate sharing in Example 1.
Thus, when considering only the state s1 the predicate sharing is as in Figure 3.1. �

Definition 8 (transmitted) For each pair of agents ai, aj ∈ Ag, ai 6= aj, for each trait
τ ∈ T , and for each state s ∈ S we say that the trait τ has been transmitted from ai to aj

before the state s iff exists some state su ∈ S such that ai has τ in the state su, aj does
not have τ in the state su and an agent ak performing a behavior τm in the state su imply
that in the resulting state sv the agent aj has τ :

(∃su ∈ S, is before(su, s) has(ai, τ, su) ∧ ¬has(aj, τ, su) ∧ (sv = perform(ak, τ, su)) →
has(aj, τ, sv)) ↔ transmitted(ai, aj, τ, s)

We should note that the trait τ is not shared by ai and aj in the state su, while it is
shared by ai and aj in the state sv, and in the state s, as shown by the following property:

32 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Charlie Toru

Maria

Andrea

Pedro

DA,ES

DA

DA

ES

Figure 3.5: The graph that shows for which agents the transmitted predicate holds in the state s3 in
Example 2. Changes with respect to state s1 are put in bold.

Property 6 For all pairs of agents ai, aj ∈ Ag, for all traits τ ∈ T , and for all states
sv ∈ S

sharing(ai, aj, τ, sv) → (∀s : is after(s, sv) sharing(ai, aj, τ, s))

Proof. The proof follows from Axiom 3. �

Property 7 For all pairs of agents ai, aj ∈ Ag, for all traits τ ∈ T , and for all states
sv ∈ S

transmitted(ai, aj, τ, sv) → (∀s : is after(s, sv) transmitted(ai, aj, τ, s))

Proof. The proof follows from Definition 8, as sv we just take the same su whose existence
is required for s. �

Example 2 (continued). The predicate transmitted in the state s1 is identical to
the predicate transmitted of Example 1 and so it is the same as in Figure 3.3.

Let us assume that in the state s1 Charlie tells Toru that Dante Alighieri wrote the
Divine Comedy. In the next state, s2, Toru memorizes this piece of knowledge. This corre-
sponds to s2 = perform(Charlie, telling, s1) and s3 = perform(Toru,memorizing, s2).
The transmitted predicate in the state s2 is as depicted in Figure 3.3 and transmitted

in the state s3 is as depicted in Figure 3.5. The difference in the transmitted predi-
cates in these two states is that the Dante Alighieri wrote Divine Comedy trait has
been transmitted from Charlie to Toru and the corresponding edge is added, namely
transmitted(Charlie, Toru,Dante Alighieri wrote Divine Comedy, s3). Let us also as-
sume that in the state s2 the set of traits for each agent is the same as in the state s1, while
in the state s3 the following change occurs: TToru(s3) = {Meiji era was in 1868 1912,
Dante Alighieri wrote Divine Comedy, cappuccino is coffee, eating with sticks,
taking vacation in May, Buddhism, memorizing}.

Obviously, the transmission has an impact on sharing and the sharing predicate in the
state s3 is as depicted in Figure 3.6, with the edges between Toru and Charlie, Maria,
Andrea, Pedro added. �

It is easy to see if we fix a state s ∈ S the predicates transmitted and sharing

correspond to the predicates transmitted and sharing defined in Section 3.2. Given that,
it is possible to define weakly (strongly) shared set of traits and a culture of a set of agents
in a state:

3.3. DYNAMICS OF CULTURE 33

Charlie Toru

Maria

Andrea

Pedro

DA,CI,ES,Bud

DA,LM,CI,ES,EF,TVA

DA,LM,CI,EF,TVA

DA,LM,CI,EF,TVADA,CI,ES

DA,CI

DA,CI

DA,LM,CI,EF,TVA,Chr

DA,LM,CI,EF,TVA,Chr

DA,LM,CI,EF,TVA,Chr

Figure 3.6: The graph that shows for which agents the sharing predicate holds in the state s3 in Exam-
ple 2. Changes with respect to state s1 are put in bold.

Definition 9 (weak sharing) A set of traits TG is weakly shared by a set of agents G

in a state s iff for each trait τ ∈ TG there exists a pair of agents ai, aj ∈ G, ai 6= aj that
share τ in the state s.

Definition 10 (strong sharing) A set of traits TG is strongly shared by a set of agents
G in a state s iff each trait τ ∈ TG is shared by all pairs of agents ai, aj ∈ G in s.

In other words, the set of traits is weakly (strongly) shared if it is a subset of the union
(intersection) of traits shared by pairs of agents of G in the state s.

Example 2 (continued). Let us consider the set of agents G = {Charlie,Toru,Maria,
Andrea,Pedro}. Analyzing the sharing predicate in the state s1 (Figure 3.1) we can
see that only the cappuccino is coffee trait is shared by each pair of agents in the
state s1, so TG = {cappuccino is coffee} is strongly shared by G in the state s1.
There are three traits that are shared by at least one pair of agents in the state s1:
cappuccino is coffee, eating with sticks shared, for instance, by Toru and Charlie, and
Dante Alighieri wrote Divine Comedy shared, for instance, by Charlie and Andrea.
So, the set T ′

G = {Dante Alighieri wrote Divine Comedy, cappuccino is coffee,

eating with sticks} and all non-empty subsets of this set are weakly shared by the set G

in the state s1.
Analogously, the set T ′′

G = {eating with sticks,Dante Alighieri wrote Divine Comedy,
cappuccino is coffee} is weakly shared by G in the state s3, and the set T ′′′

G =
{Dante Alighieri wrote Divine Comedy, cappuccino is coffee} is strongly shared by
the set G in the state s3. �

34 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Definition 11 (culture of a set of agents) A non-empty set of traits TG ⊆ T is a
culture of G in a state s iff

• the set TG is weakly shared by G in the state s,

• for each trait τ ∈ TG there exists an agent a ∈ Ag that transmitted τ to another
agent aj ∈ G before the state s, i.e. transmitted(a, aj, τ, s),

• for each agent a ∈ G in the state s there exists a trait τ ∈ TG such that has(a, τ, s).

From this definition it follows that all the traits in the culture are transmitted, shared,
and each agent has at least one trait from the culture. Please, note that since the traits
are transmitted not necessarily within the set, the transmitted predicate does not imply
sharing between the agents of G.

If the set of traits TG is strongly shared then it is a culture in a strong sense.
Example 2 (continued). Considering G = {Toru,Andrea} in the state s3, TG =

{Dante Alighieri wrote Divine Comedy, cappuccino is coffee} is strongly shared by
the set G in the state s3.

Although the Dante Alighieri wrote Divine Comedy trait has been transmitted both
to Toru and Andrea from outside (from Charlie and Maria, respectively), it is strongly
shared by the agents of G. Since in the state s3 each agent in G has the trait
Dante Alighieri wrote Divine Comedy, T ′

G = {Dante Alighieri wrote Divine Comedy}
is a culture of G in the state s3. It is easy to see that T ′

G is not a culture of G in the states
s1 and s2 because Toru does not have the Dante Alighieri wrote Divine Comedy trait
in those states. �

The following proposition outlines some restrictions on how culture can change between
states, namely it shows that culture is monotonic.

Proposition 1 (monotonicity of culture) If a non-empty set of traits TG is a culture
of a set of agents G in a state sv, then TG is a culture of G also in any state s after sv.

Proof. Using Property 6 it is easy to see that if TG is weakly shared by G in the state
sv, it is also weakly shared in any subsequent state s. The condition that for each trait
τ ∈ TG exists an agent a ∈ Ag and an agent aj ∈ G such that transmitted(a, aj, τ, s) is
fulfilled using Property 7. Finally, using Axiom 3 we also have that for each agent a ∈ G

in the state s there exists a trait τ ∈ TG such that has(a, τ, s), because has(a, τ, sv). So,
TG is a culture of G in the state s. �

In real world, the traits of a culture can be lost for two reasons: (1) agents can lose
traits, (2) agents can die, move to another group, etc. As we stated in Axiom 3, in
our model, agents do not lose traits. However, our model, and the proposition about
monotonicity of culture support the case when agents disappear from the group.

Definition 12 (maximal culture of a group) A non-empty set of traits Tmax
G is the

maximal culture of a set of agents G in the state s iff Tmax
G is the union of all cultures TG

of G in the state s.

In other words, the maximal culture of a set of agents in some state is the union of
all possible cultures of the set in this state. Since it is the union of all cultures, it is not

3.4. PROBLEMS INVOLVING CULTURE 35

possible to add any trait to Tmax
G and still obtain a culture of G. In the following, we

refer to maximal culture of a set of agents as “the culture of a set”.
Note, that similar definition could have been provided in Section 3.2, but we are using

just the definition of maximal culture with states.

Definition 13 (evolution of culture) A sequence of sets of traits {T (1)
G , . . . , T

(i)
G } is an

evolution of culture of G iff:

• exists a sequence of states {s1, . . . , si}, such that T
(k)
G is a culture of G in the state

sk for all k, 1 ≤ k ≤ i,

• for each k, 1 ≤ k ≤ i − 1 holds is after(sk+1, sk).

In other words, a sequence of sets of traits is an evolution of culture if each set of traits
in the sequence is a culture of G in some state and the states are ordered in the same way
as the sets of traits. We denote evolution of culture as {TG}.

3.4 Problems involving culture

The formalisms that we presented in previous sections can be used to express a range of
practical problems involving culture. In this section, we present classes of such problems,
and each instance of a class can be encountered in a broad range of applications. The
main purpose of this section is to provide an abstract classification of problems that
involve culture, so concrete examples of problems involving culture can be mapped to this
classification.

We classify the problems that involve culture based on their inputs and outputs, as
shown in Table 3.5. Based on the problem outputs we introduce the following broad
classes of problems: discover, which includes problems dealing with finding either a set
of agents or a culture or an evolution of a culture; achieve state, which contains problems
where a state of the world satisfying some conditions must be achieved; evaluate, which
contains problems dealing with evaluating culture with a range of metrics2.

The discover class is further divided on subclasses that depend on the outputs. We
assume that each class of problems can have only one output reflected in the name of the
class: discover set problems have a set of agents as the output; discover culture problems
have a culture as the output; discover evolution problems have an evolution of cultures of
some set of agents as the output. The output of achieve state problems is a sequence of
states3; and the output of evaluate problems is a set of values of some metrics calculated
on the inputs.

We decided to put achieve state as a separate class rather than as a subset of discover
class because this class of problems includes problems such as “how the world should
evolve in order to...” rather than “when and how did it happen that...” that occur in the
discover class. In the evaluate class we do not consider problems that evaluate a set of
agents or states because in this thesis we are interested in culture.

2We elaborate more on the metrics for culture in Section 3.5.
3Please note that we treat one state in the output as a particular case of the sequence of states that has the length one,

while for culture we have separate outputs - a culture or a culture in a sequence of states.

36
C

H
A

P
T

E
R

3
.

F
O

R
M

A
L

D
E

F
IN

IT
IO

N
O

F
C

U
L
T

U
R

E N subclass G TG states output example
Discover
1 discover set of agents - given - G Find a set of agents that have the given culture
2 discover set of agents given given - G Given a set of agents and its culture find another set of agents that have this culture
3 discover set of agents - given given G Find a set of agents that have the given culture in the given state
4 discover set of agents - given evo-

lution
- G Find a set of agents that have the culture as specified by the given evolution

5 discover set of agents - given evo-
lution

given G Find a set of agents that have the given evolution of culture in the given states

6 discover set of agents given given given G Given a set of agents and its culture in the given state, find another set of agents that
have this culture in this state

7 discover set of agents given given evo-
lution

- G Given a set of agents and the evolution of its culture , find another set of agents that
have the culture as specified by the evolution

8 discover set of agents given given evo-
lution

given G Given a set of agents and the evolution of its culture, find another set of agents that
have such evolution of culture in these states

9 discover culture given - - TG Find a culture of the given set of agents
10 discover culture given given - TG Find a culture of the given set of agents such that this culture includes the given culture
11 discover culture given - given TG Find a culture of the given set of agents in the given state
12 discover culture given given given TG Given a culture of the given set of agents in some state find a culture of this set in

another state
13 discover culture given given evo-

lution
- TG Given a set of agents and the evolution of its culture in unknown states, find a culture

of the set that is present in every element of the evolution
14 discover culture given given evo-

lution
given TG Given a set of agents and the evolution of its culture in a sequence of states, find a

culture of the set of agents in the next state
15 discover evolution given - - {TG} Find how a culture of the given set of agents can evolve
16 discover evolution given given - {TG} Given a culture of the set of agents find how it can evolve
17 discover evolution given given evo-

lution
- {TG} Given the evolution of a culture of another set of agents in unknown states find how

the culture of the given set of agents evolves
18 discover evolution given - given {TG} Given a set of agents and a sequence of states find how a culture of the set evolves in

these states
19 discover evolution given given given {TG} Given a set of agents, a sequence of states and a culture of the set in one of the states

find how this culture of the set evolves in the other states
20 discover evolution given given evo-

lution
given {TG} Given the evolution of a culture of a set of agents in some states find how a culture of

the set evolves in the other states specified by the input
Achieve state
21 achieve state given given - s Given a culture and a set of agents find a state in which the culture is a culture of the

set
22 achieve state given given evo-

lution
- {s} Given a culture evolution and a set of agents find a sequence of states in which the

elements of the evolution are cultures of the set
23 achieve state given given given s Given a culture of a set of agents in some state preserve this culture as a culture of

the set also in the next state
24 achieve state given given evo-

lution
given s Given the evolution of a culture of a set of agents preserve this evolution of culture in

the other given states
Evaluate
25 evaluate given given - values Evaluate the given culture of the given set of agents

26 evaluate given given given values Evaluate the given culture of the given set of agents in the given state
27 evaluate given given evo-

lution
- values Evaluate the given evolution of culture of the given set of agents in the unknown states

28 evaluate given given evo-
lution

given values Evaluate the given evolution of culture of the given set of agents in the given states

Table 3.5: Classification of problems involving culture. G denotes a set of agents, TG denotes a culture of a set of agents G, {TG} denotes an
evolution of culture, s denotes states, {s} denotes a sequence of states, and values stand for the values of the different metrics calculated on a
culture or an evolution of a culture.

3.4. PROBLEMS INVOLVING CULTURE 37

The following inputs are considered for the problems: a set of agents; a set of traits,
i.e. a culture of the set; evolution, i.e. a culture of the set in a sequence of states;
states, one or a sequence. The set of agents can be given or not, the culture can be
given, given as evolution, or not given, and the states can be given or not given. For
each class of problems we list the possible combination of inputs and give an example of
the problem. Please note that each class of problems can contain an infinite number of
concrete problems based on the problem inputs and outputs, and thus example refers only
to one instance of the problem. We do not specify how evolution of a culture of a set of
agents should be considered: as a sequence of maximal cultures, as a sequence of cultures
that include some given set of traits, etc. We will illustrate some of the possible variations
of semantics in examples of problem definitions when describing problem classes.

When determining the possible combinations of inputs we used the following assump-
tions that can be considered as constraints on inputs:

• Each problem can have only one output as specified previously: a set of agents, a
culture, an evolution of culture, a state, values of metrics.

• The set of agents is either given or it is the output. This is due to the fact that
culture is impossible without a set of agents.

• The culture is either given or it must be the output. This is natural, taking into
account the fact that we are considering problems involving culture.

• We do not consider cases when the set of agents evolves over time, again because we
are more focused on culture.

• For the same reason we are considering only metrics on culture, not metrics on agents
or on states.

• We are aware of the possibility of specifying given culture or set of agents by means
of their intensional as opposed to extensional definition, i.e. giving listing all the
properties required for belonging to the set rather than enumerating all the members
of the set, but addressing intensional definitions of culture or a set of agents is out
of the scope of this thesis.

Table 3.5 shows the list of problem classes divided in the three main classes. For
the specified inputs, outputs, and constraints, the classification is complete. Only some
of the problem classes — those numbered 1, 2, 9, 10, 25 — can be expressed in the
terms of the formalism presented in Section 3.2. This is possible because these classes of
problems do not involve states. Even though every problem expressed in this formalism
can be expressed in the the formalism presented in Section 3.3, e.g. given some state, the
contrary does not hold. Considering the specified values of the inputs and the constraints,
the list of problems is complete.

Let us show that it is possible to express the presented problems using our formalism.
To do this we represent each example in the table using terms in our formalism:

1. Given a set of traits TG, find a set of agents G such that TG is a culture of G.

38 CHAPTER 3. FORMAL DEFINITION OF CULTURE

2. Given a set of agents G and a culture TG of G, find another set of agents G′ 6= G

such that TG is a culture of G′.

3. Given a set of traits TG and a state s, find a set of agents G such that TG is a culture
of G in the state s.

4. Given a sequence of sets of traits {TG}, find a set of agents G such that the evolution
of the culture of G is as specified by the sequence.

5. Given a sequence of sets of traits {TG} in a sequence of states {s}, find a set of
agents G such that for each s from the sequence of states the corresponding TG(s) is
a culture of G in the state s.

6. Given a set of agents G, a state s, and a culture TG of G in the state s, find another
set of agents G′ 6= G such that TG is a culture of G′ in the state s. Note that in this
example we can additionally ask for G′ ⊆ G, G ⊆ G′, etc.

7. Given a set of agents G and an evolution a culture of G, {TG}, find another set of
agents G′ 6= G such that the evolution of the culture of G′ is equal to {TG}. Note
that we can ask that the evolution of the culture of G′ contains {TG}.

8. Given a set of agents G and an evolution a culture of G, {TG}, in a sequence of
states {s}, find another set of agents G′ 6= G such that for each s from the sequence
of states the corresponding TG(s) is a culture of G′ in the state s.

9. Given a set of agents G, find a set of traits TG such that it is a culture of G. Note that
the output is not uniquely identified, but we can require to find the maximal culture
(uniquely identified) of the set.

10. Given a set of agents G and a culture TG of the set G, find a set of traits T ′
G such

that it is a culture of G and TG ⊆ T ′
G.

11. Given a set of agents G and a state s, find a set of traits TG such that it is a culture
of G in the state s.

12. Given a set of agents G, states s and s′, and a culture TG of the set G in s, find a
set of traits T ′

G such that it is a culture of G in the state s′.

13. Given a set of agents G and an evolution of a culture of G, {TG}, find a set of traits
T ′

G such that it is a subset of each element in the sequence {TG}, i.e., find culture
that preserves over time.

14. Given a set of agents G, and an evolution of a culture of G, {TG}, in a sequence of
states {s}, find a set of traits T ′

G such that it is a culture of G in the next state.

15. Given a set of agents G, find an evolution of a culture of G, {TG}.
16. Given a set of agents G and a culture TG of the set G, find the evolution of TG, {TG}.
17. Given sets of agents G and G′, and an evolution of a culture TG of the set G, {TG},

find an evolution of a culture of the set G′, {T ′
G}.

3.5. MEASURES FOR COMPARISON OF CULTURES 39

18. Given a set of agents G and a sequence of states {s}, find an evolution of a culture
of G, {TG}, in this sequence of states.

19. Given a set of agents G, a sequence of states {s}, and a culture TG of G in one of
the states, s, find the evolution of TG, {TG}, in the other states from the sequence.

20. Given a set of agents G, a sequence of states {s}, and an evolution of culture TG of
G in some of the states, {TG}, find the evolution of TG, {TG}, in the other states
from the sequence.

21. Given a set of agents G and a culture TG of the set G, find a state s such that TG is
a culture of G in the state s.

22. Given a set of agents G and a sequence of sets of traits {TG}, find a sequence of states
{s} such that the elements of {TG} are cultures of G in the corresponding states.

23. Given a set of agents G, a state s, and a culture TG of the set G in s, preserve TG as
a culture of G also in the next state s′.

24. Given a set of agents G, a sequence of states {s}, and an evolution of culture TG of
the set G in the subset of the sequence of states, {TG}, preserve the same evolution
of culture also in the other states of the sequence.

25. Given a culture TG of a set of agents G, calculate values of desired metrics.

26. Given a set of agents G, a state s, and a culture TG of the set G in the state s,
calculate values of desired metrics.

27. Given an evolution of a culture {TG} of a set of agents G, calculate values of desired
metrics.

28. Given an evolution of a culture {TG} of a set of agents G in a sequence of states {s},
calculate values of desired metrics.

The classes of problems presented in this section occur in a wide range of applica-
tions. For instance, anthropological research is included into the discover culture and
discover evolution classes, while the discover set of agents class includes problems of per-
sonnel hiring in the organizational settings [69, p. 21]. O’Reilly [109] shows that to
maintain the strong culture in an organization, one might select members based on cul-
tural criteria. In our terms, this problem can be formulated as the need to preserve the
culture in the successive states, and it falls into the achieve state class (problem class 23
in the classification). As a particular instance of problems from the evaluate class, we can
mention the study of why some cultures endure longer than other [31].

3.5 Measures for comparison of cultures

In this section, we present some measures for characterizing a culture of a set of agents
in different socio-cultural settings and for comparing cultures of different sets. This list
is not exhaustive, rather, it contains some initial measures, and further extension of this
list is a subject of future research.

40 CHAPTER 3. FORMAL DEFINITION OF CULTURE

3.5.1 Measuring culture as a snapshot

Culture

Let us start from simple measures such as presence of a specific trait in a culture. We use
an indicator function Ihas(τ, T) to say that the trait τ is present in the culture T :

Ihas(τ, T) =

{

1, if τ ∈ T

0, otherwise
(3.1)

Another example of a simple measure of a culture could be the number of traits in the
culture, defined as |T |, i.e. the dimension of the set of traits T .

Culture of a group

A culture of a group is a product of the individuals belonging to the group. However,
different groups can share cultures to some extent. To measure such degree of sharing
we adapt the notion of cultural homogeneity introduced by Carley in [31]. Culture in
that paper is defined as the distribution of information (ideas, beliefs, concepts, technical
knowledge, etc.) across population. In our settings, given a set of agents G and a culture
TG of G, the cultural homogeneity is measured by the percentage of possible dyadically
shared traits that actually are shared. A trait τ is shared by a dyad if sharing(ai, aj, τ).

The number of possible dyadically shared traits is
(

N

2

)

×K, where N is the number of

agents in the set, |G|; K = |TG| is the number of traits in the culture TG. Thus, cultural
homogeneity is measured as

CH(G, TG) =

N
∑

i=1

N
∑

j=i+1

K
∑

k=1

Isharing(ai, aj, τk)

(

N

2

)

× K

× 100%. (3.2)

In this formula, G = {ai}, 1 ≤ i ≤ N, TG = {τk}, 1 ≤ k ≤ K, and the indicator function
Isharing is defined as follows:

Isharing(ai, aj, τk) =

{

1 , if sharing(ai, aj, τk)
0 , otherwise.

It is easy to note that the cultural homogeneity takes into account only traits present in
the culture, and it does not matter what traits agents of G have besides those contained
in the culture TG. To take the traits that are not a part of culture into account, we
introduce the notion of group homogeneity. To do this, we need to consider the set of all
traits of the group T̄G = ∪N

i=1ai, K̄ = |T̄G|. Thus, group homogeneity of the group G is
measured as

GH(G) =

N
∑

i=1

N
∑

j=i+1

K̄
∑

k=1

Isharing(ai, aj, τk)

(

N

2

)

× K̄

× 100%, (3.3)

where τk, 1 ≤ k ≤ K̄ are from the set T̄G and the other terms are defined in Equation 3.2.

3.5. MEASURES FOR COMPARISON OF CULTURES 41

A culture of an individual and a culture of a group

To compare a culture of an individual a and a culture of a group G we introduce the
following measures:

• Common culture (culture overlap) is the set of traits that is present in both cultures:
CC(Ta, TG) = Ta ∩ TG.

• Culture similarity is the degree to which two cultures are similar, i.e. how much they

have in common: CS(Ta, TG) = |Ta∩TG|
|Ta∪TG|

× 100%.

• Culture fit is the degree to which one culture fits the other culture: CF (Ta, TG) =
|Ta∩TG|
|TG|

× 100%.

Note that this measure is not symmetric.

Note that it is possible to extend the notion of culture similarity further if we assume
there is a domain-specific function for calculating similarity between traits, i.e. for each
pair of traits τ1, τ2 we know the value of sim(τ1, τ2). Culture similarity can then be defined

as CC(Ta, TG) =

|Ta|
∑

i=1

|TG|
∑

j=1

sim(τa
i ,τG

j)

|Ta|×|TG|
× 100%

This will allow for considering the degree of similarity between different traits, e.g., spec-
ifying that trait eating with sticks is more similar to eating with fork than to telling.

A culture of a group and a culture of another group

In order to compare cultures of two sets of agents we can straightforwardly replace the
culture of an individual with a culture of another group in the formulas above, thus
introducing the following measures:

• Common culture (culture overlap) is the set of traits that is present in both cultures:
CC(TG1

, TG2
) = TG1

∩ TG2
.

• Culture similarity is the degree to which two cultures are similar, i.e. how much they

have in common: CS(TG1
, TG2

) =
|TG1

∩TG2
|

|TG1
∪TG2

|
× 100%.

• Culture fit is the degree to which one culture fits the other culture: CF (TG1
, TG2

) =
|TG1

∩TG2
|

|TG2
|

× 100%.

Note that this measure is not symmetric.

3.5.2 Measuring culture evolution

We can also extend some of the measures to deal with culture in different states. For
instance, we can see the presence of a specific trait in a culture in a state:

Ihas(τ, T, s) =

{

1, if τ ∈ T (s)
0, otherwise

(3.4)

42 CHAPTER 3. FORMAL DEFINITION OF CULTURE

measure meaning
Ihas(τ, T) shows if the trait τ is present in the culture T
|T | the number of elements in the culture T
CH(G,TG) cultural homogeneity of G, i.e. how widely the culture TG is shared within the

group G
GH(G) group homogeneity, i.e. how similar are the sets of traits of agents of G
CC(Ta, TG) common culture, i.e. the set of traits contained in the culture of an agent a
CC(TG1

, TG2
) (a group G1) and in the culture TG (TG1

)
CS(Ta, TG) culture similarity, i.e. how much two cultures have in common
CS(TG1

, TG2
)

CF (Ta, TG) culture fit, i.e. the degree to which the culture of a (G1) fits the culture TG (TG2
)

CF (TG1
, TG2

)

Table 3.6: Measures of culture as a snapshot.

Extending other formulas to deal with states is rather straightforward. For instance,
given a set of agents G and a culture TG of G, the cultural homogeneity in a state s is
measured by the percentage of possible dyadically shared traits that actually are shared
in this state and calculated as follows:

CH(G, TG, s) =

N
∑

i=1

N
∑

j=i+1

K
∑

k=1

Isharing(ai, aj, τk, s)

(

N

2

)

× K

× 100%. (3.5)

In this formula, G = {ai}, 1 ≤ i ≤ N, TG = {τk}, 1 ≤ k ≤ K, and the indicator function
Isharing is defined as follows:

Isharing(ai, aj, τk, s) =

{

1 , if sharing(ai, aj, τk, s)
0 , otherwise.

For the measures of culture of two groups, we can also take TG1
as a culture in one

state and TG2
as a culture of the same group in another state and see how culture of the

same group changes between states and measure spread of some specific trait within a set
of agents.

3.5.3 Example

Let us see how the described measures apply to Example 1 from Section 3.2, summarized in
Table 3.3. Considering a set of agents G = {Charlie, Toru,Andrea,Maria, Pedro}, and
a culture TG = {Dante Alighieri wrote Divine Comedy(DA),eating with sticks(ES)}:

• Ihas(eating with sticks, TG) = 1,

• Ihas(eating with fork, TG) = 0,

• |TG| = 2.

To calculate the cultural homogeneity of G we need to calculate the number of traits in
the culture TG: K = 2 and the number of agents in the set G: N = 5. With these

3.6. A CASE STUDY 43

parameters, CH(G, TG) is calculated as follows:

CH(G, TG) =

5
∑

i=1

5
∑

j=i+1

2
∑

k=1

Isharing(ai, aj, τk)

(

5
2

)

× 2

× 100% =

=

5
∑

i=1

5
∑

j=i+1

(Isharing(ai, aj, DA) + Isharing(ai, aj, ES))

10 × 2
× 100% =

6 + 3

20
× 100% = 45%.

Proceeding with calculations we get:

• GH(G) = 41
120

× 100% = 34.17%,

• CC(Pedro, TG) = {Dante Alighieri wrote Divine Comedy},
• CS(Pedro, TG) = 0.125,

• CF (Pedro, TG) = 0.5,

• CF (TG, P edro) = 0.143.

3.6 A case study

In this section, we provide a case study that shows how the material presented in this
chapter can be applied in the Web 2.0 domain. We first describe the scenario and then
show how it can be addressed with our approach.

3.6.1 Scenario description

Let us consider activities related to bibliography management in CiteULike.org, a free
online service to organize someone’s collection of academic papers. Users of CiteULike
are mainly scientists and there are groups dedicated to specific interests. The site allows
people to add papers in their personal collections or to the collections of the groups users
belong to and to tag those papers. It is also possible to search for the papers using
keywords or browse the papers with a specific tag.

Let us suppose that Michael, a user of CiteULike, has some papers about recommenda-
tion systems in his bibliography and has tagged them as shown in Table 3.74. He discovers
that there are groups on CiteULike and that there are at least three groups that seem
relevant to his research interests: GroupA, GroupB, and GroupC. In the group bibliogra-
phy, each group has a list of papers tagged as shown in Table 3.7. Michael would like to
join some group, but he does not have much time to read group feeds, so he would like

4Of course, we present a simplified example here, real users and groups on CiteULike have much more papers in their
bibliographies.

44 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Michael
paperID paper tags
PolyLens PolyLens: a recommender system for groups of users recommendation, collaborative filtering
TrustInRS Trust in recommender systems trust, recommendation
GroupLens GroupLens: An Open Architecture for Collaborative Fil-

tering of Netnews
collaborative filtering, grouplens

RefWeb Referral Web: Combining Social Networks and Collabo-
rative Filtering

collaborative filtering, trust

TrustCF Trust-Aware Collaborative Filtering for Recommender
Systems

trust, recommendation

Group A
EComRec E-Commerce Recommendation Applications collaborative filtering, ecommerce, recom-

mender
TechLens Enhancing digital libraries with TechLens+ recommender, academic reference
GetToKnow Getting to know you: learning new user preferences in

recommender systems
collaborative filtering, recommender

GroupLens Group Lens: An open architecture for collaborative fil-
tering of netnews

collaborative filtering, recommender

PolyLens PolyLens: a recommender system for groups of users recommendation, collaborative filtering
Group B

TechLens Enhancing Digital Libraries with TechLens+ collaborative filtering, content based filter-
ing, papers, recommender systems

Citations On the Recommending of Citations for Research Papers citations, collaborative filtering, personal-
ization, recommender systems

Scouts Scouts, promoters, and connectors: The roles of ratings
in nearest-neighbor collaborative filtering

recommender systems, recommendation,
collaborative filtering

EComRec E-Commerce Recommendation Applications collaborative filtering, ecommerce, recom-
mender

ContRec A content-collaborative recommender that exploits
WordNet-based user profiles for neighborhood formation

collaborative filtering, concept extraction,
concept map, recommender

Group C
GroupLens Group Lens: An open architecture for collaborative fil-

tering of netnews
collaborative filtering, recommender, rec-
ommendation

VirtCom Recommending and evaluating choices in a virtual com-
munity of use

collaborative filtering, recommender

TagCF Tag-aware recommender systems by fusion of collabora-
tive filtering algorithms

tagging, recommender, collaborative filter-
ing

TrustInRS Trust in recommender systems trust, recommender, collaborative filtering
RefWeb Referral Web: Combining Social Networks and Collabo-

rative Filtering
collaborative filtering, social network

Table 3.7: Users and groups in CiteULike.org.

to choose only one group. How does he decide which group fits more with his interests?
The bibliography of a group contains several hundred of items, looking through them will
take some time.

Let us assume that all tags are from the same taxonomy and there are no syntactical
(e.g., tags recommendation system, recommender systems, RS are replaced with a single
tag) and semantical (e.g., tags like recommendation system, adaptive system correspond
to very same concepts in all bibliographies) inconsistencies in the names of papers and
tags. Thus, we can represent a group or a user as a set of tags and a set of papers in their
bibliography and calculate the degree of the fit between a user and a group as similarity
between their sets of tags and papers. Moreover, we can see which papers are common
for all three groups, creating for Michael a list of papers to read.

In this example we will consider only the sharing aspect of culture, as suggested in [154].
We argue that for defining a culture of a community in a Web 2.0 system it is enough to
consider just the aspect of sharing for the two following reasons: 1) in this domain, mea-
suring transmission is hard if not impossible. For instance, it is probably hard for anyone
to recall how the ability of copy-paste fragments of texts using CTRL+C and CTRL+V
is acquired — if they learned it from manuals, or from someone else; 2) since traits are
transmitted by non-genetic means, they have been acquired during someone’s life, so they
were learned, or transmitted in another way, but not innate. For instance, it is hard to

3.6. A CASE STUDY 45

imagine someone who knows how to copy-paste text since their birth. Consideration of
only shared traits also allows for faster computation of the culture of a group.

3.6.2 Applying our approach

In our formalism, the users and groups are agents that are represented as a set of traits,
which are papers and tags. For each agent, its culture is the set of traits as follows:
Michael.papers={PolyLens, TrustInRS, GroupLens, RefWeb, TrustCF}
Michael.tags={recommendation, collaborative filtering, trust, grouplens}
GroupA.papers={EComRec, TechLens, GetToKnow, GroupLens, PolyLens}
GroupA.tags={collaborative filtering, recommendation, academic reference,
recommender, ecommerce}
GroupB.papers={TechLens, Citations, Scouts, EComRec, ContRec}
GroupB.tags={collaborative filtering, content based filtering, papers,
citations, recommender systems, personalization, recommendation, ecommerce,
recommender, concept extraction, concept map}
GroupC.papers={GroupLens, V irtCom, TagCF , TrustInRS, RefWeb}
GroupC.tags={collaborative filtering, recommender, recommendation, tagging,
trust, social network}

Let us select one of the metrics from Section 3.5, say culture similarity, for determining
how close are two cultures. Since the number of distinct papers in Michael’s and GroupA

bibliographies is eight, the number of common papers is two, the number of distinct tags
is seven and the number of common tags is two, the similarity between Michael and
GroupA, CS(Michael, GroupA) is equal to 0.5 · 2

8
+0.5 · 2

7
= 0.268. The similarity between

Michael and GroupB is 0.5 · 0
10

+ 0.5 · 2
13

= 0.077, while the similarity between Michael

and GroupC is 0.5 · 3
7

+ 0.5 · 3
7

= 0.429. From this simple exercise we can conclude that
Michael’s research interests, as represented by his bibliography, are closer to GroupC.
The program realizing such algorithm in real CiteULike.org settings, i.e. with hundreds of
groups with thousands of papers, would solve the above-mentioned problem of choosing
which community to join.

Let us further illustrate how our formalism can be applied to these data. Let us consider
each group as an agent and see which traits are shared by the set of agents {GroupA,
GroupB, GroupC}. Papers EComRec, TechLens, GroupLens and tags recommender,
ecommerce, recommendation, collaborative filtering are weakly shared by the set and
therefore are a culture of the set. Moreover, while there are no strongly shared papers,
tags collaborative filtering, recommender, recommendation are strongly shared and
therefore are a strong culture of the set.

3.6.3 Discussion

In the case study we calculated the degree of culture similarity between Michael and
different groups, and computed a culture of a set of CiteULike groups. These two problems
fit our classification of problems involving culture, presented in Section 3.4. In particular,
the calculation of similarity falls into evaluate class, problem class 25, while the discovery
of culture classifies under discover, problem class 9.

46 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Further extending this example, we might take into account not only artifacts such as
papers or tags, but also behaviors of users, such as tagging some paper with a specific tag.
For instance, using information about authors of the papers and citations, it is possible to
consider behaviors such as self-citation and to see if there are communities whose members
follow this practice more than an average author. Using information about the publication
date and the date of posting the publication in someone’s library it is possible to consider
behaviors such as “tagging paper before its publication” and see which communities have
the practice of dissemination of drafts of the papers.

3.7 Concluding remarks

In this chapter we have reviewed the notion of culture in the anthropology and social
science, and, based on the literature, defined culture of a set of agents as a set of traits
shared by the set of agents and transmitted. Moreover, using our definition it is possible
to compute culture in a specific instant of time, or in the dynamics of several states. Based
on our formalism, we have proposed a classification of problems that involve culture. This
classification can be used to describe problems of discovering and evaluating culture in
different domains. For the specified inputs, outputs, and constraints, the classification
is complete. We also defined a set of metrics to evaluate culture in a fixed state and in
dynamics. Through Sections 3.2, 3.3, and 3.5, we have used an example from anthropology
to illustrate how our model of culture works. We have provided a Web 2.0 case study
in Section 3.6 to show how our model can be used to compute and measure culture in
modern systems for communities.

There are several issues we would like to underline.
First, the definition we provided here is operational in the sense that a computational

model can be built on top of it and applied for computing culture in different domains,
as illustrated by the running examples and the case study. This is possible because the
formalism is based on set theory and this allows us to use the underlying mathematics to
compute and measure culture.

Second, an important step in setting up our model is the definition of the level of
granularity of different behaviors, which are used. For instance, it is important to decide
if we should consider the behavior eating or several behaviors like eating with sticks

or eating with fork. Another example could be — should we consider the behavior
open window or more specific behaviors like turn handle, pull window, etc. We leave
the resolution of the issue of the granularity of behaviors to the domain expert.

Third, our model is limited by several assumptions on the nature of behaviors. First
assumption is that there are no concurrent behaviors in the world, second assumption
is that we consider only not innate behaviors as participating in transmission. However,
these limitations only influence the notion of performing a behavior, while for computing
culture we need to know about the fact that transmission took place, without going into
details how it has been performed. Thus, this limitation somehow impacts only the way
we can describe transmission, but hardly the model as a whole. Another assumption is
that we do not consider traits attributed to the society as a whole, such as birth rate. We
believe such traits can be integrated in our formalism later.

3.7. CONCLUDING REMARKS 47

Finally, in Section 3.5 we have mentioned the idea of introducing domain-specific simi-
larity function for traits. Such function would allow for considering the degree of similarity
between different traits, e.g., specifying that trait eating with sticks is more similar to
eating with fork than to telling. This approach can also be applied in domains with low
cultural homogeneity between agents, i.e., the lack of shared traits, to introduce something
like quasi-sharing (sharing similar, but not equal traits), and quasi-culture (a product of
quasi-sharing). This is in line with Sperber’s meaning of “shared” as that individuals be-
longing to a group have mental representations similar enough to be considered versions
of one another.

In Section 3.4 we did not consider problem classes where the set of agents evolves over
time, however, we define and address some of such problems with the framework presented
in the next chapter.

48 CHAPTER 3. FORMAL DEFINITION OF CULTURE

Chapter 4

Implicit Culture Framework.
Definition, Architecture,
Implementation

In the previous chapter, we have proposed a definition of culture and shown how to use
the proposed formalism to compute and measure culture of a set of agents. In Section 4.1
of this chapter, we use the proposed model to formulate a general problem of culture
transfer. We then introduce a narrower problem of behavior transfer and propose the
Implicit Culture Framework for solving this problem1.

The Implicit Culture Framework is an agent-based framework that includes the follow-
ing elements:

• a meta-model for defining the application domain;

• a general architecture of SICS for behavior transfer;

• a detailed architecture of SICS modules;

• algorithms helping the SICS modules to implement their functions;

• the IC-Service, a general-purpose, domain-independent service that implements the
SICS architecture and the algorithms;

• a methodology that provides guidelines for applying the Implicit Culture Framework
in practice.

The meta-model, presented in Section 4.2, is a refinement of the concepts of the for-
malism for representing culture, described in Chapter 3. The general and the detailed
architecture of SICS for transferring behavior, are presented in Section 4.3 and Section 4.4,
respectively. The implementation of the framework is presented in Section 4.5, while the
methodology for its application are presented in Section 4.6.

1A paper derived from the content of this chapter has been published in the proceedings of ACM-SAC 2007 [16].

49

50 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

4.1 The problem of the transfer of culture

Let us consider two sets of agents, G and G′ in a state s, and two corresponding maximal
cultures: Tmax

G (s) and Tmax
G′ (s). We do not impose any restrictions on the agents that are

in G and in G′, so G and G′ can be the same, overlapping, or distinct. We use the maximal
cultures of the sets, because they are uniquely defined. Without the loss of generality, let
us assume that T 0

G = Tmax
G (s) \ Tmax

G′ (s) 6= ∅2. Then, the problem of culture transfer from
G to G′ can be seen as the problem of transmitting T 0

G to G′ so that in some state s′ after
s, Tmax

G′ (s′) contains T 0
G. This problem is formulated as follows:

given two sets of agents G,G′ and the maximal cultures Tmax
G (s) of the set G in

the state s, Tmax
G′ (s) of G′ in the state s, find a state s′ such that is after(s′, s),

and Tmax
G′ (s′) contains T 0

G = Tmax
G (s) \ Tmax

G′ (s).

This problem somehow extends the example from problem class 21 in the classification of
problems involving culture (Table 3.5), which is formulated as follows:

given a set of agents G and a culture TG of the set G, find a state s′ such that
TG is a culture of G in the state s′.

With respect to problem class 21 we need to find a state s′ such that TG is a culture of
another set of agents G′.

The problem of preserving a specific culture of the set is a particular case of the problem
of culture transfer, where G is the initial set of agents in the state s, G′ is the same set
of agents in the state s′, and T 0

G is defined as above, or given as a subset of Tmax
G (s) that

must be preserved. This problem is formulated as follows:

given a set of agents G in a state s, the same set in a state s′, is after(s′, s),
denoted as G′, and a culture TG of the set G in the state s, preserve TG as a
culture of G′ in the state s′.

This problem extends examples of problem classes 23 and 24 in the classification of prob-
lems involving culture (Table 3.5). Example for problem class 23 is formulated as follows:

given a set of agents G, a state s, and a culture TG of the set G in s, preserve
TG as a culture of G also in the next state s′.

Problem class 24 extends problem class 23 with specifying an evolution of culture:

given a set of agents G, a sequence of states {s}, and an evolution of culture
TG of the set G in the subset of the sequence of states, {TG}, preserve TG as a
culture of G also in the other states of the sequence.

With respect to problem classes 23 and 24, the problem of preserving a culture of the set
assumes that the set of agents G changes since the state s and becomes G′ in the state s′.

Let us recollect that traits rarely exist in isolation, rather, they are related to each
other, and, depending on the individual, the transmission of one trait may lead to ap-
pearance of other traits. For example, let us imagine that Michael tells Li that Company

2If T max
G′ (s) \ T max

G (s) 6= ∅, then we can swap G and G′, while if T max
G (s) = T max

G′ (s) then we can consider strong
cultures of the sets in the hope that they differ, but it is important to have this non-empty difference of cultures if we speak
about culture transfer, otherwise there is no problem of transfer.

4.1. THE PROBLEM OF THE TRANSFER OF CULTURE 51

released a new web browser, Browser. Even though Li never saw Browser, she can guess
that using Browser it is possible to visit web pages, play videos online, and so on. So,
the transmission of a single piece of knowledge Browser is browser lead to appearance
of such behavior as V isit homepage using Browser, Watch videos using Browser, etc.
Therefore, we argue that in practice, transferring T 0

G from G to G′ may result in trans-
ferring a bigger set of traits, T ′0

G such than T 0
G ⊆ T ′0

G . An example further supporting our
argument can be find in [87, pp. 26,30], where the authors observed that by learning En-
glish, Arab students learned “something else”, namely some implicit elements of Western
culture.

Definition 14 (implicit culture relation) A set of agents G′ in a state s′ is in implicit
culture relation with a set of agents G in a state s for a set of traits T iff

• is after(s′, s),

• T is a culture of G in the state s,

• T is a culture of G′ in the state s′,

• agents of G′ do not perform explicit actions to acquire traits from T .

By the last items in this definition we mean that traits from T are acquired implicitly,
without, for instance, enumerating all traits from T and the current culture of G′ and
intending to acquire those which are not yet in the culture. Another justification of the
word “implicit” in the name of the relation is that the definition does not refer to the
internal states of the agents, i.e. to their beliefs, desires, or intentions, and, in general, to
any knowledge about the set T or the composition of G and G′.

Now we would like to recollect the distinction between action and behavior we discussed
in Section 3.3. In AI literature, an action is an atomic piece of activity, while behavior
is perceived as something more complex, and can include several actions. Previously, we
said that in a general case, it is hard or even impossible to represent relation between
behavior and actions. However, in the following we try provide such representation for a
particular case.

Let us consider a sequence of actions α1, α2, . . . , αk. We can consider a behavior τ1

that corresponds to this sequence. A behavior τ2 corresponds to another sequence of
actions αk+1 . . . αn. Let us assume that τ1 → τ2 (τ1 implies τ2) for some set of agents G.
This means that τ1 is always followed by τ2. Let us consider behavior representing this
implication for each member of community: τG = τ1 → τ2 can be considered as composed
of τ1 and τ2. The Implicit Culture Framework, presented in the following sections, focuses
on this narrower problem of transferring behavior in the form α1 ∧ α2 ∧ . . . ∧ αk →
αk+1 ∧ . . . ∧ αn from a set of agents G to a set of agents G′.

If a trait τ transferred from G to G′ in some state preceding s′, we assume that it was
transmitted, and therefore transmitted(a, a′, τ, s′) holds for some a ∈ G, a′ ∈ G′. Since
the trait is transmitted, for τ being in a culture of G′ it is enough that it is shared by G′.
We show that it is possible to achieve such sharing and transmission using our approach,
and, therefore, to achieve the implicit culture relation between G′ in s′ and G in s for a
set of traits T . We call the architecture that helps to establish this relation between two
sets of agents a System for Implicit Culture Support.

52 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Figure 4.1: The meta-model of the Implicit Culture concepts.

4.2 Meta-model

The meta-model that illustrates relations between the core Implicit Culture concepts is
shown in Figure 4.1. An environment is described in terms of agents which perform actions
on objects. An object is defined by its name and a set of related attributes. Attributes
represent additional information about objects, actions, or agents and consist of a name, a
value, and the type of the value. An agent is a particular type of object that can perform
actions. Several agents can be referred to as a group. An agent’s membership in the
group can be restricted in time. An action is characterized by its name, a set of related
attributes, and a set of related objects. Each performed action is a specific kind of action
that contains the timestamp and the agent of the action. The actions are considered in
the context of scenes, where each scene contains the set of actions that are possible to
perform, and the set of objects agents can operate with. After the agent performs one of
the possible actions, the performed action and the scene constitute an observation.

A performed action is represented using the following syntax:

action name(agent name(ag attribute name1 = ag attribute value1);

object name1(o attribute name1 = o attribute value1), . . . ; (4.1)

attribute name1 = attribute value1, . . . ; timestamp),

Thus, we start from the name of the action and then list the agent, objects, attributes,
and the timestamp of the action, recursively listing attributes for the agent and objects.
An action, object, agent, timestamp, or attribute value can be a variable denoted as
wildcard (*) or as a small Latin letter. Full syntax of the language we use to represent
actions is given in Appendix A.

In relation to the formalism we present in Chapter 3, the concept of scene we introduced
here, is an abstraction for representing “similar” states. Here by similarity of the states
we mean that the same or similar behavior can be performed in those states. Assuming
that behavior depends on the context, which is the part of environment faced by agent
performing behavior, we use scenes to represent the context. Behavior in such formulation
is similar to the concept of situated action [138]. In such formulation, an observation puts
a performed action in relation with the scene, i.e. the context in which the action has

4.3. GENERAL ARCHITECTURE OF A SICS 53

been performed. Thus, in the following we can carry out analysis of which actions are
performed in which scenes.

Let us consider a scene c = (α1, . . . , αk; o1, . . . , ol) that contains k possible actions and
l objects. We introduce the notion of probability of performing an action α in the scene
c, denoted as p(α|c). We can use observations about past actions of a set of agents to
estimate such probabilities.

Definition 15 (expected action) An action α is an expected action in a scene c iff

p(α|c) = max
αi∈c

p(αi|c).

Note that there can be more than one expected action in a scene.

4.2.1 Cultural theory

As we mentioned previously, the Implicit Culture Framework transfers behavior in the
form α1 ∧ α2 ∧ . . . ∧ αk → αk+1 ∧ . . . ∧ αn. To represent the behavior that is subject to
transfer from G to G′ we introduce the notion of cultural theory.

The cultural theory, denoted as θ, is expressed by a set of rules of the form:

A1 ∧ · · · ∧ An → C1 ∧ · · · ∧ Cm. (4.2)

Here A1 ∧ · · · ∧An is the antecedent and C1 ∧ · · · ∧Cm is the consequent. Each element of
the antecedent and of the consequent is either an action α represented as in Equation 4.1,
or a temporal predicate that represents a time constraint. The rules of the theory should
be interpreted as if...then rules that express the idea that “if in the past the antecedent
has happened, then there the consequent will happen”. We describe the rules of cultural
theory in detail in Section 4.5.

Definition 16 (cultural action) An action α is a cultural action with respect to a cul-
tural theory θ iff it matches one of the atoms Ci of the consequent of rules of θ.

Note that we require matching rather than equality because we assume that both cultural
action and atoms of the consequent can contain variables.

4.3 General architecture of a System for Implicit Culture Sup-
port (SICS)

The general architecture of a SICS is shown in Figure 4.2 and consists of the following
three components:

• The observer, which collects information about actions performed by agents of G

and G′ in different scenes and stores this information in a database of observations;

• The inductive module, which analyzes stored observations of agents of G and ap-
plies learning techniques to find patterns of user behavior, i.e. the culture of the
community represented as a cultural theory ;

54 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Figure 4.2: The architecture of a SICS. The SICS includes three components: the observer, which
monitors agent activities and stores in the database (DB) the observations about the performed actions;
the inductive module, which discovers cultural theory about agent behavior by analyzing observations;
the composer module, which uses observations and the cultural theory to manipulate scenes so as to
change behavior of another set of agents as required by the cultural theory.

• The composer, which uses the information collected by the observer and the theory
produced by the inductive module in order to manipulate scenes faced by the agents
of G′ in such a way that actions of G′ are consistent with the cultural theory.

The goal of a SICS is to establish the implicit culture relation between sets of agents
G and G′ for a set of traits T . The architecture achieves the implicit culture relation in
the following two steps:

• Step 1 : Expressing T , a set of traits to be transferred from G to G′, as a cultural
theory θ.

• Step 2 : Manipulating the scenes faced by G′ in such a way that some of expected
actions of G′ in the resulting scenes satisfy θ.

Both steps are performed using observations about actions of agents of G and G′. It is
important to note that in practice, the set of traits T to be transferred is not pre-defined,
but must be discovered. The proposed SICS architecture of addresses this problem by
means of the inductive module. In a general case, we assume that the cultural theory θ

consists of two parts. The first part, θ0, called domain theory consists of the pre-defined
behavior traits to be transferred from G to G′. The second part is learned by inductive
module. In the example of newcomer in organizational settings by Wyatt-Haines [154],
given in subsection 2.3, θ0 corresponds to the knowledge about systems and processes the
key people the newcomer gets explicitly when starts working (explicit culture, in terms of
Section 2.2). The other part of the theory corresponds to that part of the culture which
is left implicit, and must be learned by the newcomer alone (implicit culture).

4.4. DETAILED ARCHITECTURE OF A SICS 55

The first step of achieving the implicit culture relation leads to the problem of induction
of the cultural theory. Let us re-formulate this problem as follows:

Inductive Module Problem. Given a set of performed actions of the agents of G,
find a cultural theory θ about their actions.

The inductive module problem is a rather standard learning problem: inducing the
patterns of behavior of a group given a set of observation. This problem can be solved
using standard data mining techniques given a proper choice of the language for expressing
the cultural theory.

In the following section we present a detailed SICS architecture elaborating in more
details the second step of achieving the implicit culture relation.

4.4 Detailed architecture of a SICS

In this section, we describe the composer module of the general SICS architecture in detail
and present algorithms used in the composer.

Returning to the second step of achieving the implicit culture relation by SICS, the goal
of the composer is to propose a set of scenes to agents of G′ such that the expected actions
of these agents in these scenes satisfy the cultural theory θ. In our implementation, the
composer consists of two main submodules, as shown in Figure 4.3:

• The Cultural Actions Finder (CAF), which takes as inputs the theory θ and the
observations of G′, and for the most recent observation that matches the antecedent
of one of theory rules, CAF produces as output the cultural actions, i.e. the actions
from the consequents of the fired rule of θ.

• The Scene Producer (SP), which takes the cultural actions produced by the CAF
and, using the observations of G and G′, for each cultural action produces a scene
such that the cultural action is among expected actions in the scene.

As we mentioned earlier, there can be more than one expected action in a scene.
Therefore, we require that the cultural action is among expected actions in the scene. A
possible implementation can give priority to scenes where the cultural action is the only
expected action, and if there are no such scenes, find a scene where the cultural action
is one of expected actions. Note also that in general, CAF might return several cultural
actions, then SP finds a scene for each of the cultural actions and returns a set of scenes.

Thus, the second step of achieving the implicit culture relation leads to the problem
of prediction of scenes. Let us formulate this problem as:

Scene Producer Problem. Given a set of performed actions of the agents of G

and G′, and given a cultural action α for an agent a ∈ G′, find a scene c such
that α is among the expected actions of a in the scene c.

The most important aspect of the scene producer problem is the requirement of the
effectiveness of the scene w.r.t. the goal of having a specific action performed, namely
the persuasiveness of the scene. The scene producer problem is different from classical
supervised or unsupervised classification problems and clustering.

56 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Figure 4.3: The internal architecture of the composer module. In the first step, the composer looks
through observations to select an action that matches the antecedent of the rules of the cultural theory.
In the second step, the CAF produces cultural actions corresponding to the rule fired in the first step.
In the third step, the SP produces scenes in which the cultural actions are likely to be performed.

In the following subsections we describe the details of the algorithms implemented by
the two modules.

4.4.1 Cultural Actions Finder

The CAF matches the observations of G′ with the antecedents of the rules of θ. The CAF
starts with the most recent observation, then moves to the second last if the most recent
observation does not match any rule, and so on. If the CAF finds an observation that
matches the antecedent of a rule, then it takes the consequent of the rule as a cultural
action. Figure 4.4 presents the algorithm of the CAF. For each rule r (ant→cons), the
function match(ρ,α) checks whether the atom ρ of ant=ant(r) matches the action α; then
the function find-set(ant,past-actions) finds a set of past-actions of past actions that
match the set of atoms of ant; and finally, the function join(past-actions,r) joins the
variables of r with the actions in past-actions, i.e. it fills the corresponding variables in
the rules with values from past-actions. The function cons(r′) returns the consequent
of the rule r′.

4.4.2 Scene Producer

For each of the cultural actions found by the CAF, the SP tries to find a scene where
the cultural action is the expected action. Thus, given a cultural action α for the agent
a1 ∈ G′ that performed actions in the set of scenes C(a1), the algorithm used in SP
consists of three steps:

1. find a set of agents G0 ⊆ G ∪ G′ that performed actions similar to α and the sets of
scenes C(a), a ∈ G0, in which these agents performed actions;

2. select a set of agents G′
0 ⊆ G0 most similar to a1;

4.4. DETAILED ARCHITECTURE OF A SICS 57

loop
get the last performed action α
for all rule r of θ do

for all atom ρ of ant(r) do
if match(ρ,α) then

if find-set(ant,past-actions) then
r′=join(past-actions,r)
return cons(r′)

end if
end if

end for
end for
return null

end loop

Figure 4.4: The algorithm of the CAF submodule.

for all a ∈ G ∪ G′ do
for all performed actions αa of a do

if sim(αa,α)> min sim then
if a /∈ G0 then

a → G0

end if
c → C(a)

end if
end for

end for

Figure 4.5: The algorithm for the first step in the SP.

3. estimate (using G′
0) the similarity between the expected actions of a1 in the scenes of

the set C =
⋃

a∈G0
C(a) and the cultural action α. Return the scene that maximizes

the similarity and propose it to a1.

Figure 4.5 shows the simple algorithm used in the first step in SP. An agent a is added
to the set G0 if the similarity sim(αa, α) between at least one of its performed actions αa

and α is greater than the minimal similarity threshold min sim. The scenes c in which
the αa actions have been performed are added to C(a), which is the set of scenes in which
a has performed actions similar to α. At this point we do not specify how the similarity
between actions is calculated. We just assume that it is a function that can be either
generic or domain-specific, and its values range from 0 (not similar at all) to 1 (the same).
We describe examples of such a function in Section 4.5.

In the second step, the SP algorithm selects k neighbors in G0 in such a way that these
neighbors are most similar to a1 with respect to the function of similarity between two

58 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

agents, defined as follows:

sim(a1, a) =
1

|C(a1) ∩ C(a)|
∑

c∈C(a1)∩C(a)

1

|Aca1
(c)||Aca(c)|

∑

αa1
∈Aca1

(c)

∑

αa∈Aca(c)

sim(αa1
, αa)

(4.3)
where C(a1) ∩ C(a) is the set of scenes in which both a1 and a performed at least one
action. Aca1

(c) and Aca(c) are the sets of actions that a1 and a, respectively, have
performed in the scene c. Essentially, this similarity function defines the similarity between
two agents as the similarity between their actions in scenes where they both performed
actions. Equation 4.3 can be replaced with a domain-dependent agent similarity function,
if needed.

In the third step, the SP algorithm selects the scenes in which the cultural action is the
expected action. To do this, we first estimate the similarity value between the expected
action of a1 and the cultural action for each scene c ∈ C =

⋃

a∈G0
C(a), and then select

the scene with the maximal value. The function to be maximized is the expected value
E(sim(αa1

, α)|c), where αa1
is the action performed by the agent a1, α is the cultural

action, and c ∈ C is the scene in which αa1
is situated. The following estimate is used:

Ê (sim(αa1
, α)|c) =

∑

ai∈G′
0

E (sim(αai
, α)|c) · sim(a1, ai)

∑

ai∈G′
0

sim(a1, ai)
(4.4)

that is we calculate the weighted average of the similarity of the expected actions of the
neighbors of a1 in the scene c, where the weight sim(a1, ai) is the similarity between the
agent a1 and the agent ai, whereas E (sim(αai

, α)|c) with ai ∈ G′
0 in Equation 4.4, to

avoid recursion, estimated as follows:

Ê (sim(αai
, α)|c) =

1

|Acai
(c)|

∑

αai
∈Acai

(c)

sim(αai
, α), (4.5)

which is the average of sim(αai
, α) over the set of actions Acai

(c) performed by ai in c.

The algorithms described above are fully implemented in Java using XML for express-
ing the cultural theory, as described in the next chapter. However, the algorithms given
here are only one possible implementation, and they can be further refined or modified.
For instance, in the second step we can consider not only the similarity between agents
based on their actions, but also general similarity between agents based on their names
and attributes. This would correspond to the following equation:

sim(a1, a) = γ · sim(a1, a)+

+ 1−γ

|C(a1)∩C(a)|

∑

c∈C(a1)∩C(a)
1

|Aca1
(c)||Aca(c)|

∑

αa1
∈Aca1

(c)

∑

αa∈Aca(c) sim(αa1
, αa), (4.6)

which is a modified Equation (4.3), sim(a1, a) is the similarity between agents a1 and
a, and 0 ≤ γ ≤ 1 is a coefficient that defines which similarity (the one between agents,
or the one between actions which agents performed) has more weight. Equation (4.3) is
obtained from (4.6) taking γ = 0.

4.5. IC-SERVICE 59

4.5 The IC-Service: an implementation of the Implicit Culture
Framework

In this section, we describe the IC-Service that implements the Implicit Culture Frame-
work. It is a multi-purpose web service which provides simple and configurable access
to the SICS described in previous sections. We have chosen the web service technology
among the possible solutions because it follows the Service-Oriented Architecture (SOA)
paradigm supporting principles of universal access and platform independence. Applica-
tions of the Implicit Culture Framework have a direct dependence on the domain and must
be customizable. Therefore, configurability and extensibility without code modification
became the main focus of our work on the IC-Service.

We first present the architecture and the invocation scenarios of the IC-Service, then
proceed with the description of modules of the IC-Service and discuss the implementation
of the cultural theory.

4.5.1 The IC-Service architecture and invocation scenarios

The IC-Service architecture is based on the meta-model of the Implicit Culture concepts
described in Section 4.2, and on the general and detailed SICS architectures described in
Section 4.3 and Section 4.4. In the following, we describe in details the SICS implemen-
tation used in the IC-Service and justify why particular tools and architectures have been
adopted.

The IC-Service is the remote part of the SICS which provides the access to the Implicit
Culture Framework functionalities. The SICS architecture consists of three main layers
(Figure 4.6):

• The SICS Remote Client provides a simple interface for the remote clients. It presents
a wrapper that hides information exchange protocols.

• The SICS Remote Module defines protocols for information exchange with the client
and converts the objects of the SICS Core into the format compatible with these
protocols.

• The SICS Core provides the implementation of the Implicit Culture approach. This
layer is responsible for storing observations, managing theory, and proposing scenes.

There are several ways the layers of the SICS architecture can be combined, allowing for
the inclusion of the IC-Service in various applications ranging from small-size applications
to complex distributed systems:

1. SICS can be included in the application as a library. In this case the SICS Core deals
directly with the objects, actions, etc. of the application. This way should be chosen
when the application is not necessarily distributed and can be tightly-coupled with
the library.

2. To enable remote access, the SICS core can be invoked via the SICS Remote Module
as a SOAP web service or an EJB component (using SOAP/RMI). This scenario
should be adopted when the service is a part of a distributed system, but for some

60 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Figure 4.6: The detailed SICS architecture implemented as the IC-Service.

4.5. IC-SERVICE 61

reasons there is no need or opportunity for using the SICS Remote Client. This may
happen, for instance, when using the IC-Service in portable devices that have limited
resources. However, in this case the application must take care of communicating
with the service.

3. The easiest way to add recommendation service in an application is to access the
IC-Service via the SICS Remote Client that hides the technical details of the com-
munication mechanism from the application designer. This way should be adopted
for using the IC-Service in complex applications in a fully decoupled way.

The described scenarios illustrate the possibility of including the IC-Service in various
applications ranging from small-size applications to complex distributed systems. The
IC-Service was developed using JAX-RPC (Java API for XML-based Remote Procedure
Calls3), a programming model that enables invocation of web services across heteroge-
neous platforms. The SICS modules are built using the Spring framework4, which allows
assembling of loosely-coupled components in a complex system via XML configuration
files. All modules apart from the Storage Module and the Rule Storage Module commu-
nicate through Java function calls and serializable objects. By avoiding Java collections,
the easier interoperability with SOAP is enabled.

SOA has been chosen among the possible architectures because it supports principles
of universal access and platform independence and allows the IC-Service to be transpar-
ently located inside or outside the enterprise. Support of EJB technology simplifies the
use of the IC-Service in applications developed with Java technology. The Storage Mod-
ule supports two possible storage facilities: XML files and the database storage. XML
files provide a simple, easily deployable, and portable solution for applications where the
observation history is not big and must not be accessed frequently. The database option
should be chosen with more complex applications involving heavy data processing.

In the following we describe the modules of the architecture in detail.

The SICS Remote Client.

The main purpose of the SICS Remote Client is to provide a simple interface for appli-
cations that access the IC-Service remotely. It is composed of Remote Client Adapters,
Spring Proxies/Adapters, and Aspect-Oriented Programming tools (AOP Helpers). Re-
mote Client Adapters are responsible for the asynchronous invocation of the SICS Remote
Module. Spring Proxies/Adapters provide the connection with the SICS Remote Module
via SOAP or RMI(Remote Method Invocation). AOP Helpers provide logging, validation
and exception management. SOAP5 is a lightweight XML-based protocol for exchanging
information in a distributed environment.

The SICS Remote Module.

The goal of the SICS Remote Module is to define protocols for information exchange
between the SICS Core and the client, and to provide the conversion of SICS Core objects

3http://java.sun.com/webservices/jaxrpc/
4http://www.springframework.org
5http://www.w3.org/TR/soap/

62 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

into the format specified by these protocols. The SICS Remote Module includes the Spring
Proxies/Adapters for the remote invocation of the modules of the SICS Core using SOAP
or RMI. The use of Apache Axis in addition to the Spring framework allows the SICS
Core to be available as a SOAP web service. EJB part of the Remote Module allows for
the use of the SICS Core modules as an EJB components in J2EE environment. SICS
Adapters provide the connection between the SICS Remote Module and the SICS Core.
Finally, AOP Helpers deal with logging, validation and exception management.

The SICS Core.

The SICS Core implements the detailed SICS architecture, providing the means for man-
aging observations, the cultural theory, and recommendations. Composer Adapters
are auxiliary modules, in particular, responsible for the asynchronous execution of the
Composer services and cache management. The main functionality of the Composer
Module (Figure 4.7(a)) is to provide recommendations, and it also contains Similarity
Utilities, which implement the algorithms for calculating the similarity between objects,
actions, etc., and CAF Utilities used by the Cultural Action Finder submodule for finding
actions consistent with the theory. To discover a theory that expresses patterns in users’
behavior, the Inductive Module (Figure 4.7(b)) incorporates the implementation of
the Apriori Algorithm for the association rule mining [2] and its extension for generating
rules in the Apriori Rule Generator. The dashed line shows that the functionality of the
module can be extended with other learning techniques.

All parameters of a SICS instance are configured in the Configuration Module
shown in Figure 4.7(c). Each instance of the SICS can have different configurations of
the composer module (Composer Module Constants), the mechanism of processing the
theory in the inductive module (Inductive Module Constants), and similarity algorithms
(Configuration of Similarity Functions). The following two modules are responsible for
the configuration of a SICS instance: the XML Definition Loader, which loads the config-
uration of the similarity algorithm from the corresponding XML file; and the Simple Class
Wrapper, which loads the configuration of the similarity algorithm from the hierarchy of
classes used by the Spring framework.

The details of the Storage Module (Observer) are shown in Figure 4.7(d). This
module is responsible for storing information about the application domain, i.e., it can
be used to add or delete agents, manage groups, and save observations. Thus, this model
implements the functionality of the Observer Module in the general SICS architecture. The
SICS can use one of the following two modules to store data: the Database Storage Module
stores the data in a RDBMS whereas the XML Storage Module stores the information in
XML files. Storage Adapters provide asynchronous execution of methods of the Storage
Module and cache management. A powerful high performance query service for database
storage is provided by the Hibernate6 library. The Storage Module also includes a set
of tools to work with an XML representation of the SICS information: XQuery/XPath
Utilities are used to read data from an XML repository, Java/XML Transformers convert
SICS objects into XML format and JDom Utilities deal with editing of XML files.

6http://www.hibernate.org/

4.5. IC-SERVICE 63

(a) Composer Module

(b) Inductive Module

(c) Configuration Module

(d) Storage Module (Observer)

Figure 4.7: The architecture of the SICS modules implemented in the IC-Service.

64 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Figure 4.8: The meta-model of the cultural theory.

The Rule Storage Module is responsible for the management of the theory. For
instance, it can be used to add or remove theory rules. The internal architecture is
similar to the Architecture of the Storage Module, however, the Rule Storage Module
supports only XML storage facilities. Core AOP Helpers provide logging, validation
and exception management.

4.5.2 The cultural theory

The IC-Service supports the adjustment of a desired behavior of a group through con-
figuring rules of the cultural theory. The general description of a cultural theory was
given in Section 4.2. In this section, we describe the implementation of the theory in the
IC-Service. The meta-model of the cultural theory is shown in Figure 4.8). A rule of the
theory is defined in the form

if consequent then antecedent,

where consequent and antecedent consist of one or several predicates. The intuition is
that if consequent happened then antecedent will happen.

An example of the theory telling that if someone pressed “stop” button in an Italian
bus, then this person is exiting the next bus stop, can be expressed as

if press(a;stop button;;t) then exit(a;next stop;;t + 1)7

For a recommendation system, an example of the simplest recommendation strategy can
be expressed as

if request(a;;request-params=...;t)
then rate high(a;recommendation;request-params=...;t + 1)

7Please recollect that we are using syntax introduced in Section 4.2 and further explained in Appendixapp:LangSyntax.

4.5. IC-SERVICE 65

<?xml version="1.0" encoding="UTF-8"?>
<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="sics_rules.xsd">

<rule identifier="ICPatterns">
<antecedents>

<action-predicate>
<action-rule name="request" timestamp="*" timestamp_type="variable" name_type="constant">

<agents>
<agent-rule name="*" name_type="variable" />

</agents>
<objects>

<object-rule name="_x" name_type="variable">
<attributes>

<attribute-rule type="String" variable_type="variable" name="keyword">_y</attribute-rule>
</attributes>

</object-rule>
</objects>

</action-rule>
</action-predicate>

</antecedents>
<consequents>

<action-predicate>
<action-rule name="apply" timestamp="*" timestamp_type="variable" name_type="constant">

<agents>
<agent-rule name="*" name_type="variable" />

</agents>
<objects>

<object-rule name="_x" name_type="variable">
<attributes>

<attribute-rule type="String" variable_type="variable" name="keyword">_y</attribute-rule>
</attributes>

</object-rule>
<object-rule name="*" name_type="variable">

<attributes>
<attribute-rule type="String" variable_type="variable" name="pattern_name">*</attribute-rule>

</attributes>
</object-rule>

</objects>
</action-rule>

</action-predicate>
</consequents>

</rule>
</rules>

Figure 4.9: An example of the XML representation of the cultural theory in the IC-Service.

which means that recommendations for each user request must then obtain high ratings.

Each predicate describes either conditions on observations (action-predicates) or con-
ditions on time (temporal-predicates). A temporal-predicate includes a predicate name
that shows the semantics of the predicate, e.g. “less” or “equal”, and two time-rules
that impose constraints on timestamps of the compared performed actions. Each action-
predicate contains one performedAction-rule, which specifies conditions on the performed
actions. A performedAction-rule may specify conditions on the agent that performed the
action and also, being an action-rule, it specifies patterns on objects and attributes of the
action. In all rules names and elements can be constants or variables.

For all rules, names and values can be constants or variables, depending on nameType
and valueType parameters. If a name or a value is a constant, the corresponding elements
are considered only if they are equal to this pre-defined constant. In case of a variable, all
elements that match the defined structure are selected, regardless of their values. There
are two options of specifying a variable: using a wildcard (*), meaning that the element
takes any value, and using someName structure, which means that the value can be
any, as long as all values (there might be several occurrences of someName within the
same rule or in different rules) someName takes in the theory are the same.

66 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

An example of a cultural theory is given in Figure 4.9. It can be represented in the
language we use as:

if request(*; x(keyword= y);;*) then apply(*; x(keyword= y),*(pattern name=*);;*),

and means that if someone is requesting [pattern] for the problem x described by
the attribute keyword = y, then the returned pattern (specified with the attribute
pattern name = ∗) is applied for the problem x. This theory is used in the applica-
tion of the Implicit Culture Framework to the software pattern selection, described in
Section 5.2.

The described theory rules are used by the composer module to analyze observations
from the SICS storage. When an agent performs an action, the observation correspond-
ing to the action is matched with the antecedent part of the theory. The corresponding
consequents, where non-wildcard variables may be assigned corresponding values from
antecedents, are called cultural actions and used in the algorithm for providing recom-
mendations. The details of the algorithm used to match observed actions with the theory
are provided in Section 4.4.

The cultural actions are used to find scenes where actions similar to cultural actions
happened. The IC-Service provides a simple algorithm that calculates the similarity
between pairs of actions using predefined similarity weights for names, timestamps, agents,
objects, and attributes of the actions. These values can be configured for each particular
type (action, object, agent, or attribute), for each particular instance of the element, or
for particular pairs of elements. We do not present technical details of the similarity
configuration in the thesis, but the algorithm is conceptually similar to the one described
by Spanoudakis and Constantopoulos [134].

If an application requires a custom algorithm for calculating similarity between partic-
ular kinds of elements, then it can be easily added into the system using the configuration
file. For instance, in the system described in Section 5.3, some attributes were com-
pared using WordNet-based similarity metric, while in the IC-Patterns system described
in Section 5.2 an ad-hoc algorithm for calculating similarity between user queries has been
used.

4.5.3 Developing recommendation systems using the IC-Service. Lessons
learned

Existing recommendation systems are usually tightly-coupled with the application do-
main, whereas recommendations services should be general, flexible, ubiquitous, and
compositional. The IC-Service can be seen as a domain-independent solution for the
development of general recommendation systems. The IC-Service has a flexible config-
uration mechanism that allows for its easy inclusion in different applications using web
service technology. The recommendation algorithms rely on past user experience and they
can be easily adapted to a specific domain in order to improve recommendation quality.
Also, one of the problems is that recommendation systems developed so far mostly require
explicit feedback (e.g. evaluation of items, relevance feedback). The use of the IC-Service
in such applications allows for implicit feedback collection, which is now used only in some
systems. We have developed two recommendation systems, described in Section 5.2 and

4.5. IC-SERVICE 67

Section 5.3 of Chapter 5, using the IC-Service. In this section, we briefly summarize the
experience we got from these applications.

Web service technology simplifies the development of recommendation systems and
allows for the integration of the recommendation service to existing systems. However,
there are several open questions regarding the design of services to be used as long-lived
loosely-coupled components of distributed systems. What makes the IC-Service different
from standard information services such as book-selling service is that it (i) is oriented
on the use in various application domains, (ii) processes client data according to the rules
defined for a particular application domain, (iii) supports storage of potentially huge
amount of clients’ data, (iv) analyzes the collected information in order to adapt the
provided functionality to the needs of a particular client.

The principles underlying the design of such services are not well-established yet.
Curbera et al. [39] describe customization of SOA components as one of the key char-
acteristics. They argue that “a SOA programming model should enable building ser-
vices and modules that programmers can customize without source code modification”.
Indeed, it is unlikely that a service can be reused by different applications without re-
configuration. For its nature, the IC-Service has a direct dependence on the domain of
the application and must be customizable. Therefore, configurability and extensibility
without code modification were the main focus of the design process. To reach the nec-
essary properties such as adequate level of granularity, flexible configuration mechanism,
powerful storage and data management facilities, etc., we used state-of-the-art tools and
solutions, namely, the combination of the original Implicit Culture theory with design pat-
terns (“Adapter”,“Proxy”, “Facade”, “Abstract Factory”, “Factory Method”, etc.) [56],
Aspect-Oriented Programming and auxiliary frameworks such as Spring and its principle
of “designing to interfaces”.

Multilevel organization of features and support of both XML and database storages
are involved to satisfy the portability and scalability requirements. XML storage format
imposes restrictions on the number of observations that can be stored. These restrictions
can be overcome using database storage or deploying several instances of the IC-Service.
To increase the performance, operations responsible for storing observations run in sep-
arate threads or JMSs (Java Message Services) under J2EE environment. Independent
and configurable cache8 is used at each functional level.

4.5.4 Implementation and integration details

The IC-Service has been developed with JAX-RPC, a programming model that enables
invocation of web services across heterogeneous platforms. The SICS modules are built
using the Spring framework, which allows for assembling of loosely-coupled components in
a complex system via XML configuration files. All modules apart from the Storage Module
and the Rule Storage Module communicate via Java function calls and serializable objects.
Support of EJB technology simplifies the use of the IC-Service in Java applications.

The IC-Service can be added in an application in a fully decoupled way, and accessed
from anywhere at any time. This guarantees ubiquity, allowing the system to process
data from from different sources. For instance, ubiquity is very useful in the problem

8http://ehcache.sourceforge.net/

68 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

of providing cross-selling recommendations. Several communicating IC-Services can be
seen as building blocks in the development of an efficient and robust decentralized sys-
tem. At the same time, the IC-Service is a general-purpose and domain-independent
application that provides means for storing, analyzing and reasoning about the observed
behavior. It presents a higher granularity than specialized recommendation modules.
Once deployed, the IC-Service can be used by several applications. Changes and exten-
sions can be smoothly embedded in the working system by modifying XML-based domain
description or the theory. This leads to minimizing efforts on development and reducing
overheads on support of heterogeneous systems.

4.6 Applying the Implicit Culture Framework in a particular
scenario: a methodology

In this section we describe how to apply the Implicit Culture Framework in a specific
scenario. We provide a set of steps to be performed when applying our approach. At the
moment, we do not provide any strict requirements on how the steps should be performed,
leaving the choice of tools and methods open. Thus, the steps should be considered only
as guidelines. However, some ideas can be obtained by looking on how we apply the
Implicit Culture Framework in Chapter 5.

In general, for using the Implicit Culture Framework, the following steps must be
accomplished:

1. Describe the application domain in the terms of the meta-model of the implicit
culture concepts.

2. Define the domain theory.

3. Choose how to use the IC-Service in the application.

4. Configure the observer module, i.e. decide which actions, objects, attributes will be
stored.

5. (*)Configure the inductive module, i.e. decide which algorithms will be used, how
often they will be applied to learn theory, and how often the learned theory will be
merged with the domain theory.

6. Define algorithms for calculating the similarity between agents, actions, objects,
attributes.

7. Configure the composer module, i.e. how many scenes are proposed, define similarity
thresholds, who belongs to group G and who belongs to G′, etc.

The steps which are not supported in the current implementation of the framework are
marked with a star.

In the applications described in the following chapter, we explain these steps in more
detail with examples (Sections 5.2, and 5.3).

4.7. CONCLUDING REMARKS 69

4.7 Concluding remarks

Let us briefly summarize the main ideas of this chapter. The Implicit Culture Framework
is an agent-based framework that includes a meta-model for defining the application
domain, a general architecture of SICS for behavior transfer, a detailed architecture of
SICS modules, and algorithms for their functioning. It also includes the IC-Service, a
general-purpose, domain-independent service that implements the SICS architecture and
the algorithms. Finally, it includes a methodology that provides guidelines for applying
the Implicit Culture Framework in practice.

The current implementation of the framework focuses on a narrow problem of trans-
ferring specific traits that represent implication relationships between actions of agents.
When the transfer of these traits takes place and the set G′ starts behaving similarly to
G, we call this the implicit culture relation. We argue, that even that technically the Im-
plicit Culture Framework transfers only behavior, in practice, a side-effect of such transfer
might be the transfer of knowledge and experience.

We have presented the meta-model of the concepts used in the framework: agents,
objects, attributes, actions, scenes, performed actions, observations, etc. Our notion of
object as something agents act upon is very similar to the notion of artifacts in multi-agent
systems, mentioned in Section 2.1. It thus satisfies the need for describing the object of
agent physical action, posed by Omicini et al. [107]:

A notion of agent tool, or artifact, is then required, which could allow a theory
of agent physical action to be developed at the same level of refinement as the
theory of agent communicative actions.

The SICS architecture is a part of the Implicit Culture Framework that performs the
specified transfer of the set of traits. The transfer requires several steps: the traits are
first represented as a cultural theory, and then the SICS manipulates with the scenes, i.e.
contexts of agent actions, faced by the agents of G′. The purpose of the manipulation
is to make agents behave according to the cultural theory. While in Chapter 5 we apply
the SICS only with pre-defined cultural theories, the general SICS architecture includes
the inductive module for learning the theory about the set G. In a way, similarly to the
implicit-explicit culture dichotomy or duality, discussed in Section 2.2, we now transfer
explicitly represented part culture, while the inductive module enables the transfer of the
implicit culture, which is not immediately obvious or told to newcomers, as in example
by Wyatt-Haines (see Section 2.3). The SICS architecture aims at achieving the implicit
culture relation between G′ and G for the set of traits T , but since in the algorithms
of CAF and SP we speak about similarities and probabilities, in general, the SICS can
achieve the implicit culture relation only with a certain degree of probability.

We have described the IC-Service, an implementation of the Implicit Culture Frame-
work. As we further show, it can be used as a recommendation service. To the best
of our knowledge, only the IC-Service provides a domain-independent recommendation
service that can be added into an application using several invocation scenarios (Java
library, an Enterprise JavaBeans (EJB) component, a web service). Moreover, by using
ad-hoc similarity configuration, the IC-Service supports both collaborative filtering and
content-based recommendation methods.

70 CHAPTER 4. IMPLICIT CULTURE FRAMEWORK

Finally, we have provided a methodology for applying the Implicit Culture Framework
in practice.

Chapter 5

Applications of the Implicit Culture
Framework

This chapter describes several applications of the Implicit Culture Framework in the field
of recommendation systems.1 In Section 5.1 we describe Implicit, a recommendation sys-
tem for web search. In Section 5.2 we present IC-Patterns, a system that helps developers
to select software patterns suitable for their design problems. In Section 5.3 we describe
an application to the problem of web service discovery.

For each application we first provide a brief introduction in the domain, and more
background, when necessary. Second, we describe how we applied the Implicit Culture
Framework and the IC-Service (where applicable). We then proceed with the description
of the implemented system and review the related work, where it deserves a separate
section.

5.1 Web search

Internet contains a lot of answers to our everyday questions and search engines are aimed
at helping us to find the answers in a set of relevant links. However, results produced by
search engines are mostly impersonalized and satisfy needs of “average” users. If interests
of a user are specific, the most relevant link might not be among the top ten shown by
conventional search engines. As stated by Gori and Witten [61]

[...] the need to protect minorities can only be addressed within new paradigms;
new, personalized views of the web that supplement today’s horizontal search
services. Different users may merit different answers to the same query [...].

In the literature this problem is addressed using Internet agents, recommendation sys-
tems and community-based search. Internet agents monitor user browsing behavior, learn
preferences and build profiles of users to assist in their web browsing [36, 89]. Coalitions
of agents are also used for answering queries of single or multiple users [35, 100] and

1Papers derived from Section 5.1 have been published in the proceedings of AAMAS 2005 [17] and in the proceedings
of the MAIRRS workshop at IJCAI 2005 [20]. A paper derived from Section 5.2 has been published in the proceedings of
ISC 2006 [18]. Papers derived from Section 5.3 have been published in the proceedings of BIS 2007 [83] and IEEE Journal
of Software [19].

71

72 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

specific mechanisms such as auction protocols and reward techniques are applied to im-
plement collaboration among agents [150, 149]. In order to personalize recommendations,
recommendation systems analyze user queries, the content of the visited pages, or implicit
and explicit indicators of satisfaction in order to extract knowledge about user needs and
patterns of behavior. Recommendation systems are usually classified as content-based
systems, which analyze the content of web pages [36, 131, 142], collaborative filtering sys-
tems [70, 76, 84, 90], which produce recommendations based on the similarity of users,
and hybrid systems that combine the two approaches [9, 28, 101]. Although groups of
users can have common interests or deal with similar problems, Internet agents and rec-
ommendation systems usually focus on isolated users. Differently, in the research on
community-based web search (e.g., I-SPY [130], Beehive [75], and other systems [4, 51])
the focus is on the preferences of the community rather than those of a single user.

In the majority of solutions developed to date, explicit feedback from the user is re-
quired. This means that after receiving search results users must evaluate them, e.g. by
rating, or ranking. This requires an additional effort from users and, therefore, explicit
feedback is often discouraged [120]. Furthermore, sometimes users are inconsistent in the
explicit ratings provided [82]. All these suggests that implicit indicators of user inter-
ests should be exploited. Moreover, the study by Fox et al. [55] has shown that implicit
measures can be a suitable alternative to explicit feedback.

Summarizing all things above, we see the need for systems supporting web search in
communities of like-minded users with specific interests. Moreover, such systems should
use implicit feedback where possible and provide means for sharing search experience
with the community members, i.e. the content found relevant by someone should be
immediately available for others submitting similar queries. The goal of such systems
should be to improve the quality of web search for the community.

In this section, we present a multi-agent recommendation system called Implicit, which
is intended to support the web search of communities of people working together (e.g. a
project team, PhD students of the same department, a community of practice). Such
communities have specific common interests common interests related to their activities.
Even though Web 2.0 provides a lot of tools for representing explicitly such communities
(Facebook, LinkedIn, to name a few), these tools not necessarily provide support for web
search. Our system is intended to be used in such communities for the purpose of sharing
their search experience. The system can be used in order to increase quality of search in
small communities, in terms of precision and recall, by supporting collaboration of the
community members and sharing experience about using particular web links relevant to
their specific interests.

The Implicit system aims at helping such communities to share their history of searches
to recommend links relevant to their interests. Users submit their queries to the system
and Implicit suggests specific links and people to contact. To produce recommendations
relevant to community’s specific interests, the system uses implicit feedback, namely, ob-
served behavior of the members of the community. More specifically, it exploits previous
observations about the behavior of other users after they submitted similar queries. Each
user has a personal agent that interacts with the personal agents of other users to produce
recommendations. The system implements a hybrid recommendation approach, provid-

5.1. WEB SEARCH 73

ing users with the suggestions from and about the community members (collaborative
recommendations) and with the results obtained from Google (content-based recommen-
dations). The system allows for the exploitation of social interactions between community
members, i.e. by their personal agents, in order to increase the quality of recommenda-
tions. Personal agents represent their users in the system, tracking their interests and
browsing behavior with respect to using the links and contacts. Thus, Implicit also allows
for shifting the burden of the collaboration task, namely, answering queries from other
users, from the user to the personal agent of the user. The use of the Implicit Culture
Framework helps new community members to behave similarly to the other members
without the need of expressing explicitly the search behavior of the community.

5.1.1 Applying the Implicit Culture Framework

Let us map the web search domain to the terms of the Implicit Culture Framework.
Agents are people searching the web. Actions are: requesting a link specifying a query,
accepting or rejecting the proposed link. Link and query are objects. The object query
has a keyword attribute. A cultural theory describing general behavior of the community
in our system (the domain theory) is

if search(a; q(keyword = k); ; ∗) then accept(a; ∗, q(keyword = k); ; ∗), (5.1)

where a is an agent, q is a query, k is a keyword and the wildcard next to q represents a
link. This domain theory (in this case, just a rule) is specified a priori and it says that if an
agent a searches with a query q (keyword k) then the system should recommend some
link that is likely to be accepted. In the Implicit system, the part of the cultural theory
learned by the inductive module of SICS is the set of links accepted by the community
for certain queries corresponding to their shared interests. Such theory represents the
knowledge about user behavior that is learned by the system from user interactions with
the system. An example of a such cultural theory describing actions of the community
could be

if search(a, q(keyword = ‘apartments’); ; ∗)
then accept(a, www.phosphoro.com, q(keyword = ‘apartments’); ; ∗). (5.2)

This theory expresses that for all agents of the group if they search for apartments, they
tend to accept the link www.phosphoro.com. This link is relevant to the specific interests
of the group, in this case it is assumed that people search for the apartments in Trento,
Italy and they would like to consider private offers, not those from an agency. This link
is of extreme importance for people who have just arrived and search for an apartment
in Trento, but they do not know about this website. For instance, in the time of writing
this link did not appear among the first ten results provided by Google for the query
‘apartments’. If personal agents of the newcomers are able to provide them with this link
and they access the desired information, then it is possible to say that the new members
behave in accordance with the community culture and that the implicit culture relation
is established.

In the Implicit system each agent tries to establish the implicit culture relation within
the group of agents on the platform. In order to do this, each agent rely on a SICS.

74 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

The observer module in the system monitors the actions users perform while inter-
acting with the system. For instance, a query is treated as an information request.
It is interpreted by the personal agent both as the request of a relevant resource link
and as the request of the ID of an agent which can provide relevant recommendation.
Therefore, two observations appear in the database of observations as the result of the
query: request(user,query,resource-link) and request(user,query,agent ID). If
the user clicks on the recommended link, the link is considered to be accepted and the
observation accept(user, query, resource-link) is stored in the database. If the resource-
link has been suggested by an agent, which could be the user’s personal agent or the
personal agent of another user, one more observation is stored: accept(user,query,agent
ID). When the user starts another search or exits the system, all the recommenda-
tions which were proposed to the user but have not been accepted, are treated as re-
jected. For each rejected link two observations appear: reject(user,query,resource-link),
reject(user,query,agent ID). It is important to notice that by storing IDs of the agents
that provided the accepted or rejected recommendations the system can discover patterns
of behavior related to accepting results obtained from a certain agent, thus maintaining
implicit trust relationships.

The inductive module applies data mining techniques in order to extract interesting
patterns from the user behavior. There are several approaches that can be exploited.
Clustering can be applied in order to get knowledge about the correlations in the ob-
servations. For instance, agents can be clustered by interests and past actions of their
users. Alternatively, we can apply association rules techniques, like Apriori [2] for learning
association rules between the actions.

In the current version of the system the SICS implements the Apriori algorithm. This
algorithm has been described by Agrawal and Ramakrishnan [2] and it deals with the
problem of association rules mining. In our settings, this problem can be briefly formulated
in the following way: given a database of queries and links, it is necessary to find which
links are accepted for which queries. Without going into the details of the algorithm, we
can say that mined rules have the form query → link and are characterized by confidence
and support. The confidence of a rule denotes the fraction of cases when the link from
the rule was accepted for the keyword from the rule. The support denotes the fraction of
the actions in the database which contain this rule. Similarly, the problem for discovering
which agents are accepted for which keywords can be formulated and addressed. Such
problem is related to the problem of finding experts in a specific area of interests.

The SICS architecture allows the Implicit system to find relevant links and to discover
IDs of relevant agents with the same mechanism. The SICS calculates the similarity be-
tween the community members in order to produce suggestions. Therefore, it personalizes
web search to a certain extent.

5.1.2 The Implicit system

In this section, we describe the architecture of the system and the user interface. The
details concerning the internal agent architecture and communication mechanism are given
in Section 5.1.3.

5.1. WEB SEARCH 75

Figure 5.1: The architecture of the system. Personal agents process queries from users and interact with
each other to share experience of using particular links by their users; the agents produce recommendations
by using the SICS module; they also use GoogleAPI to query the Google search engine. The Directory
Facilitator (DF) agent provides a list of personal agents.

The system architecture

Implicit is a multi-agent recommendation system that aims at improving web search of
its users. The system has been implemented using JADE (Java Agent DEvelopment
framework) [13]. JADE adopts a task-based model of the agent and it is a one of the
most powerful tools for the development of FIPA2-compliant multi-agent systems.

Figure 5.1 depicts the architecture of the system. It consists of the client part and the
server part. A user at the client side accesses an html/php user interface via browser.
In the system, there is exactly one personal agent for each user. All personal agents
are running on the JADE platform on the server side. The queries submitted by the
user are received by the Java servlets which forward the queries to the user’s personal
agent. The personal agent uses its capabilities, described in more detail in the next
section, to communicate with external information sources, e.g. Google, and to produce
recommendations using its own resources and interacting with other personal agents. The
obtained results appear in the user interface. When producing recommendations, agents
aim at finding web pages that members of the community consider relevant to their
searches. For this purpose, the agents adopt the Implicit Culture approach, searching for
the links that satisfy specific behavioral patterns of the group.

Let us describe how users interact with the system. A user logs into the system, enters
a query and receives the results from Google complemented with recommendations pro-

2http://www.fipa.org/. Foundation for Intelligent Physical Agents (FIPA).

76 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.2: Results produced by the system for the entered query. The results from the Google search
engine are displayed in the top part of the window. The links recommended by the personal agents of
the other users are shown in the bottom part.

duced by the user’s personal agent in collaboration with other personal agents. Figure 5.2
shows the browser window with the list of results. In the top part of the window there are
the first ten links obtained from the Google search engine, while in the bottom part there
are several links received as recommendations from the personal agents of the community
members. The name of the link provider (“Google” or the name of the community mem-
ber) appears in the box preceding the link. Whenever user clicks on one of the results, the
information about this action is forwarded to the personal agent of the user as a feedback
indicating relevance of the link to the search. After the user exits the system or starts
another search, the non-clicked links are marked as rejected.

In the following, we will explain interactions between a user and a personal agent using
a running example.

Example. Let us consider a user Sally who looks for a website that provides a col-
lection of announcements about apartments available for rent. She logs in the Implicit
system and types a query “apartments”. The query is processed by the personal agent
of Sally. Fist, the personal agent obtains the results from Google, and the ten results
from Google are shown in the user browser. Figure 5.2 shows the following Google re-
sults: www.apartments.com, www.only-apartments.com, www.rentalinrome.com. Sec-
ond, the personal agent uses the SICS module to process the query in several steps:
searching for links during the internal search and searching for agents to contact dur-
ing the external search. Searched links and agent IDs should be related to the entered
query “apartments”. If the agent does not find any agent IDs using the SICS, it con-
tacts the Directory Facilitator (DF) agent (explained in more detail in the next sec-
tion). Once the personal agent contacted all agents found during the external search
or by contacting the DF, it displays the obtained links in the user browser. In this

5.1. WEB SEARCH 77

example the links www.trentinobedandbreakfast.it, www.phosphoro.com and www.

apartments.com from Sally and her colleagues Mark and Li are displayed. The personal
agent stops the search at this point and becomes idle, waiting for the feedback or a new
query from Sally and eventually responding to the queries of other personal agents. Let
us suppose that Sally clicks on www.phosphoro.com. Her personal agent receives the feed-
back message about accepting this link. Since the link was suggested by Mark’s personal
agent, the feedback will be also treated as accepting Mark’s personal agent. When Sally
exits the system or starts another search, the not followed link, www.apartments.com,
and the corresponding agent are marked as rejected.

In the current implementation, each agent uses the Google SOAP Search API to contact
Google, but in principle, it is possible to contact any search engine that provides similar
API. Implicit also allows for having some special agents on the platform, e.g. wrappers.
Wrapper agents can be used for transferring the queries to other search engines like Yahoo!
or Vivisimo3.

Personal search history

Implicit also allows for the quick access to the history of previous user searches. The
history is maintained by the personal agent in an XML file that contains links accepted in
the past and the corresponding keywords. The agent accesses the history after querying
Google and shows the results on the user interface. For instance, in Figure 5.2, the link
from Sally’s personal agent comes from Sally’s history of previous searches. Another
example of the knowledge available locally is a personal bookmark collection in someone’s
browser. User personal collection of bookmarks on Delicious could be an example of
user-specific knowledge, which is not available locally, i.e. stored on the Internet.

Example. In our example, Sally history of previous searches contains the links http:
//www.trentinobedandbreakfast.it/ and http://www.suedtirolprivat.com/ for the
keyword bed&breakfast.

Motivation for using agents in the system

The use of agents in the system is motivated by the following: i) agents assist their users
in web search activities, i.e. agents personalize user searches, autonomously interact with
other personal agents of the community, and facilitates maintenance of the past search
history; (ii) agents provide an interface to kinds of search, i.e. Google, SICS, without the
need of heavy client part of the system; (iii) agents recommend other agents on the plat-
form thus establishing implicit trust relationships in the system; (iv) even if a user is not
accessing the system for some time, the personal agent stays there, answers queries from
other agents and improves its expertise; (v) agents facilitate sharing of information that
is usually shared only by word-of-mouth communications; (vi) finally, in the simulations
we conducted to validate the system (see Chapter 6), each agent contained a model of
the user in order to simulate users of the system.

3A wrapper agent for the Vivisimo search engine has been developed as a student project at DISI, UNITN.

78 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.3: An internal architecture of the personal agent. A behavior of an agent is a task or reactions to
an internal or external event. The execution of the behaviors and switching between them is performed by
a behavior scheduler. An inbox contains ACL messages received by the agent. Agent’s resources include
observations, SICS and Google API.

5.1.3 Agent architecture and communication mechanism

This section provides more details about the technical description of personal agents,
their interactions and the recommendation mechanism. We start from the description
of the architecture of a personal agent, then we proceed with the description of the
recommendation mechanism and protocols for the user-agent interactions. Finally, we
present protocols for the communication and message exchange between agents in the
system.

The architecture of a personal agent

In the following we define basic terms used in JADE and describe the internal architecture
of an agent in our system. Figure 5.3 presents the internal architecture of a personal agent
in the Implicit system and illustrates the definitions.

A personal agent is a software agent running on the server side assisting its user in
their searches, receiving queries and producing recommendations in response.

A behavior is a procedure that implements tasks, or intentions, of an agent [13]. The
agent is able to execute each task in response to different internal (for instance, calcula-
tions finished) and external (for instance, message received) events. Behaviors are logical
activity units. They can be composed in various ways to achieve complex execution
patterns and can be concurrently executed.

5.1. WEB SEARCH 79

A behavior scheduler is an internal agent component that automatically manages the
scheduling of behaviors and determines which behavior to run at the moment and what
action to perform as a consequence.

An inbox is a queue of messages received from the user and from other agents. JADE
agents use an Agent Communication Language (ACL) for exchanging messages.

To produce recommendations the agent uses its resources that include the information
available to the agent, e.g., observations about user actions, and specific functionalities
such as getting recommendations from the SICS or getting links from Google using Google
API.

The search process

Let us describe behaviors and other parts of the agent architecture that participate in
the search process in detail. As described in Section 5.1.2, a query received from the user
interface triggers a set of steps executed by the personal agent. The process of producing
recommendations that the user finally sees in the browser window consists of several parts,
implemented as behaviors. When the agent receives the query message from the interface,
it starts three search behaviors that run in the following order: first the Google search
behavior, then the Internal search behavior that includes Search past history behavior,
and, finally, the External search behavior. For brevity, we refer to the sequence of these
three behaviors as “the search”. The results obtained during all three steps of the search
are shown to the user.

The sequence diagram in Figure 5.4 illustrates the details of the interactions between
the user and the personal agent during the search. During the Google search behavior
the agent forwards the query to Google search engine using Google SOAP Search API.
After receiving the response, the agent shows the obtained links to the user and starts
the Internal search behavior. In the internal search the goal of the SICS module is to
recommend web links using the information about the past user actions about searches
and link acceptance. In case the SICS does not produce any recommendation in this step,
the past search history is used to recommend links accepted by the user for similar queries
in the past. All the generated links are stored in the memory and the External search
behavior is started. This behavior also uses the SICS, but the goal of the SICS in this
case is to find relevant links using external resources, i.e. to propose the IDs of agents
to contact. The techniques used within the SICS to recommend links and agents are the
same. If there are no suggestions about agent IDs, the agent contacts the DF. According
to the FIPA standards, the DF is a mandatory agent that provides yellow pages service
on the agent platform. In our system, the DF simply provides the agent with the IDs
of other personal agents on the platform. Thus, the use of the SICS module helps to
reduce the number of interactions between the agents. Having filled the list of agents to
contact, the personal agent starts interaction by sending a query to each agent in the list.
When all the agents are contacted, the External search behavior queries new agents that
were suggested during the search and so on. When all queries have been answered by the
suggested agents, the system adds the obtained links to the list and shows all the links
from the list to the user.

When agents query each other, the agent-responder does not contact Google, because

80 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.4: The sequence diagram of interactions between the user and the personal agent during the
search.

the agent-questioner has this capability too. The agent-responder executes the Internal
search behavior to produce links that the user of the agent-questioner will probably accept.
The agent-responder also starts the External search behavior to recommend to the agent-
questioner other agents to contact.

An example of recommendation

In this section, we provide more details on how recommendations are created. For expla-
nations we will use the running example.

Example. Let us explain what happens when the personal agent of Sally receives the
query “apartments” and starts the search. The following observation, which includes the
type of the requested recommendation, i.e. link or agent, the name of the requester, and
the query, is produced by the observer module of the SICS and appears in the database of
observation: request(Sally,apartments). This observation is then sent to the composer
module that processes it in several steps. In the first step, the CAF builds the matrix of
observations (Table 5.1) and matches the request action with the rule of the theory shown
in Equation 5.1. The action matches the rule, so the right part of the rule, accept(x, l, k),
is taken as a cultural action. After substituting the value of the variables x and k with
those from the request action, the cultural action α = accept(Sally, l, apartments) goes to
the pool. The SP takes the action α from the pool and calculates which agents performed
actions most similar to α. For this calculation, the SP uses the matrix of observations.

5.1. WEB SEARCH 81

agent/link www.hotel.it www.phosphoro.com www.only-apartments.com
Li accept(apartments)
Mark accept(hotels), reject(cars) accept(apartments) reject(apartments)
Sally accept(hotels)

Table 5.1: A matrix of observations. Rows contain users while columns contain links. Action performed
by a user on a link are put in the cell on the intersection of the corresponding row and column.

The rows of the matrix contain agent names, and the columns contain links, while the
entries contain actions that involve the corresponding agent-link pair, e.g. accept or
reject of the link by the agent for a keyword. Since in the matrix of observations in
our example (Table 5.1), Mark’s actions are the most similar to Sally’s actions, the link
www.phosphoro.com is recommended and therefore put in the list of results.

Together with asking the SICS about relevant links, the personal agent of Sally submits
another query to the SICS module, requesting agent IDs for the keyword “apartments”,
and the observation request(agent,Sally,apartments) is stored in the database of
observations. Let us suppose that the SICS returns the ID “Li” as the result. The per-
sonal agent of Sally contacts the personal agent of Li and gets the link www.apartments.

com as a recommendation. This link is put in the list of results and then the results,
i.e. www.phosphoro.com and www.apartments.com are displayed in the user browser.
The personal agent stops the search at this point and becomes idle, waiting for the
feedback or a new query from Sally and eventually responding to the queries of other
personal agents. Let us suppose that the users clicks on www.phosphoro.com. The
personal agent of the user receives the feedback message that is converted to the ac-
tion accept(Sally, www.phosphoro.com, apartments). When Sally exits the system
or starts another search, the feedback about the not followed link is received about
the personal agent and converted to the action reject(Sally, www.apartments.com,

apartments).

Interactions between system components

Table 5.2 lists the details of interaction between the system components. The table
lists the participants of an interaction in the columns Component1 and Component2,
the corresponding actions, parameters and the desired result of the interaction (column
Target). The last column shows which tools and communication protocols are used for
the interaction. Here we briefly describe how components interact and in the following
two subsections we provide more details on the user-agent and agent-agent interactions.

The interaction between the user and the personal agent is mediated by user browser,
Java servlets and sockets. Therefore, actions and protocols are listed for the interaction
between the servlet and the agent. The details of these protocols are described in the
following subsection.

Personal agents communicate with the Google search engine using the Google SOAP
Search API that allows one to query Google and get the first ten results from a Java
program. The agent-Google interaction includes a request action, which starts a Google
search with keywords passed as the parameter of the action, and an inform action, which

82 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Component1 Component2 Action Target Parameters protocol or tools of communication
servlet agent request links query sockets,

User-Agent Query Protocol
agent Google request links query GoogleAPI
Google agent inform links GoogleAPI
agent servlet inform links User-Agent Query Protocol,

servlets, sockets, browser
agent SICS request links request-type, query Java class method call
agent SICS request agent-IDs request-type, query Java class method call
agent DF request agent-IDs —– Java class method call
DF agent inform —– agent-IDs Java class method call

agent agent2 request links query Agent Query Protocol
agent agent2 request agent-IDs query Agent Query Protocol
agent2 agent inform links Agent Query Protocol
agent2 agent inform agent-IDs Agent Query Protocol
agent servlet inform links User-Agent Query Protocol
servlet agent inform accepted-links sockets

User-Agent Feedback Protocol
servlet agent inform link User-Agent InsertLink Protocol
servlet agent request links query User-Agent MoreResults Protocol
agent SICS inform accepted-links, query Java class method call
agent SICS inform accepted-agent-IDs, query Java class method call
agent SICS inform rejected-links, query Java class method call
agent SICS inform rejected-agent-IDs, query Java class method call
agent agent2 inform accepted-links, query Agent Feedback Protocol
agent agent2 inform accepted-agent-IDs, query Agent Feedback Protocol
agent agent2 inform rejected-links, query Agent Feedback Protocol
agent agent2 inform rejected-agent-IDs, query Agent Feedback Protocol

Table 5.2: The scheme of interactions between the system actors during a search session. Component1
communicates with Component2 performing the communication act Action; Component1 would like to
obtain Target as a result of the communication; Component1 provides Parameters to Component2; the
last column represents the protocol or tool used for the communication.

delivers the results of the search to the agent.
Each agent invokes the SICS using an appropriate Java class method. This interaction

is performed using a request action with the type of the request (link or agent-ID) and the
query being parameters of the request. When the agent communicates the user feedback
to the SICS, an inform action with the accepted or rejected link and the corresponding
query is used.

Interaction between personal agents and the DF agent are implemented using Java class
methods provided by JADE. A request action is used to obtain the IDs of the personal
agents on the platform, while the results are communicated by the DF using an inform
action.

Personal agents interact with each other using several protocols described in detail in
the following subsection. These interactions are mediated by the JADE platform that
provides facilities for the communication between agents.

User-agent interactions. The interaction between the user interface and the multi-agent
platform is performed in the following way: Java servlets on the client side communicate
with the personal agent on the server side using sockets. The protocols used for such
communications are shown in Figure 5.5, while the structure of messages and their content
are explained below.

Figure 5.6 shows the structure of the messages used in the communication between
the user interface and the personal agent. The structure is expressed in the Backus-
Naur form. The message type field illustrates the purpose of the message and can be

5.1. WEB SEARCH 83

(a) User-Agent Query Protocol

(b) User-Agent Feedback Protocol

(c) User-Agent MoreResults Protocol

(d) User-Agent InsertLink Protocol

Figure 5.5: The protocols used for the communication between the user interface and the personal agent.

84 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

<message> ::= <message_type><type_of_communication><user_name><content>

<message_type> ::= QUERY|ACCEPT|MORE|INSERT|AGREE|INFORM|INFORM-RESULT|REFUSE

<type_of_communication> ::= USER|AGENT

Figure 5.6: The structure of the messages used in the user-agent communication.

one of the following types, explained in more detail below: query, accept, more, insert,
agree, inform, inform-result, and refuse. The type of communication field indicates if
the communication takes place between two agents (value AGENT) or between a user
interface and an agent (value USER). The user name field contains the name of the user
that accesses the system, while the content field contains different information depending
on the type of the message.

The User-Agent Query Protocol depicted in Figure 5.5(a) is used for submitting query
from the user interface to the personal agent. In a way it is similar to the FIPA Query
Interaction Protocol 4. The protocol starts with a query message that contains the entered
query. As a response, the agent can send either an agree message, if the message is valid,
or a refuse message if for some reasons the agent cannot process the query. Sending the
refuse message ends the interaction. The agree message means that the agent accepts
the query and will send the query results to the user interface later. Each inform-result
message contains the query the result corresponds to, the link that is relevant to the
query, and some internal information such as the origin of the link, a short description,
etc.

After viewing the results in the browser window, the user can request more results
related to the same query. In this case, the User-Agent MoreResults Protocol is used for
the communication between the servlet and the agent (Figure 5.5(c)). It starts with a
more message that shows that the user requested more recommendations on the currently
performed search. The parameter “nb more” is the number of additionally requested
recommendations. The rest of the protocol is the same as in the case of the User-Agent
Query Protocol.

When the user chooses some links, i.e. clicks on it, the User-Agent Feedback Protocol
(Figure 5.5(b)) is used in order to pass the feedback about an accepted or rejected result
to the agent. The accept message is used to inform the agent about the link clicked with
respect to a previously submitted query. The agent can respond with an inform message
in case feedback is correctly processed, or with a refuse message in case the message is
not valid or refers to the query which has not been processed by the agent.

Finally, for managing the history of previous searches, the system allows for the use of
the User-Agent InsertLink Protocol (Figure 5.5(d)), which is similar to the User-Agent
Feedback Protocol, but is used when the user inserts the link into the history of previous
searches. The information about this fact is passed using the insert message with the
parameters about the link, its type and the query. In the current implementation each
time the user clicks on the link it is inserted in the personal history, but in principle, this
protocol could be used in case of bookmarking the link.

4http://www.fipa.org/specs/fipa00027/SC00027H.html. FIPA Query Interaction Protocol Specification.

5.1. WEB SEARCH 85

Figure 5.7: Agent Query Protocol. This protocol is used by personal agents to ask other agents for
recommendations

Agent-agent interactions. Personal agents in Implicit interact with each other by ex-
changing messages in FIPA Agent Communication Language (ACL)5 using several pro-
tocols. In the following we describe these protocols and the purposes for which they are
used.

Figure 5.7 shows Agent Query Protocol that is used by personal agents when producing
recommendations. It is a modified version of FIPA Contract Net Protocol6. In the FIPA
Contract Net Protocol, the Initiator sends a call for proposal (CFP) message to all agents
on the platform and then selects the best proposal. In our implementation when the
Initiator sends a CFP message, it knows for sure who will be the Responder since it is the
agent either discovered by the External search behavior or received as a referral from the
DF or from other agents. Thus, the interaction starts with a CFP message that contains
the type of the search (link or agent ID), the search keyword and the deadline for receiving
a proposal. The Responder agent accepts the search in case it has enough resources for
performing it7. If the Responder accepts the search it sends a propose message, otherwise
it sends a refuse message. When the Initiator receives the propose message before the
deadline specified in the initial CFP message, the Initiator sends a accept-proposal message
to the Responder. However, if the propose message has been received after the deadline
specified in the initial call for proposal, the Initiator sends a reject-proposal message. In
the FIPA Contract Net Protocol this step is more complex because the Initiator must
evaluate several proposals at this point. After the Responder finishes the search it sends
an inform message that contains a recommendation. Such message can be repeated several
times, in case the agent has produced more than one recommendation. Alternatively, the
Responder can send failure message if for some reason it did not produce any results or
cannot handle the search anymore.

Such interactions about recommendations are usually complemented with additional
communication about the user feedback. Such interaction is directed from the Initiator of
the Agent Query Protocol to the Responder and is handled by a separate Agent Feedback

5http://www.fipa.org/specs/fipa00061/SC00061G.html. FIPA ACL Message Structure Specification.
6http://www.fipa.org/specs/fipa00029/SC00029H.html. FIPA Contract Net Interaction Protocol Specification.
7To avoid agent overloading there is a predefined limit of agent searches one agent can proceed simultaneously.

86 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.8: Agent Feedback Protocol. This protocol is used by personal agents to propagate user feedback
to the agents who produced the recommendations.

Protocol, shown in Figure 5.8. The protocol consists of only one inform message sent
from the Initiator to the Responder. This message contains information about which link
of which type has been accepted or rejected for a query.

5.1.4 Related work

In this subsection, we review the research approaches related to the Implicit system. For
convenience, we grouped the related work in several areas describing system for recom-
mending contacts, community-based search engines, and agent-based approaches.

Recommending contacts. Vignollet et al. in [146] described a recommendation
system that adopts the collaborative filtering and social networks analysis techniques.
The system recommends contacts instead of contents. The idea behind contact recom-
mendations is that users prefer others’ advice to impersonal guidance and also appreciate
enriching relationships with others. This system is similar to our work in the sense of
taking into account the social aspect of the information search.

A multi-agent referral system MARS has been presented by Yu and Singh [155]. In
that system, each user has a personal agent. The agents interact in order to provide users
with answers to their questions. Agents are also able to give each other the links to the
other agents, which is similar to recommending agent IDs in Implicit. There is a complex
model of agent interactions in MARS. Each agent classifies the other agents as neighbors
and acquaintances and their status in this classification determines the way of contacting
them. The system uses ontologies to facilitate knowledge sharing among agents. The
ontologies must be pre-defined and shared among all the agents, while we emphasize the
facilitation of implicit knowledge sharing by managing documents, links and reference to
people. Differently from our system, the agents in MARS do not answer all questions of
other agents, but only those related to the interests of their users. The paper is focused
more on general knowledge search rather than on web search. Finally, the system is mail-
based while Implicit is a web-based system that adopts FIPA standards and uses JADE
platform.

Community-based engines The Implicit system is related to community-based
search engines, like I-Spy [130], Eurekster8, and to social bookmarking services, such
as Delicious9. However, the Implicit system differs from these systems in several aspects.
First, Implicit Culture focuses more on an organizational community, rather than on an
emergent or online one. Second, it uses collaboration and interactions among agents to im-

8Eurekster. http://www.eurekster.com/
9Delicious. http://delicious.com/

5.1. WEB SEARCH 87

prove suggestions. Third, it recommends also agents therefore establishing implicit trust
relationship in the community. Finally, our system can be used to filter and re-arrange
the results from systems such as Delicious to a specific user community.

Agent-based systems for improving web search. Menczer [100] suggests comple-
menting search engines with online web mining in order to take into account the dynamic
structure of the web and to recommend recent web pages which are not yet known by
common search engines. To achieve this goal the adaptive population of web search agents
united in the multi-agent system emulates user browsing behavior. The system consists
of InfoSpiders, which are the agents incorporating neural net and analyzing the links and
the context of the documents corresponding to the links on the current page in order to
propose new documents to the user. The main goal of this system is the discovery of new
information, not yet presented in web search engines, in order to provide more up-to-date
service to the user.

A collaborative multi-agent web mining system called Collaborative Spiders was devel-
oped by Chau et. al [35]. The system implements the post-retrieval analysis and enables
across-user collaboration in web search. In order to provide a user with recommendations
a special agent performs profile matching to find the information potentially interesting
to the user. Before the search, the user has to specify the area of the interest and privacy
or publicity of the search. Unlike to Implicit, in the Collaborative Spiders system users
should analyze excessive system output because they have to browse through a number
of similar already finished search sessions.

SurfAgent [131] is an information agent that builds a user profile by using user-supplied
examples of relevant document. The authors presented and evaluated the mechanism of
automatic query generation from the user profile and using the generated queries to pro-
vide relevant documents to the user. Such approach of pro-active searching for documents
that might be interesting for the user is called the “push” approach. Implicit applies the
“pull” approach when recommendations are delivered to the users only when they search.
Also, we do not represent information about user searches explicitly in user profiles.
Therefore, query generation from user profiles is not applicable in our system.

Other related work. The Implicit system can be used for supporting collaboration of
the community members and sharing experience about using particular web links relevant
to their specific interests. In this regard Implicit is complementary to the work by Geczy
et al. [57] who investigated patterns in browsing behavior of a community of knowledge
workers.

A recommendation model presented in [147] produces recommendations by using the
social network existing between users and modeling the trust relationships with neighbors.
The topic of using trust in recommendation systems is deeply investigated in papers by
Massa (see, for instance, [96]). Differently to such systems, in Implicit we do not model
the social network and trust relationships explicitly. However, trust relations and social
ties emerge from interactions between agents. In the conducted simulations we noted that
after a certain number of queries, the SICS of each agent mainly contacted only one single
agent, who gave the most relevant recommendations in the past.

88 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

5.2 Software pattern selection

Almost fifteen years ago the authors of the book Design Patterns [56], the first major
publication on software patterns, stated the problem of selecting patterns: “With more
than 20 design patterns in the catalog to choose from, it might be hard to find the one
that addresses a particular design problem, especially if the catalog is new and unfamiliar
to you”. As time has passed, patterns have become a staple of current software devel-
opment approaches. However, the problem of selecting patterns still exists. Moreover,
it has become much more critical as the number of documented patterns is continuously
increasing: for instance, the Pattern Almanac [116] lists more than 1200 patterns. And in
the past nine years since its publication, many new patterns and books on patterns have
been published. The problem of choosing the appropriate pattern is particularly hard to
solve for inexperienced programmers [132], and tools assisting in this process become of
utmost importance [122].

Although the problem of pattern selection can be considered as a particular instance
of the general problem of retrieval of relevant information from large document collec-
tions [50], it requires specific tools, due to a number of reasons: (i) patterns are structured
documents where different parts express extremely different information; (ii) they are of-
ten linked to each other in a pattern language; (iii) patterns accumulate the experience
of developers in dealing with design problems. Therefore, besides pattern catalogs [65],
existing approaches for supporting pattern selection include case tools [59], expert sys-
tems [86], and formal frameworks that help to reuse knowledge about patterns [66, 156].
However, the existing approaches that support the developers in the selection of patterns
do not take into account social factors, collaboration and personalization.

In this section, we present the IC-Patterns system that support users in the process
of making decision about which pattern to use for their design problem. The system
addresses the problem of pattern selection from a social point of view. To help a developer
make a decision about which patterns to use, getting suggestions from her group of peers is
important. The system supports collaboration among users by using the Implicit Culture
approach that allows developers to share knowledge about the patterns they use for various
design problems. The multi-agent architecture facilitates such knowledge sharing because
personal agents in the system allow for sharing knowledge about the use of patterns in
a community of developers without their direct involvement. Namely, agents provide
their users with suggestions on which patterns are suitable for a specified problem. The
suggestions are complemented with a description of patterns from the pattern repository
retrieved using IR and CBR methods.

5.2.1 Software patterns

Software patterns enable an efficient transfer of design experience by documenting com-
mon solutions to recurring design problems in a specific context [3]. They contain valuable
knowledge that can be reused by others, in particular, by less experienced developers.
Each pattern describes the situation when the pattern can be applied in its context. The
context can be thought of as a precondition for the pattern. This precondition is further
refined in the problem description with its elaboration of the forces, i.e. design trade-offs

5.2. SOFTWARE PATTERN SELECTION 89

affected by the pattern, that push and pull the system to which the pattern is applied
in different directions. Here, the problem is a precise statement of the design issue to be
solved. One of the most significant contributions of patterns is that they intend to make
the trade-offs between the forces involved explicit. The trade-offs can be documented in
various forms. One popular approach is to document them as sentences like “on the one
hand ..., but on the other ...”. The solution describes a way of resolving the forces. Some
forces may not be resolved by a single pattern. In this case, a pattern often includes
references to other patterns, which help resolve forces that were unresolved by the cur-
rent pattern. Together, patterns connected in this way are often referred to as a pattern
language. Links between patterns can be of different types, including uses, refines, and
conflicts [105, 119]. Patterns that need another pattern link to that pattern with its uses.
Patterns specializing the context or problem of another pattern refine it. Patterns that
offer alternative solutions conflict, and should not be used together.

Patterns have been published for system architecture and detailed design, as well as for
specific application domains (e.g. agents [5, 80, 43] and security [53, 67]). Recently, there
have been several efforts in making patterns available in online pattern repositories, where
they can be browsed and searched by various criteria. An early example was the Pattern
Almanac [116], which is available in electronic form (www.smallmemory.com/almanac).
More recent examples are the patternshare.org site hosted by Microsoft in 2006-2007,
Yahoo Design Pattern Library10, Sun collection of J2EE patterns11, computer-mediated
interaction patterns12. These catalogs rarely contain personalized features, although they
can provide customizable pattern properties for enhancing search [65]. In order to store
patterns in a repository, a structured pattern representation must be adopted. There have
been several proposals for structural pattern representation, most notably the Pattern
Language Markup Language (PLML) [54].

Our motivation for adopting an Implicit Culture approach in the system for choosing
software patterns stems from: (1) the continuous increase in the number of documented
patterns, for instance, the Pattern Almanac [116] lists more than 1200 patterns; (2) the
difficulty less experienced developers face in using patterns. Developers who wish to
apply patterns from a domain that is not their main area of expertise encounter similar
difficulties. A good example is the security domain. For any but trivial applications,
security is a key concern, however, making the application secure is not the main concern
of the application developer. What a developer wants is to be able to focus on the core
application functionality. Security patterns [119] can help developers with the task of
adding security into an application: they provide guidance to non-experts in security for
designing secure application. However, a significant challenge remains: how do developers
decide which patterns they should use?

The following quote from Sommerville [132] is indicative of the difficulty inherent in
using patterns:

Only experienced software engineers who have a deep knowledge of patterns can
use them effectively. These developers can recognize generic situations where
a pattern can be applied. Inexperienced programmers, even if they have read

10http://developer.yahoo.com/ypatterns/
11http://java.sun.com/blueprints/patterns/
12http://www.cmi-patterns.org/

90 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

action objects(attributes)

request problem description(keywords), project description(ProjectName, SecurityLevel,
ProjectSize)

apply pattern(PatternName), problem description(keywords),
project description(ProjectName, SecurityLevel, ProjectSize)

reject pattern(PatternName), problem description(keywords),
project description(ProjectName, SecurityLevel, ProjectSize)

Table 5.3: Mapping the pattern selection domain to the terms of the Implicit Culture Framework.

the pattern books, will always find it hard to decide whether they can reuse a
pattern or need to develop a special-purpose solution.

The difference between these two types of developers is that an experienced developer
uses implicit knowledge (in particular, her own experience) about the problem (see [45]
for a more general discussion on this point).

We argue that it is possible to shift the pattern selection behavior exhibited by inex-
perienced developers towards the behavior of more experienced developers by suggesting
patterns suitable for their current design task. To determine which patterns are suitable
we use the history of previous user interactions with the system, i.e. which patterns other
developers have chosen in similar situations.

5.2.2 Applying the Implicit Culture Framework

We refer to the pattern selection behavior of experienced developers as the culture of that
developer community. When inexperienced developers start behaving in agreement with
the community culture, behavior transfer from experienced to inexperienced developers
occurs and the system . The relation characterized by this transfer is the implicit culture
relation.

This section explains how to apply the Implicit Culture approach to the problem
of pattern selection and presents the IC-Patterns system that helps to choose software
patterns and describes the retrieval process within the system. The system is intended
for the use within an IT-company, or just within a project group, and it should adapt the
suggestions on the use of software patterns to the specificity of the software development
process adopted within the company or project group, converging to the “community
culture”.

In the context of the problem of pattern selection the Implicit Culture approach consists
in (i) observing how developers search for patterns and which patterns they select among
those proposed and (ii) recommending developers patterns applied for similar problems in
the past. The similarity of the problems is defined as the similarity between the submitted
queries.

In terms of the Implicit Culture Framework developers are agents, while patterns,
problem descriptions and project descriptions are objects. Table 5.3 summarizes actions
and objects in the pattern selection domain. Since all the actions are performed by
developers, we omit agents from the table.

5.2. SOFTWARE PATTERN SELECTION 91

We explain the information contained in the table in detail. A developer requests the
system to find patterns that are suitable for her task. The query contains a description
of the problem and a description of the project where the problem has been encountered.
The problem description includes the attribute keywords which contains the keywords
of the query, while the description of the project contains the attributes ProjectName,
SecurityLevel, and ProjectSize.

The developer applies the pattern, identified with the attribute PatternName, when
she implements it in the code, and can specify the inapplicability of a pattern to the task
as a reject action.

Example.Let us consider a repository of security patterns and a programmer who
needs to improve access control in a system that offers multiple services. Let us suppose
that for an experienced developer knowledgeable in security it is apparent to use the
Single Access Point pattern (Figure 5.11). If the system is able to use previous history to
suggest that the novice uses the Single Access Point pattern and she actually uses it, then
we say that she behaves in accordance with community culture and the implicit culture
relation is established. We use this example as a running example throughout the section.

In this example, actions are: request(query), apply(SingleAccessPoint, query),
reject(Authenticator, query), where query contains problem description and
project description.

In terms of our problem domain, the observer module of the SICS stores the submitted
query, which patterns have been proposed as a solution, and which pattern has been
chosen in return. We do not use the inductive module of the SICS in the system, so the
following theory that consists of one rule is pre-defined:

if request(*; x(keyword= y);;*) then apply(*; x(keyword= y),*(pattern name=*);;*).

This means that the apply (and not, e.g. a reject) action must follow the request action.
The composer module of the SICS tries to match the problem expressed by the query
with the pattern by analyzing the history of observations and calculating the similarity
between the problem description given by the user and the problem descriptions which
users provided previously. The patterns selected for latter descriptions, i.e the patterns
previously selected for similar problems, are recommended.

Obviously, the main problem lies in the “observability” of the users’ actions. The
most problematic action to observe is the action of using a pattern for a problem. In
the current implementation we assume the user explicitly indicates this action in the
system, specifying that she selected the pattern X for the problem A, where the problem
corresponds to a search in the history of searches. This is a reasonable assumption, since
the amount of the input required from the user is very low.

5.2.3 The IC-Patterns system

The architecture of the system is given in Figure 5.9. The system consists of a web-
based user interface on the client side and a multi-agent platform on the server side.
A user accesses the system by submitting a query via the web-based interface in her
browser. In the IC-Patterns system a query includes a description of the problem and a
description of the project where the problem is encountered. The problem is described

92 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

by a set of keywords, optionally restricted to specific elements of the pattern description,
e.g. problem, context. The project description can be represented as a set of properties
such as project size, required level of data protection, etc.

Example.In our running example, the user could submit a query with the follow-
ing problem description: “complex security control” related to the project that has
the following set of properties: {Name: OnlineBanking, SecurityLevel: High, Project-
Size: Medium}. The other considered projects have the following properties: {Name:
e-BookShop, SecurityLevel: Medium, ProjectSize: Medium}, {Name: eLections, Secu-
rityLevel: High, ProjectSize: Big}.

Each user is assisted by a personal agent. The goal of the personal agent is to help
the user to choose a pattern suitable for the submitted query. In order to fulfill this goal,
the agent can access the SICS via the IC-Service (the BQICS module), and to access
the repository of patterns directly via the Information Retrieval (IR) API provided by
Lucene (BQR-IR) and using the Case-Based Reasoning (CBR) module (BQR-CBR). The
personal agents in the system are software agents running on the multi-agent platform.
The IC-Service in the system is used in order to recommend patterns, namely it provides
an interface for accessing a SICS that is dealing with observations coming from the system
and produces recommendations. The user query is treated in different way by the three
agent modules. When querying the repository using the IR methods, only the keywords
are used and they are compared with free-text descriptions of patterns in the repository.
If the repository is accessed using CBR methods, the keywords are treated as a description
of the problem, and is compared with the “Context” and the “Problem” sections of the
pattern descriptions. When querying the IC-Service, both keyword and project parts of
the query are used.

Example.The user’s personal agent should suggest using the Single Access Point pat-
tern. If the agent does so because someone else has already used this pattern for similar
problems, it transfers the knowledge about the use of patterns within the community.

Multi-agent architectures have been already used in decision support systems [27] and
such architecture provide a number of benefits. First, agents provide users with personal
assistance, i.e. each agent personalizes the system to its user. Second, agents provide
an interface to different recommendation mechanisms without the need of heavy client
part of the system. Third, agents allow for the use of the system in distributed settings.
Finally, in the simulations we conducted to validate the system, each agent contained a
model of the user in order to simulate users of the system. Overall, the use of agents
provides a flexible and implicit way of sharing information about actions: they use the
IC-Service to answer user queries about cases, provide retrieved cases, and store all the
actions in the database of observations. Agents can also interact with one another to
share expertise and knowledge of their users in using the case base.

The use of the Implicit Culture approach for recommendations allow for sharing of the
knowledge about the use of patterns without the direct involvement of the users. The IR
and CBR recommendation mechanism allow to overcome the cold start problem [28], i.e.
inability to suggest items in the beginning of the use of the system. The combination of
IR and CBR methods allow for getting more recommendations, since the results returned
by the two methods are, in general, different.

5.2. SOFTWARE PATTERN SELECTION 93

Figure 5.9: The architecture of the system. Personal agents process queries from users and re-
trieve potentially relevant patterns from the repository of patterns; the IC-Service is exploited by the
agents in order to create recommendations from the history of past interactions; BQR-IR stands for
BehaviourQueryRepository-IR used to access the repository using the IR methods, BQR-CBR stands
for BehaviourQueryRepository-CBR used to access the repository using the CBR methods, and BQ-ICS
stands for BehaviourQueryICService, respectively.

94 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.10: Sequence diagram of the search process.

Search in the system

The sequence diagram of the search process is given in Figure 5.10. A user submits a query
via the user interface, from where the query is forwarded to the user’s personal agent.
In the first step of the search process, the personal agent accesses the pattern repository
using IR methods and retrieves a set of patterns relevant to the query. In the second
step, the repository is accessed using CBR methods. In the third step, the personal agent
submits a query to the IC-Service and receives a list of recommended patterns. The list
is processed by the agent, e.g. patterns are ranked and duplicates are removed. Thus,
the results contain patterns retrieved from the repository by IR and CBR methods and
patterns recommended by the IC-Service. As the last step the feedback of the user is
collected via the apply and reject actions.

The SICS inside the IC-Service processes the query within two steps. In the first step,
the SICS matches the action contained in the query, i.e. the request action, with the theory
and determines the action that must follow, i.e. the apply action. During this step the
SICS also fills in the parameters of the apply action, for instance, the problem description
object. In the second step, the SICS finds situations where the apply action with similar
parameters has been previously performed, thus determining the patterns used for similar
problems in the past. Since problem description is a part of the apply action, the similarity
between the current query and the previously submitted queries is calculated. As the
result, the SICS returns a set of patterns that have been used for similar problems in the
past.

Example.Let us illustrate how the search process takes place in our example. The
user submits the request action with the following query: {ProblemDescription: “com-
plex security control”; Project: {Name: OnlineBanking, SecurityLevel: High, ProjectSize:
Medium}}. In the first step the agent retrieves patterns from the repository: SingleAccess-
Point and RoleBasedAccessControl. In the second step, the agent queries the IC-Service.
The SICS matches the request action with the left part of the theory that represents a
problem, and searches for situations where the apply action has been performed. It finds

5.2. SOFTWARE PATTERN SELECTION 95

the following situations (situation id, the action, problem description, project, pattern):

1 apply access control in a system that offers multiple services pp SingleAccessPoint
2 apply only authorized clients should access the system pp PolicyEnforcementPoint

where pp={Name: e-BookShop, SecurityLevel: Medium, ProjectSize: Medium}. As a
result, the SICS returns the SingleAccessPoint pattern, chosen in the most similar situa-
tion w.r.t. the submitted query13. After the evaluation of the results, the following list of
patterns is displayed in the user interface: {SingleAccessPoint, PolicyEnforcementPoint,
RoleBasedAccessControl}. Having analyzed the proposed patterns, the user applies the
SingleAccessPoint pattern and indicates this in the user interface. She also marks the
RoleBasedAccessControl pattern as unsuitable, thus performing the reject action.

Implementation details

The system is implemented using JADE 3.4.1 (Java Agent DEvelopment framework) and
uses the IC-Service for the retrieval of patterns. It uses the IC-Service as a Java library.

For the repository of patterns we have adopted a format that is specific to a set of
security patterns previously hosted at patternshare.org [67]. We have defined an XML
representation for these patterns and extracted the content of the subset of this reposi-
tory from the website. Our current representation contains the following elements: Pat-

tern.Name, Pattern.Context, Pattern.Problem, Pattern.Solution, and Pattern.RelatedPatterns,
as well as elements specific to the patternshare.org site, but not required for our pur-
poses (see Figure 5.11 for an example of the pattern representation). However, our ap-
proach does not depend on a specific pattern representation. Note, that although the
representation of a pattern in this system is a structured one, when accessing the reposi-
tory with IR methods, it is treated as a free-text representation.

We are also not concerned, at this stage of development, with how easy it is to deploy
our approach for building a repository; however, in the future; we plan to converge towards
a standard, like PLML, for pattern description.

To build the repository of patterns we took the following steps as shown in Figure 5.12:
(1) the descriptions of security patterns were extracted from patternshare.org using
scripts; (2) the pattern descriptions were converted to the XML format using scripts; (3)
the XML documents representing patterns were indexed with Apache Lucene 2.4. The
Lucene library is also used by personal agents to access the repository of patterns. How-
ever, our approach does not depend on a particular repository or a tool for accessing the
repository. Moreover, the repository can be further extended with adding other patterns
and pattern collections.

Since Apache Lucene provides the opportunity to have different weights for different
sections of the documents, we have used Lucene also for performing CBR. For this task,
the “Problem” and “Context” sections of a pattern have weight equal to one, while the
other sections have zero weight, i.e. removed from the similarity calculation in the retrieval

13Without going in detail of the general algorithm of similarity calculation, let us say that the similarity between two
actions in this case is calculated based on the similarity of names of actions and objects. In this case we have two
objects: problemDescription and projectDescription, and the similarity between problem descriptions is calculated as the
fraction of common terms, while the similarity between project descriptions is calculated as the fraction of equal properties
(ProjectName,ProjectSize, SecurityLevel).

96 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

<Pattern id="SingleAccessPoint">

<Pattern.Name>Single Access Point</Pattern.Name>

<Pattern.View>Application Architecture</Pattern.View>

<Pattern.Role>Architecture</Pattern.Role>

<Pattern.Aspect>Function</Pattern.Aspect>

<Pattern.Summary>Single entry point for each process.</Pattern.Summary>

<Pattern.Context>You are planning to secure a system from outside intrusion. The system

provides a bunch of services but you want to secure the system as a whole.

</Pattern.Context>

<Pattern.Problem>A security model is difficult to validate when there are multiple ways

for entering the application. How can we secure a system from outside intrusion?

</Pattern.Problem>

<Pattern.Solution>Set up only one way to get into the system and if necessary, create a

mechanism to decide which sub-application to launch. Typically most applications use

a log in screen to accomplish the single access point. </Pattern.Solution>

<Pattern.RelatedPatterns>Single Access Point validates the user’s login information

through a <Pattern idref="PolicyEnforcementPoint"/> and uses that information to

initialize the user’s Roles and Session. A Singleton can be used to implement a Single

Access Point. </Pattern.RelatedPatterns>

<Pattern.Publication>This pattern appeared in the paper titled "Architectural Patterns

for Enabling Application Security" by Joseph Yoder and Jeffrey Barcalow in Pattern

Languages of Programs conference in 1997. Peter Sommerlad integrated the material in

the Security Pattern book titled "Security Patterns: Integrating Security and Systems

Engineering". </Pattern.Publication>

</Pattern>

Figure 5.11: An example of the XML representation of the Single Access Point pattern in our pattern
markup language.

Figure 5.12: The pattern extraction process. (1) Information about the security patterns is extracted
from the patternshare.org repository using Perl scripts; (2) the pattern descriptions are then converted
to an XML format using Perl scripts and a pattern markup language.

5.2. SOFTWARE PATTERN SELECTION 97

process.

5.2.4 Related work

In this subsection, we review the research approaches related to the IC-Patterns system.
PatternSeer [112], is an ongoing project that aims at delivering a system that crawls

and indexes pattern descriptions on the Internet and makes them accessible for the users
via keyword-based search. Recently, Google provided a custom search engine14 indexing
several online pattern repositories.

There are several approaches that use CBR for the retrieval or recommendation of soft-
ware pattern. For instance, a system for the retrieval of semantic templates for designing
recommender systems [77] and the system for the reuse of software examplets [64]. The
ReBuilder framework [59] adopts a CBR approach [1], where cases represent situations
(problems) in which a pattern was applied in the past to a software design. ReBuilder
supports the retrieval and adaptation of patterns. Cases are described in terms of class
diagrams. Cases are retrieved based on a combination of structural similarity between the
current design and a pattern, as well as the semantic distance between class names and
role names in the pattern. Our approach is complementary to the one used in ReBuilder
as patterns are selected on the base of previous actions of other users. Also, while the
use of the relations in the class diagram provides additional information about the de-
sired pattern, such diagrams are not always available. However, the textual descriptions
of patterns are always available, and since our system uses the textual descriptions, it
has a wider range of potential applications, although, probably, it can not compete with
ReBuilder in the domains where class diagrams are available. Finally, the IC-Patterns
system implements a collaborative approach to pattern selection, because the Implicit
Culture Framework facilitates experience sharing among the users.

Kung et al. [86] propose a methodology for constructing expert systems for suggesting
design patterns to solve problems faced by developers. They present a prototype, the
Expert System for Suggesting Design Patterns (ESSDP), which implements the method-
ology. ESSDP selects a design pattern based on the user’s requirements. A user interacts
with the system using question-answering approach, which helps to narrow down the selec-
tion process. At the end of the interaction, a suitable design pattern is offered to the user.
There are several significant differences between our approach and the ESSDP system.
First, ESSDP assumes the knowledge acquisition as the primary step of the methodol-
ogy. In this step human experts must fill in the knowledge base with some pre-defined
rules. Differently, in our system the suggestions come from the interactions with users,
without any initial knowledge base, allowing for continuous improvement of suggestions.
Moreover, we exploit interactions with inexperienced users as well, offering to novices
patterns that have been chosen in similar situations not only by experts but also by other
novices. Thus we support sharing users’ experience with others. Second, our system is
not restricted to the use of a rule-based knowledge base assuming that different learning
techniques can be adopted.

Several approaches propose adding formal semantics into pattern descriptions. For
instance, Gross and Yu [66] present a formal approach, proposing to add non-functional

14Design pattern search. http://www.google.com/coop/cse?cx=000531763273211731096%3Ab-lv61obcte

98 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

requirements into descriptions of patterns and use such requirements for the retrieval.
Similarly, Wang et al. [148] use non-functional requirements framework to retrieve patterns
that might be suitable for a given set of requirements and will result into a detailed design.
Many patterns were not developed individually, but rather they were organized in pattern
languages. Some approaches target the selection of pattern(s) from such languages thus
handling relations between patterns, not only individual pattern descriptions. Zdun [156]
proposes an approach for pattern selection based on desired quality attributes. The
approach requires formalizing the pattern relationships in a pattern language grammar
and annotation of the patterns with effects on quality goals. As a result, the search space
is narrowed down and the time spent evaluating alternatives is decreased. Mussbacher
et al. [104] present goal-oriented requirement languages that formalizes forces of patterns
and relations between patterns.

Most of the existing approaches require manual interventions in the process, such as
specifying additional information about patterns or their relations, creating a knowledge
base, or organizing the collection in a specific way. In contrary, our system can handle any
repository of pattern and provide recommendations using one of the three techniques or
their combination. Moreover, due to the multi-agent architecture and the architecture of
the IC-Service recommendation engine used in the system it is possible to use the system
in distributed settings, e.g. in different branches of a company.

5.3 Web service discovery

Service-oriented computing and web services are gaining more and more popularity en-
abling the organizations to use the Web as a market for their own services and consume
already existing software. On the other hand, the more services are available the more
difficult it becomes to find the most appropriate service to use in a specific application.
Existing approaches to web service discovery tend to address different styles of informa-
tion processing, including the development of extensive service description and publication
mechanisms [94], and the use of syntactic, semantic and structural reviews of web service
specifications [79]. Web services have a set of functional and non-functional characteristics
which may be difficult to present and control. Service behavior and Quality of Service
(QoS) parameters may vary with time, better services may appear and acquire popularity
in certain business areas. Developers of service-based applications may want to discover
web services and replace previously exploited ones for repairing or generally improving
their systems. Despite the availability of various tools, the selection often relies on the
information provided by someone (business partners, experts on the field, friends, etc.)
who has already gained experience with a certain service.

To support such information exchange, the idea of applying recommendation systems
for discovering and selecting web services has been recently proposed [22, 81, 93, 126].
Existing recommendation-based approaches use ratings of service providers based on ex-
plicit and often subjective opinions of service clients [126]. However, as demonstrated
in [37], people are not usually willing to actively provide feedback. Our aim in this work
is to allow developers of service-based applications to benefit from experience of other
developers without requesting them to participate personally in evaluating services. The

5.3. WEB SERVICE DISCOVERY 99

overall approach is to connect requests for services with observations of service invoca-
tions and executions that follow such requests. Data collected during observations are the
input to identify which services are considered relevant for specific requests of a particular
community of clients. Additionally, data about service execution can be used for ranking
services according to their QoS. On the developers side, the effort requested is only to en-
able observations of web service invocations performed by their applications. In exchange
for this, such developers can benefit from accessing the history of service executions and
obtain recommendations which services are better to use for their tasks. This kind of
information can be particularly useful for dynamically reconfigurable systems to support
self-healing behavior.

In this section, we present an implemented system for improving web service discovery.
The system is based on the IC-Service described in Chapter 4. It enables web service
monitoring and recommends services based on data provided by service clients rather
than information advertised by service owners. The approach can be extended to support
personalized requests and learn which services can better satisfy them. Methods for
matching client requests with the requests from the system history is a crucial aspect of
the system. We tested two similarity metrics: (i) the classical Vector-Space Model (VSM)
and (ii) a semantic matching metric that uses the WordNet15 lexicon.

5.3.1 Applying the Implicit Culture Framework

With respect to the meta-model of the Implicit Culture terms (Section 4.2) in our appli-
cation agents are developers who submit requests for web service operations represented
as objects. Names of web services and information about their providers are stored as at-
tributes of operations, while submission of requests, service invocations and corresponding
responses are modeled as actions. An example of a scene could be a set of actions corre-
sponding to the invocations of various service operations:

invoke(getWeatherByZip (service = DOTSFastWeather);) or
invoke(getWeather (service = GlobalWeather);).

An example of a performed action could be

invoke(Peter; getWeatherByZip (service = DOTSFastWeather);; 25-Jun-07-14:22)

which states that Peter invoked the operation getWeatherByZip of the DOTSFastWeather
web service 25/06/07 at 14:22.

In this example, the culture can contain the information which services usually are
invoked by a group of service clients for getting a weather forecast.

In this application the SICS is deployed as a web service and assessed via the SICS
Remote Client (Figure 5.13). The cultural theory for web service discovery contains the
following rule:

if submit request(request-X) then invoke(operation-Y(service-Z), request-X).

This means that the invoke action must follow the submit request action and both actions
are related to the same request.

15http://wordnet.princeton.edu/

100 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Figure 5.13: The general SICS architecture. The Composer Module provides recommendations facilities;
the Inductive Module discovers a theory that expresses the community culture; all parameters of a SICS
instance are configured in the Configuration Module; the Storage Module is responsible for storing the
information about the application domain (agents, actions, observations, etc.); the Rule Storage Module

is responsible for the management of the theory such as adding or removing theory rules.

5.3.2 The system for web service discovery

In this section, we illustrate the use of the IC-Service for supporting web service discovery.
The IC-Service manages the history of requests for web services, collects reports about
service invocations by heterogeneous clients and helps developers to discover and select
web services suitable for their applications (see Figure 5.14). To join a community that
shares experience about service usage, developers must include into their application the
SICS Remote Client that enables monitoring of web service invocations on the client side.

The working scenario is as follows: an agent submits a request to the IC-Service, which
returns a list of recommended services. The request contains a textual description of the
goal, the name of the desired operation, the description of its input and output parameters,
the description of a desired web service and an optional list of preferred features (provider,
etc.). It is stored in the system as an object of the submit request action. The feedback is
collected via the optional provide feedback action, which expresses the level of the agent’s
satisfaction with the result, or via the invoke action, which marks a service as suitable
for the request. If the agent decides to use one of the services, further information is
acquired. The get response action marks a service as available and the raise exception
action signals that the service is not available or faulty. Having received the response
message, the application can generate a feedback based on extra-knowledge about the
expected result: e.g., the feedback is positive if the correct output has been obtained.

The IC-Service processes the request from the system in two steps. In the first step,
the submit request action is matched with the theory to determine the next action that

5.3. WEB SERVICE DISCOVERY 101

Figure 5.14: Web service monitoring and discovery with IC-Service.

must follow, i.e. the invoke action. In the second step, the SICS finds situations where
the invoke action has been previously performed, determining web service operations used
for similar requests in the past. In this step, the similarity between the current agent’s
request and the previously submitted requests is calculated. As a result, the IC-Service
returns a set of services that have been used for similar requests in the past.

Similarity configuration

Similarity between observed actions (such as submit request, invoke, etc.) is determined
by the similarity of their names, attributes and objects. The main element taken into
account in our system is the request represented as a sequence of terms q = (t1, t2, ..., t|q|),

where |q| is the length of the request and tj ∈ T, j = 1, |q|. T is a vocabulary of terms,
containing all terms from the collection of requests Q = {q1, ..., qn} submitted to the
system, where n is the total number of requests. We use two different similarity metrics
in the composer module to calculate the similarity between requests: the Vector Space
Model (VSM) with Term Frequency - Inverse Document Frequency (TF-IDF) metric and
a WordNet-based semantic similarity metric.

For calculating the first metric, for each term tj let nij denote the number of occurrences
of tj in qi, and nj the number of the requests that contain tj at least once. The TF-IDF
weight of the term tj in the request qi can be obtained as follows:

wij =
nij

|qi|
∗ log(

n

nj

),

where |qi| defines the length of the request qi. The similarity between requests qi and qk

is defined using the cosine coefficient:

sim(qi, qk) = cos(wi, wk) =
wi

T wk√
wi

T wi

√
wk

T wk

.

102 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

Here wi = (wi1, ..., wi|T |), wk = (wk1, ..., wk|T |) denote vectors of TF-IDF weights corre-
sponding to the requests qi and qk, and |T | is the length of the vocabulary T .

In the second metric, for defining a similarity between requests qi = (ti1, ti2, ..., ti|qi|)
and qk = (tk1, tk2, ..., tk|qk|), we first calculate the lexical similarity between any pair of

their terms tij, j = 1, |qi| and tkl, l = 1, |qk|. For defining a lexical similarity of all possible
senses of two terms we use a WordNet-based metric designed by Seco et al. [121]:

sim(tij, tkl) = 1 − 1

2
(icwn(tij) + icwn(tkl) − 2simres′(tij, tkl)),

where
simres′(tij, tkl) = max

t∈S(tij ,tkl)
icws(t).

In this expression, S(tij, tkl) denotes the set of concepts that subsume tij and tkl. Infor-
mation context value of a WordNet concept is defined as

icwn(t) = 1 − log(hypo(t) + 1)

log(maxwn)
,

where hypo is the number of hyponyms, i.e., words whose extension is included within
that of another word of a given concept, and maxwn is the maximum number of existing
concepts. We extended this metric to deal with sets of words. The problem of calculating
the overall similarity between requests qi and qk is formulated as the Maximum Weight
Bipartite Matching problem in a complete bipartite graph, where terms from qi and qk

define two partitions of vertices and the obtained lexical similarity values sim(tij, tkl)
define weights of edges. The goal is to find a matching M (i.e., a subset of edges ejl =
(tij, tkl) such that no two edges in M share a vertex) with the maximum total weight.
This weight defines the similarity between requests qi and qk, i.e.,

sim(qi, qk) = max
M

|qi|
∑

j=1

|qk|
∑

l=1

σjl sim(tij, tkl),

where

σjl =

{

1, if edge ejl = (tij, tkl) ∈ M,

0, otherwise.

Example of search in the system

Let us illustrate how the search process takes place in practice. Suppose the following
request is submitted:

goal : get weather forecast for Rome, Italy;
operation : get weather;

input : city name, country name;
output : weather forecast (temperature, humidity, etc.).

The SICS matches the request action with the antecedent of the theory, and searches for
scenes where the invoke action has been performed. Suppose that it finds the following
scenes:

5.4. CONCLUDING REMARKS 103

1. invoke(...; getWeather (service = GlobalWeather), goal = get weather report for all
major cities around the world; ...);

2. invoke(...; conversionRate (service = CurrencyConvertor), goal = get conversion rate
from one currency to another currency; ...);

3. invoke(...; getWeatherByZip (service = DOTSFastWeather), goal = return weather
for a given US postal code; ...).

The SICS recommends to invoke services which have been considered relevant to the
requests previously observed by the system and most similar to the current request. Thus,
the getWeather operation of the GlobalWeather web service and the getWeatherByZip
operation of the DOTSFastWeather web service can be recommended in response to the
request in our example. Suppose that having analyzed the proposed results, the agent
invokes the former operation. The observed invoke action can be used in future queries
as a feedback about the service.

5.4 Concluding remarks

In this chapter, we described three applications of the Implicit Culture Framework: a
system for recommending web links, a system for recommending software patterns, and a
system for web service discovery. All three applications can be classified as recommenda-
tion systems, but they differ in the domain of recommendations and in the implementation.
The differences in the domains are summarized in Table 5.4 and explained below, while
the differences in the architectures are summarized in Table 5.5.

The Implicit and the IC-Patterns systems implement multi-agent architectures with
personal agents helping their users, while the system for web service discovery implements
a service oriented architecture. In the Implicit system, each personal agent has a SICS,
and, therefore, does not depend much on others in creating recommendations. Differently,
in the IC-Patterns system, there is only one SICS on the multi-agent platform, because
in that scenario, it is assumed that community of the users is more homogeneous. In the
web service discovery scenario there is one SICS used for each community of developers.
Moreover, Implicit uses SICS both for recommending web links and contacts, i.e. agents
in the community who are considered as knowledgeable in the topic.

application agents actions objects(attributes) cultural theory
Implicit people

searching
the Web

request, ac-
cept, reject

link, query(keyword) if search(agent;query) then ac-
cept(agent;link,query)

IC-Patterns developers request, ap-
ply, reject

pattern(PatternName),
project descr(ProjectName,
ProjectSize, SecurityLevel),
problem descr(keywords)

if request(agent;query) then ap-
ply(agent;pattern,query)

WS-Discovery developers submit request,
invoke,
get response,
raise exception

request(Goal, Opera-
tionName, Input, Output),
WSOperation(WSName,
WSProvider)

if submit request(agent;request)
then in-
voke(agent;WSOperation,request)

Table 5.4: The comparison of the application domains.

104 CHAPTER 5. APPLICATIONS OF THE IMPLICIT CULTURE FRAMEWORK

application architecture using SICS using IC-Service
Implicit MAS in each agent, recommending links and contacts N/A
IC-Patterns MAS one for all, recommending patterns Java library
WS-Discovery SOA one for all, recommending service operations remote client

Table 5.5: The comparison of the application architectures.

The applications access the SICS in different ways. Implicit was developed earlier than
the IC-Service, so it uses an ad-hoc implementation of the SICS architecture as a Java
library. The IC-Patterns system uses the IC-Service as a Java library, while the system
for web service discovery uses the IC-Service as a web service via the SICS Remote Client.

Finally, the domains of the three applications differ in terms of actions, objects, at-
tributes and cultural theory. However, in spite of the differences of the applications, the
Implicit Culture Framework proved to be useful in all systems, as shown in the next
chapter, which presents a methodology and the results of the evaluation of the systems.

Chapter 6

Experimental evaluation

In this chapter, we present the objectives, methodology, and results of the evaluation of
the systems presented in the previous chapter.

Section 6.1 presents objectives of the evaluation and provides an overview of the
methodology we applied for the evaluation of the developed applications. Thorough eval-
uation of a system with real users is hard because it requires a lot of time from the users.
Therefore, we conducted simulations using the developed systems. The simulations pro-
vide a way for an extensive evaluation of the systems. We present the description of the
experiments and the results of the quality and performance evaluation of the systems in
Section 6.2. The results of a real-user study carried out using the Implicit system are
provided in Section 6.3. Section 6.4 describes the scalability experiments we conducted
using the IC-Patterns system, and Section 6.5 discuss the results of the evaluation.

6.1 Objectives and the evaluation methodology

This section presents objectives and the methodology of the evaluation. Subsection 6.1.1
describes the objectives. For evaluation we simulated real users using the user model
described in subsection 6.1.2. Subsection 6.1.3 describes the scalability dimensions of the
systems and the performance and quality measures for evaluating the results.

6.1.1 Objectives of the evaluation

We identified the following objectives of the evaluation:

• To test the performance of the systems, in terms of the response time.

• To test the retrieval performance, i.e. the quality of results, of the systems, and
compare the retrieval performance of different algorithms.

• To measure the impact of the SICS in each system by comparing the quality of
suggestions with and without the SICS

• To test the scalability of the systems.

105

106 CHAPTER 6. EXPERIMENTAL EVALUATION

application query user profile acceptance strategy
Web search one keyword links and click-through

rate
a link is accepted if its click-through rate
is greater than or equal to some rele-
vance threshold

Pattern selection set of keywords relevant patterns a pattern is accepted if it is in the profile
WS discovery brief description

of an operation
operations for groups of
requests

an operation is accepted for a submit-
ted request if it is in the profile for the
request

Table 6.1: User models used in different application scenarios.

• To test the systems with real users to see how the systems are accepted by people
and whether they provides enough support for sharing experience in a community of
practice.

6.1.2 The user model

To simulate user behavior in applications described in Chapter 5 we developed a user
model. The main functions of the user model were: (1) provide pseudo-user input in
order to enable recommendations, and (2) generate pseudo-user response to the recom-
mendations. Thus, the user model contained two parts that represented user querying
behavior (query profile) and user behavior of accepting results (user profile). To simulate
user querying behavior, in each simulation run the query profile was used to generate a
set of k ≥ 1 queries and the queries were submitted to a system in a certain order. To
simulate user behavior of accepting results, the model contained a user profile that listed
the results that can be accepted and contained the logics that determined whether a result
was accepted for the submitted query.

Table 6.1 shows how the user model was applied in the three application scenarios
listed in Chapter 5. The first column of the table lists the applications, the second
column shows how a query was represented, the third column describes the user profile
in the application, and, finally, the fourth column, describes how it was decided whether
a result was accepted to the submitted query.

Above, we described general principles of the proposed user model. Let us now consider
how the user model is implemented in different applications.

Web search

For the web search application each query consisted of one keyword. The acceptance
strategy was modeled as a set of probabilities of choosing a link for a keyword. As links
we took the first g links provided by Google for each keyword and the rank of the list
was adopted as an identifier. The user profile was built using l keywords q1, q2, . . . , ql

and determining the probabilities p(j|qi) of choosing the j-th link, j ∈ {1, . . . , g} while
searching with the i-th keyword. We assume that the user accepts one and only one link

during the search for the keyword qi, so
g

∑

j=1

p(j|qi) = 1. The distribution of probabilities

in the user model can be seen as a set of association rules with a probability of link
acceptance for a given keyword search.

6.1. OBJECTIVES AND THE EVALUATION METHODOLOGY 107

Google rank of the link
keyword 1 2 3 4 5 6 7 8 9 10

tourism 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05
football 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

java 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
oracle 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

weather 0 0.3 0 0 0.5 0 0 0.1 0.1 0
cars 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05
dogs 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

music 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
maps 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

games 0 0.3 0 0 0.5 0 0 0.1 0.1 0

Table 6.2: A user model for the Implicit system. This model specifies the query profile in the leftmost
column and the user profile. Links were different for each keyword and therefore are numbered 1..10.

In the experiments, the number of keywords l was equal to 10, the number of the links
provided by Google g was equal to 10. The user profile that was used in the experiment
is presented in Table 6.2. The profile has been produced by subjective evaluation of the
Google results for five keywords and then duplicating these five rows. The model we used
to evaluate the Implicit system is similar to the one proposed in [6].

Software pattern selection

For the IC-Patterns system, we simulated a small community of five developers. Each
query in the user model consisted of l ≥ 1 keywords. A query profile contained a dis-
tribution of keywords in user queries, as shown in Table 6.3. A user profile contained m

patterns that the user accepted for the queries. Note that in this application the accep-
tance behavior did not depend on the submitted query. The intuition behind this was
as follows: the user has a single problem to solve using patterns, the problem can be
described in a number of ways represented by queries generated using the query profile,
and the problem can be solved with the use of one of the patterns contained in the user
profile.

In the experiments we set the number of patterns m = 2 and l = 3, so user queries con-
sisted of three keywords that were chosen according to probabilities specified in query pro-
files. This query length has been chosen because it is very close to the average query length
of 2.99 words, reported in one of the recent studies of user behavior in web search [55].
The user profiles for five developers are listed in Table 6.4. For each user there is a profile
pattern and several relevant patterns. A profile pattern is the pattern used to generate
distribution of keywords in queries of a user. Relevant patterns are the patterns the user
accepted for their queries.

Web service discovery

In the web service discovery application each user query contained a short natural lan-
guage description of the service functionality. The queries were grouped in five categories
and for each category the user profile contained the list of the operations of the web

108 CHAPTER 6. EXPERIMENTAL EVALUATION

u01
access processes requests resources users you monitor reference authorization can
0.07 0.04 0.06 0.07 0.04 0.05 0.04 0.04 0.05 0.04

enforced policies book eduardo fernandez pattern patterns security titled
0.04 0.05 0.04 0.04 0.05 0.11 0.04 0.09 0.04

u02
connection established improved packets security system can correlate b eduardo

0.08 0.04 0.04 0.09 0.1 0.06 0.04 0.06 0.04 0.04
fernandez language n pattern patterns petrie seliya titled

0.04 0.04 0.06 0.11 0.04 0.04 0.04 0.04
u03

areas controlled memory processes should system users access address control
0.05 0.03 0.03 0.07 0.03 0.03 0.03 0.13 0.08 0.04
space virtual could eduardo fernandez pattern patterns security systems titled
0.06 0.05 0.03 0.03 0.04 0.06 0.03 0.05 0.03 0.04

application rights
0.03 0.03

u04
access control large number resources system users you based many
0.06 0.06 0.03 0.06 0.06 0.06 0.05 0.04 0.04 0.04

objects rights subjects eduardo fernandez pattern patterns security titled group
0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.08 0.03 0.04
roles
0.08

u05
access control created objects object applications defined must rights when
0.12 0.05 0.05 0.11 0.08 0.04 0.03 0.04 0.1 0.04

eduardo fernandez pattern patterns security systems titled creation new
0.03 0.03 0.04 0.03 0.05 0.04 0.03 0.04 0.05

Table 6.3: Query profiles for the IC-Patterns system. The query profiles contain the distribution of key-
words in user queries. For each user, the query profile contains keywords and probabilities of appearance
of the keywords in user queries.

ID profile pattern relevant patterns
u01 Reference Monitor Authorization

Execution Domain
u02 Stateful Firewall Packet Filter Firewall

Proxy Based Firewall
u03 Virtual Address Space Access Control Controlled Process Creator

Execution Domain
u04 Role Based Access Control Authorization

Multilevel Security
u05 Controlled Object Creator Controlled Process Creator

Execution Domain

Table 6.4: The user profiles for the IC-Patterns system.

6.1. OBJECTIVES AND THE EVALUATION METHODOLOGY 109

Category Web service Operation
{http://www.webserviceX.NET/}CurrencyConvertor conversionRate

Currency {http://www.xmethods.net/sd/}CurrencyExchangeService getRate
{http://www.myasptools.com/}currencyWS getRate
{http://www.xignite.com/services/}XigniteCurrencies getLatestCrossRate

Table 6.5: A user profile for the web service discovery system.

services that provide the required functionality. These operations were accepted when
a query from the corresponding category was submitted. An example of user profile for
the category “Currency” is given in Table 6.5. The request-generation behavior of the
user was simulated by choosing and submitting one of the requests randomly. The result-
selection behavior of the user was simulated by choosing and invoking one of the service
operations to perform the task. The intuition behind the user profile was as follows: the
user submits a request for a service operation. After getting suggestions, the user invokes
one of the operations considered relevant to the request.

6.1.3 Dimensions and metrics

In this section, we present the metrics we used to evaluate the quality of recommendations.
We also describe which dimensions we used to test the scalability of our recommendation
approach.

Since we recommended different things, namely links, patterns, operations of web
services, in the three application scenarios, in the following we use the term item to refer
to the thing which is being recommended. We used the following metrics [10] in order to
evaluate the quality of suggestions:

• We call an item relevant to a query if it is in a user profile [for the query].

• Precision is the ratio of the number of suggested relevant items to the total number
of suggested items, relevant and irrelevant.

• Recall is the ratio of the number of proposed relevant items to the total number of
relevant items.

• F-measure is a trade-off between precision and recall. It is calculated as follows:

F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
.

The relevance for the Implicit system is defined differently: we call a link relevant to
a particular keyword if the probability of its acceptance, as specified in the user profile,
is greater than some pre-defined relevance threshold t.

We measured the response time of a recommendation method as the time passed
from the moment the method received the submitted user query till the moment the
results were sent to the user. We measured the performance of the IC-Patterns system for
each retrieval method, namely for IR, CBR retrieval and the IC-Service recommendations.
We also measured the response time of the personal agent as the time passed from the
moment the agent received the query till the moment the agent sent results to the user.
The response time of the personal agent obviously depends on the load of the system,

110 CHAPTER 6. EXPERIMENTAL EVALUATION

but does not depend on the network load. Therefore, this time is shorter than the time
between the moment when the user actually submits the query and the moment when the
user receives results accessing the system in distributed settings.

We replicated each simulation r times and averaged the values of the performance and
quality measures to control the effect of the order and content of queries.

To test the scalability of our approach we used the dimension of the number of agents,
i.e. we increased the number of agents in the IC-Patterns system to see how the behavior
of the system changes.

6.2 Quality and performance evaluation

In this section, we present the experiments on the evaluation of the performance of the
system and the quality of recommendations.

6.2.1 Web search

The goal of the experiment was to understand how the insertion of a new member into a
community affects the relevance, in terms of precision and recall, of the links that were
produced by SICS.

The interaction between agents and users was replaced with the interaction between
agents and user models described in subsection 6.1.2. We set the relevance threshold
t = 0.1, so a link was considered relevant to a keyword if the probability of accepting the
link for the keyword was greater than or equal to 0.1. Since links provided by Google for
a certain keyword change their ranks continuously, before the experiment we stored the
links corresponding to the chosen keywords in a dataset and replaced querying Google
with getting links from this dataset. We did not use the following features of the Implicit
system: past search history, the inductive module.

We computed recall in a way which slightly differs from what described in subsec-
tion 6.1.3. The total number of relevant links was adjusted by adding links coming from
agents and the SICS. Even though such links were already recommended by Google, we
counted such repetitions. We did this because in such a way the model of interactions
became more similar to a real-life situation, where users (and their agents as well) would
have different collections of links, and, therefore the links coming from agents would not
be repetitions. However, because of this interpretation of recall, the quality of suggestions
was underestimated.

Assuming that all users were members of the same community and had similar interests,
the probabilities of accepting links for each user were obtained from the distribution given
in Table 6.2 by adding noise uniformly distributed in [0.00,...,0.05]. We added noise to
each entry of the table and then renormalized all entries in order to keep the sum of each
row equal to one. Using this procedure we generated five different user profiles.

From our set of 10 keywords for each agent we generated 25 sequences of 25 keywords by
extraction with repetition. Each sequence was used for modeling the user query behavior
in a simulation run. The user acceptance behavior was modeled in the following way.
Given a keyword in the sequence of keywords, the accepted result was generated randomly

6.2. QUALITY AND PERFORMANCE EVALUATION 111

1 2 3 4 5

0.64

0.66

0.68

0.7

0.72

0.74

precision

Nagents

2

1

1 - Personal agent

2 - All the agents

(a) Precision

1 2 3 4 5

0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24

recall

Nagents

2

1

1 - Personal agent

2 - All the agents

(b) Recall

Figure 6.1: Average precision and recall of 25 simulations with different number of agents.

according to the distribution that was specified in the user model. The links from other
agents that were equal to the accepted result were marked as accepted, while other links
received from the agents were marked as rejected.

In each simulation run we performed 25 searches for each agent in the platform. At
the end of each run the observation data were deleted to allow the SICS to produce
recommendations from scratch in the next run. We replicated the simulation 25 times
in order to control the effect of the order of the keywords and link acceptance. We ran
experiments for 1, 2, 3, 4, 5 agents. With one agent on the platform, the agent acted
alone without interactions with the others. With five agents we had a small community
where agents interacted with each other.

We computed precision and recall of the links proposed by the agents. Line 1 in
Figure 6.1(a) represents precision of the links that were recommended by the user personal
agent alone. The SICS, which was incorporated in the agent, produced these links by
analyzing stored observations. Line 2 represents precision of the links proposed by all the
agents including the personal one. The agents were discovered during the external search
or were provided by the DF. In Figure 6.1(b) we present analogous curves for recall.

From these figures we can note that the increase in community members caused the
increase in the recall of the suggestions from the agents. It is probably due to the fact that
when there were more agents in the system, there were also more interactions between
them. The agents provided each other only with one link, thus, when more links were
provided by the agents during the search, it lead to an increase of the percentage of
relevant links proposed by the agents and, therefore, the increase of recall. Moreover, the
increase of recall appeared without the decrease of precision which remained at a rather
high level ranging from 0.63 to 0.75. The value of recall was also rather good and changed
from 0.09 to 0.23. We also studied the statistical significance of the difference between
agents with the same distribution of probabilities in different simulations. We performed
t-Tests with Bonferroni correction, namely dividing p-value by the number of tests we
have performed, in order to control the type I error. These tests proved that the average
recall for four and five agents was consistently better (p < 0.01) than the average recall
of the simulations with smaller number of agents. The results also proved the hypothesis
that after a certain number of interactions, agents were able to propose links based on
the past user actions.

112 CHAPTER 6. EXPERIMENTAL EVALUATION

In other words, the obtained results proved that our way of complementing the Google
search engine with suggestions that are produced as a result of indirect user collaboration
allows for improving the quality of the web search. An important point is that even
without extending query with additional keywords and re-ranking links by the system,
it is possible to discover which of the Google links the community prefer and to achieve
better quality of suggestions with respect to Google.

6.2.2 Software pattern selection

The overall goal of the experiments was to compare the performance of the system and
of the different pattern retrieval methods: IR, CBR, and SICS recommendations. In
particular, we would like to measure the impact of the SICS on the system by comparing
the performance of the system with and without the SICS.

In the experiments we simulated user behavior with the user model described in sub-
section 6.1.2. During the experiments, the multi-agent platform contained a special agent,
the simulation manager, which was responsible for carrying out the simulation. The task
of the simulation manager was to create a number of personal agents, to collect the in-
formation regarding searches and to replicate simulation several times. The number of
agents and the number of repetitions was specified in the simulation scenario. Personal
agents sent the information about the simulated searches to the simulation manager using
the FIPA-Request protocol1.

In the experiments, we did not use the inductive module of the SICS to update the
theory and the recommendations were generated entirely by the composer module. Also,
models of the users did not produce reject actions, just request and apply.

To build a small community of five developers, we took away five patterns from the
repository of security patterns2 and assigned them to each of the developers as shown in
the first two columns of Table 6.4. These patterns were used in order to create query
profiles in user models. Each query profile was created as follows: given a document,
we computed the frequency of the terms in this document and then saved each term
and its normalized frequency as the probability of term’s occurrence in the document
(see Table 6.3 in subsection 6.1.2. Each user query was generated as a sample from the
distribution of terms saved in query profile, thus, a query contained a problem description
in free-text form.

To determine the relevant patterns, i.e. those marked as “solution to the problem”,
corresponding to the profile patterns, the following approach was adopted. We represented
each pattern in the repository as ‘a bag of words’ [10], i.e. as a vector that contains 1 at the
i-th component if the term ti is present in the pattern description, and 0 otherwise. Then
we calculated the similarity between the profile pattern x and the rest of the repository.
The cosine similarity metric [10] was used:

cos(x, x′) =
(x ∗ x′)

(||x|| ∗ ||x′||) , (6.1)

where ||x|| is the Euclidean norm of the vector representation of the document x.The d

1FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org/
2The repository of security patterns contains 59 patterns.

6.2. QUALITY AND PERFORMANCE EVALUATION 113

documents which were the most similar to the profile pattern x, excluding the documents
used to create profiles, were put in the profile as relevant patterns. We set d = 2 and
computed ten relevant patterns corresponding to the profile patterns as shown in the third
column of Table 6.4 in subsection 6.1.2. Our approach of taking several patterns from
the repository and using them for evaluation was somehow similar to the leave-one-out
methodology, where one sample is retained for validation and the others are used for
training, therefore we called this experiment leave-profile-patterns-out.

We ran simulations with different number of searches, namely k = 1, . . . , 30, measur-
ing the precision, recall, and F-measure of the recommendations after completing the k

searches for every user in each simulation run. We also measured the response time of the
system for each query. At the end of each simulation run, the database of observations
was deleted in order to have the SICS producing recommendations from scratch. We
replicated the simulation 25 times and averaged the precision, recall, F-measure, and the
response time to control the effect of the order and keywords of queries.

Since IR and CBR methods were independent and did not use any information neither
from each other not from the SICS, from this experiment we could also see what happens
in case the retrieval performed by using only IR or only CBR methods. User queries
were treated by the retrieval methods differently: for the IR method each keyword was
searched in the whole pattern, while for the CBR method each keyword was searched
only in the Pattern.Name, Pattern.Context, Pattern.Problem sections of the pattern. For
the recommendations produced by the SICS, the similarity between a user query and
queries submitted by other users in the past was calculated as the fraction of common
keywords. In the experiment we set the threshold of the similarity between user actions
in the SICS in such a way that actions were similar if their names were the same, and
the queries in actions had at least two keywords in common. In other words, the request
(apply) actions were similar if the problem descriptions in these actions had a non-trivial
overlap. This resulted in the similarity threshold s = 0.7. Please, note, that focusing on
the community as a whole, we did not differentiate between developers when calculating
similarity between actions.

The results contain the boxplots for the precision, recall and F-measure of the patterns
retrieved using IR and CBR methods, recommended by the SICS, and by the system (to-
gether by IR, CBR results and recommendations). They also include the response time
of the system, as shown in Figure 6.5. Figure 6.2 shows the precision of the recommen-
dations produced by the five personal agents for five developers. Analogous results were
obtained for the recall (Figure 6.3) and F-measure (Figure 6.4).

The figures for precision suggest that the precision of all retrieval methods does not
depend much on the number of searches. The precision of the CBR method is the lowest,
while the precision of the SICS method is the highest. An interesting observation from
these figures is that the precision of SICS stabilizes as the number of searches increases.
Consequently, the precision of the whole system stabilizes too.

From the results for recall, it is possible to see that the recall of the IR and the CBR
methods remains at the same level, independently of the number of searches. This is
reasonable, because these methods do not use any user feedback for improving suggestions.
Here we can draw an analogy with conventional search engines whose set of results to the

114 CHAPTER 6. EXPERIMENTAL EVALUATION

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LUCENE−IR

Number of searches

P
re

ci
si

on

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LUCENE−CBR

Number of searches

P
re

ci
si

on

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SICS

Number of searches

P
re

ci
si

on

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ALL

Number of searches

P
re

ci
si

on

Figure 6.2: Precision of the retrieval methods in the IC-Patterns system.

6.2. QUALITY AND PERFORMANCE EVALUATION 115

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LUCENE−IR

Number of searches

R
ec

al
l

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LUCENE−CBR

Number of searches

R
ec

al
l

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SICS

Number of searches

R
ec

al
l

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ALL

Number of searches

R
ec

al
l

Figure 6.3: Recall of the retrieval methods in the IC-Patterns system.

116 CHAPTER 6. EXPERIMENTAL EVALUATION

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LUCENE−IR

Number of searches

F
−

m
ea

su
re

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LUCENE−CBR

Number of searches

F
−

m
ea

su
re

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

SICS

Number of searches

F
−

m
ea

su
re

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ALL

Number of searches

F
−

m
ea

su
re

Figure 6.4: F-measure of the retrieval methods in the IC-Patterns system.

6.2. QUALITY AND PERFORMANCE EVALUATION 117

same query is generally the same for all users. However, as we can observe in the case
of SICS, and, consequently, system recommendations, the use of personalized approaches
provides a steady increase in recall. We can observe much lower increase in F-measure of
recommendations by the SICS and the system, because it is influenced by precision.

The poor performance of the CBR method is probably explained by the fact that while
whole patterns were created for user queries, only portions of patterns were indexed by
the CBR method and used for the retrieval.

Figure 6.5 shows the response time of the retrieval methods in milliseconds. As we
can see, the response time of the IR and CBR methods is lower that the response time of
the SICS. Moreover, those response time do not depend much on the number of searches,
while the response time of the SICS does depend a little. This is probably explained by
the number of observations growing when simulation run contained more searches. The
outliers for each point in SICS response time correspond to the initialization of the SICS,
which takes some time. However, as shown by means, once initialized, the SICS responds
faster. Similar behavior is observed for the IR algorithm: when there is only one search,
the algorithm performs much slower because it initializes the index in each simulation
run.

Figures contain a lot of outliers that correspond to the cases of initializing recommen-
dation methods in different runs for different agents, or occur in case of too short runs,
e.g. consisting of only several searches.

6.2.3 Web service discovery

In the experiment we used a collection of 20 web services from the xMethods service
registry3 divided into five topic categories. For each category we found four semanti-
cally equivalent operations and formed 20 requests based on their short natural language
descriptions from WSDL files. The interaction of users with the system was simulated
using the user model defined in subsection 6.1.2. The invocations of web services by user
models were monitored by the SICS Remote Client. We used two metrics for calculat-
ing similarity between user requests: a syntactic metric, the Vector Space Model (VSM)
with Term Frequency - Inversed Document Frequency (TF-IDF), and a semantic metric,
Word-Net-based.

We ran simulations with the number of searches k = 100, and the number of users
equal to 4 and to 20, measuring the precision, recall, and F-measure of the recommen-
dations in each simulation run. The results are shown in Figure 6.6. According to these
results, the performance tends to increase with the number of user requests in the case of
the TF-IDF similarity metric. Precision of the system with the WordNet-based semantic
similarity metric slightly decreases after some point because of fault positive recommen-
dations produced by the system due to the too generic nature of the lexical similarity
used to match requests. However, the recall of the semantic metric is significantly better
than the recall of the syntactic one.

3http://xMethods.com/

118 CHAPTER 6. EXPERIMENTAL EVALUATION

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0
50

0
10

00
15

00

LUCENE−IR

Number of searches

R
es

po
ns

e
tim

e

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0
20

0
40

0
60

0
80

0
10

00

LUCENE−CBR

Number of searches

R
es

po
ns

e
tim

e

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0
10

00
20

00
30

00

SICS

Number of searches

R
es

po
ns

e
tim

e

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0
20

00
40

00
60

00
80

00
10

00
0

ALL

Number of searches

R
es

po
ns

e
tim

e

Figure 6.5: Response time of the retrieval methods in the IC-Patterns system.

6.3. EVALUATION WITH REAL USERS 119

(a) VSM with TF-IDF, 4 clients (b) WordNet-based semantic similarity met-
ric, 4 clients

(c) VSM with TF-IDF, 20 clients (d) WordNet-based semantic similarity met-
ric, 20 clients

Figure 6.6: Performance of the web service discovery system.

6.3 Evaluation with real users

In this section, we report the results of the evaluation of the Implicit system with real
users. The goal of the evaluation with real users was to see how the system is accepted
by people and whether it provides enough support for sharing experience in a community
of practice.

We performed the evaluation in a small company located near Trento, Italy. The
company offers courses in different areas of IT. For promoting interaction between course
attendees the company provided a forum with topics dedicated to the content of the
courses.

For the described evaluation people attending the courses related to the Java program-
ming language were selected. Eleven course attendees agreed to participate in the study.
When dealing with the system, the participants were focused on a narrower topic of game
development in the Java language. The Implicit system was integrated in the company
forum, namely, the interface was modified to enable user requests, display suggestions
from the Implicit system, and permit providing feedback submission to the posts.

Participants used the system in the following way: whenever they wanted to get an
answer to a question, they clicked on the Implicit button in the interface and submitted
several keywords as their query to the system. The system ran the general search mech-
anism described above, forwarding the query to other personal agents and to Google. In
addition to this, the query was forwarded to the specific wrapper agent that dealt with
the retrieval of the forum messages. This wrapper used the SICS to retrieve messages that
were accepted for similar queries previously. The feedback collected previously has been

120 CHAPTER 6. EXPERIMENTAL EVALUATION

Period number of requests
Weeks 1 and 2 10
Weeks 3 and 4 18
Weeks 5 and 6 60

Table 6.6: The number of requests to the system.

Number of accepted results number of requests
1 32
2 16
3 2
4 2

Table 6.7: The number of accepted results.

used to rank the results. In this application, first forum posts, then links from the users,
and, finally, links from Google were displayed and a result was considered “accepted” if
the user clicked on it. Moreover, users were able to express their level of satisfaction with
results by means of explicit feedback — for each post the feedback contained ratings in
the scale from 1(very bad) to 6(excellent) for the five following categories: quality of mes-
sage, quality of the code, was message was useful to the user, would the user recommend
the message to others, was it relevant to the original question of the user. The users
were not required to provide ratings in all five categories. There was also a possibility to
rate messages directly when browsing forum threads. Messages rated in such a way were
retrieved by the forum wrapper in case the retrieval of messages using the SICS produced
no results. This functionality helped us to deal with the cold-start problem [28].

We ran the system for six weeks and measured the number of queries submitted and
the number of recommendations accepted. The results containing the number of queries
submitted during the evaluation are given in Table 6.6. As we can see, the users were
reluctant to use the system during the first two weeks, while during the second two weeks
the number of queries slightly increased and reached the number of 60 queries in the final
period.

Table 6.7 show the how many times one, two, three, and four results were accepted. As
can be seen from the table, in most cases users accepted only one result, sometimes two,
and only rarely three or four. For the total of 88 queries, in 52 searches users accepted at
least one result from the system, i.e. in 60 per cent of the searches the system provided
something of interest.

The obtained results show that the system, after some period, was accepted by the
community and was able to provide useful recommendations.

6.4 Scalability evaluation

We performed the study on the scalability of the IC-Patterns system.
The goal of this experiment was to test how the system response time changes de-

pending on the number of users. Although we have recorded the performance of the IR

6.5. DISCUSSION 121

and the CBR algorithms, no significant dependency on the number of users should be
observed. However, since there is only one SICS for answering all user queries, we expect
the response time to decrease as the number of users increases.

All materials of the experiment were the same as in the experiment in subsection 6.2.2.
In this experiment we copied the five user models from subsection 6.2.2 several times to

simulate the community of u users. Of course, this lead to appearance of several chunks
of very similar users, but in this experiment the goal was not to focus on the reality of
such a community, but merely on the size of the community.

In the experiment we set the number of searches k = 15 and we ran simulations with
the number of users, u, equal to 3, 6, 9, 12, 15, 18, measuring the response time of the
system for each query. We replicated the simulation 25 times and averaged the response
time.

The results contain the response time of the system as shown in Figure 6.7. As can be
expected, the response time grows with the number of agents. The response time of the IR
and CBR methods changes linearly, while the response time of the SICS more resembles
quadratic dependence. However, up to nine agents, the response time of SICS is less than
or equal to a couple of seconds. Let us consider that nine agents in this experiment do not
really correspond to nine users, but, rather, they represent nine users continuously and
simultaneously querying the SICS. This can hardly be considered as a realistic scenario.
Thus, we can claim that the system can support more users as long as no more than nine
users query our system simultaneously. The number of user that can be served is subject
of further investigation. However, this defines a kind of throughput threshold for the
system when used with xml files for storing observations. As we described in Section 4.5,
the use of a relational database in the system would allow for processing queries faster,
and should permit serving more users simultaneously.

6.5 Discussion

In this chapter, we have presented the objectives and the methodology of the evaluation
of the applications described in Chapter 5. We have developed a user model, because
there is no commonly accepted user model for benchmarking recommendation systems in
different domains. However, the model we used in Implicit is similar to the one proposed
in [6].

In the following, we discuss the results of the evaluation in the context of the objectives.
We have tested the performance of the IC-Patterns system, measuring the response

time of different recommendation methods. The response time of the SICS was lower
than the response time of the IR and CBR methods, but the SICS showed better quality
of recommendations. Overall response time of the system depended on the history of
observations and the number of agents, and in most cases ranged from 0.9 to 3 seconds,
which is an acceptable result.

We have tested the quality of recommendations of the systems, and compared the
retrieval performance of different algorithms. The results have shown that our systems
clearly learns from past interactions. Precision mainly varied from 0.3 till 0.8, while recall
varied from 0.18 till 0.7, depending on the scenario. Overall, the results improved over

122 CHAPTER 6. EXPERIMENTAL EVALUATION

1 2 3 4 5 6 7 8 9 10 12 14 16 18

0
50

0
10

00
15

00
20

00

LUCENE−IR

Number of agents

R
es

po
ns

e
tim

e

1 2 3 4 5 6 7 8 9 10 12 14 16 18

0
50

0
10

00
15

00

LUCENE−CBR

Number of agents

R
es

po
ns

e
tim

e

1 2 3 4 5 6 7 8 9 10 12 14 16 18

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

SICS

Number of agents

R
es

po
ns

e
tim

e

1 2 3 4 5 6 7 8 9 10 12 14 16 18

0
20

00
0

40
00

0
60

00
0

80
00

0

ALL

Number of agents

R
es

po
ns

e
tim

e

Figure 6.7: Dependence of the response time of the retrieval methods on the number of agents in the
IC-Patterns system.

6.5. DISCUSSION 123

the first 10 to 20 searches and then stabilized at the reached high level.
We have measured the impact of the SICS in each system by comparing the quality of

suggestions with and without the SICS. The results suggested that the effect of improving
the quality of the recommendations over time was caused by the SICS. In most cases,
the SICS outperformed conventional retrieval methods in terms of precision, reaching
the level of 0.55-0.85, depending on the application. Moreover, while the recall of the
conventional retrieval methods remained more or less at the same level, the recall of the
SICS recommendations increased. However, the SICS recommendations are based on the
actions users performed on the recommendations produced by other methods, and, in a
way, are not possible without them. Therefore, conventional methods (Google links in
Implicit, IR and CBR methods in IC-Patterns, random choice in the web service discovery
system) are required as a kind of bootstrapping for the systems.

We have tested the scalability of the IC-Patterns system. Since we used XML files
for storing data about past user actions and did not perform optimization, the response
time of the SICS was acceptable only in small communities (up to nine agents). However,
we should consider that nine agents in the experiment did not really correspond to nine
users, but, rather, they represented nine users continuously and simultaneously querying
the SICS. This can hardly be considered as a realistic scenario, and we expect that even
in the present configuration the system will be able to handle more users. Moreover, we
expect that the use of a relational database in the IC-Service will improve the scalability
of the approach and greatly improve the performance of the system.

Finally, the results of the evaluation of the Implicit system with real users have shown
that even though users were initially reluctant to using the system, the number of queries
slightly increased later and finally reached the number of 60 queries, which is almost six
queries per person. Moreover, in 60 per cent of searches the system provided something
of interest, because users accepted at least one result from the system. Thus, we can
conclude that the Implicit system attracted the critical mass of the community members
and was perceived useful.

124 CHAPTER 6. EXPERIMENTAL EVALUATION

Chapter 7

Related work

In this chapter, we review the related work. In Section 7.1 we discuss the applicability of
the Implicit Culture Framework in the field of recommendation systems. In Section 7.2 we
see how our approach is related to collaborative filtering. In Section 7.3 and Section 7.4,
respectively, we discuss similarities with stigmergy and social navigation approaches.

7.1 Recommendation systems

A recommendation system is a “system that produces individualized recommendations
as output or has the effect of guiding the user in a personalized way to interesting or
useful objects in a large space of possible options” [28]. The baseline idea of most recom-
mendation systems is to leverage information about users and items in order to produce
recommendations relevant to user interests. The information about users is collected in
terms of profiles [101], stereotypes [92], and implicit or explicit feedback from users [55].
Time spent reading [a web page], clickthrough rate, actions used to end a search session
are among examples of implicit feedback. Examples of explicit feedback include relevance
judgments and ratings.

The main approaches for the development of recommendation systems are: content-
based and collaborative filtering [113]. In the content-based approach, the content of the
items is analyzed, while in the collaborative filtering the ratings of different users are
compared to produce recommendations. There are also hybrid approaches that combine
both [9, 28]. Most of the publicly available recommendation engines (e.g. Taste1, CoFE2,
Alkindi3) implement collaborative filtering techniques. There are also tools that provide
content-based recommendations (Recommender.org4), and domain-specific recommenda-
tion tools (The Scout Portal Toolkit5).

Many of the existing recommendation systems use explicit feedback [84, 126, 141],
while people are not usually willing to actively provide feedback [37, 120]. Furthermore,
sometimes users are inconsistent in the explicit ratings provided [82]. All these facts

1http://taste.sourceforge.net/
2http://eecs.oregonstate.edu/iis/CoFE/
3http://mappa.mundi.net/signals/memes/alkindi.shtml
4http://sourceforge.net/projects/recommender-org/
5http://scout.wisc.edu/Projects/SPT/

125

126 CHAPTER 7. RELATED WORK

item Kevin Lucy Max Naoko
1 1 4 2 2
2 5 2 4 4
3 ? 3
4 2 5 5
5 4 1 1
6 ? 2 5

Table 7.1: An example of matrix of ratings.

suggest that implicit indicators of user interests should be exploited. Moreover, the study
by Fox et al. [55] has shown that implicit measures can be a suitable alternative to explicit
feedback.

The problem of providing interesting recommendations can be formalized in terms of
the Implicit Culture Framework: it is necessary to transfer behavior of selecting inter-
esting items from those who possess this behavior to other users. To some extent, the
applications presented in Chapter 5 adopt this approach.

7.2 Collaborative filtering

Collaborative filtering [113] is one of the most popular techniques for the development of
recommendation systems. It addresses the problem of information overload, i.e. having
too many items potentially interesting for a user. The main idea of collaborative filtering is
that items unseen by the user, but highly rated by similar users, should be recommended.
The similarity between users is calculated based on the ratings they provided in the past.
For instance, in Table 7.1, Kevin rated items 1, 2, 4, 5, and has not seen items 3 and
6. In order to see which of the unseen items he will like more, the collaborative filtering
algorithm calculates the prediction of Kevin’s ratings on items 3 and 6, using weighted
similarity between Kevin and other users. This similarity depends on the correlation
between the ratings of Kevin and other users.

Among the most influential papers on collaborative filtering we should mention those
of GroupLens group6, including systems for recommending news (GroupLens) [84], movies
(MovieLens7), research papers (TechLens) [141]. One of the probably best-known real-
world applications of collaborative filtering is Amazon.com [90], where it is used for rec-
ommending products.

The Implicit Culture Framework is claimed to be more general than collaborative
filtering [21] since it filters not only ratings, but actions in general, with rate being only
a particular example of the action. In the terms of the Implicit Culture Framework, the
cultural theory in collaborative filtering is specified a priori and is not updated over time,
therefore the inductive module is not necessary. The composer module of the SICS for
collaborative filtering plays the main role in the process of producing recommendations.
It selects potentially relevant items by comparing rate actions. In the general architecture

6GroupLens Research. http://www.grouplens.org/
7Movie recommendations. http://www.movielens.org/

7.3. STIGMERGY 127

of the SICS, actions are not restricted to rate actions. Moreover, the theory can evolve
over time, incorporating the essence of the history of observations.

7.3 Stigmergy

Stigmergy was introduced in biology as an approach for explaining self-organization, i.e.
emergence of global behavior patterns from local interactions [29]. More specifically, it
explains social mechanisms of coordination based on interaction through local modifica-
tions to a shared environment. Examples of such coordination include the movement of
wooden chips by termites and ant foraging, i.e. the deposition of pheromone by ants so
that other ants can follow them.

Stigmergy has been widely applied in multi-agent systems for implementing emergent
coordination. However, as pointed out by Ricci et al. [114], existing approaches mostly
consider primitive societies composed of a large amount of simple, ant-like, non-rational
agents. Therefore, the authors propose a notion of cognitive stigmergy, which exploits
the notion of complex cognitive artifacts populating agent environment and used for
coordination. The notion of artifact is very important for further development of the
Implicit Culture Framework. On the one hand, while now we consider transmission as
given, it can be explained and clarified by using the notion of artifacts as facilitators or
enablers of the transmission. On the other hand, the notion of object, which is used in
the detailed SICS architecture, can be seen as a particular case of artifacts. Thus, the
analysis of actions taken by agents on a set of objects, performed by the inductive module,
can be seen as an attempt for understanding how artifacts influence agents’ actions.

In the field of recommendation and personalization systems, the stigmergy approach is
often called swarm intelligence. Several swarm intelligence theories, e.g. trail laying, and
ant foraging, have been applied for guiding people (e.g. learners) to relevant information
using the data from previous interactions with the system [46, 144]. These approaches
suggest that the user follow trails taken by the majority. Differently, in the Implicit
Culture approach the user’s actions are compared with actions of the whole community
and not necessarily the most popular ones are suggested. More precisely, taking into
account past actions of the user, the system can offer actions which are less popular in
general, but are common among the part of the community which is the most similar to
the user.

7.4 Social navigation

Implicit Culture in general and applied in recommendation systems in particular is related
to the notion of Social Navigation. Initially introduced in [44] and further developed by
Dieberger et al. [41] it has been also applied to the problem of the navigation on the
Internet [40].

The main objective of Social Navigation is to help people to take decisions by using,
directly or indirectly, information from other people. With this in mind, Dieberger et
al. [41] introduce several styles of Social Navigation systems: recommendation systems,
which help people to make a choice by looking at what other people with similar interests

128 CHAPTER 7. RELATED WORK

have chosen; populated spaces, which use the idea of a populated space in which other
people can be encountered; and “history-enriched” systems, which use the history of
previous actions to guide the user. Thus, the problem targeted by Social Navigation
systems can be formulated as guiding people to relevant information. This problem is
similar to the one addressed by applications of the Implicit Culture in recommendation
systems, as described in Chapter 5. However, the general idea of the Implicit Culture
approach, i.e. transferring culture of a community, is much broader. The same applies
to the problem addressed by this thesis, that is, a narrower problem of the transfer of
behavior from one group to another. In this perspective, the scope of the Implicit Culture
approach seems to be more general than just dealing with the transfer of information
between groups. However, when applied in the field of recommendation systems, two
approaches look very similar.

On the one hand, Implicit Culture does not cover all the scope of the Social Navigation
problems, and it has been defined as a relation between groups of agents. The definition
emphasizes the transfer of behavior between groups and allows one to evaluate whether
the implicit culture relation arises from some system usage. It can be argued that some
effective Social Navigation systems produce such a relation. On the other hand, other So-
cial Navigation systems, for instance, those supporting awareness (e.g. social proxies [48])
do not necessarily produce the implicit culture relation.

On the other hand, establishing the implicit culture relation by means of SICSs can be
considered as a particular case of Social Navigation. Implicit Culture-based systems man-
ifest the two key properties of the Social Navigation phenomenon, namely personalization
and dynamism [41]: when producing suggestions, the SICS focuses on a particular person
and the situation this person currently encounters; suggestions of the SICS can change as
new actions become common for the observed group in the same situations (the evolution
of the theory). Also, both Implicit Culture and Social Navigation process user feedback
in order to support information navigation. However, differently from Social Navigation,
Implicit Culture allows for a formal description of the navigation process.

Finally, we would like to stress that although the SICS encourages the desired behavior
of the community members, it does not control the decision-making process and it is the
user who takes the final decision. The importance of all this with respect to Social
Navigation in the online world has been described in Dieberger et al. [41].

7.5 Concluding remarks

In this chapter, we have briefly reviewed the related work, focusing on recommendation
systems, collaborative filtering, stigmergy, and social navigation.

Chapter 8

Conclusion

The main objective of this thesis was to address the problem of discovering, representing,
and transferring culture in communities, such as communities of practice or Web 2.0
communities.

We have reviewed and discussed limitations of the existing computer science approaches
for dealing with culture, for transferring knowledge, behavior, and culture. We have also
studied how the important implicit-explicit dichotomy (or duality, as suggested by some
authors) of knowledge and culture is addressed in the literature.

The solution we have proposed and evaluated consists of the formalism for defining
and representing culture and the framework for transferring some elements of culture.
These two parts of the solution constitute a complex systematic approach that includes
engineering aspects and aims at representing, making explicit, and transferring elements
of culture.

First, we have developed a formalism for defining and representing culture of com-
munities. This included the definition of culture of a set of agents, the classification of
problems involving culture, and metrics for measuring, assessing, and characterizing cul-
ture. We have shown that the provided formalism is operational, i.e., as we illustrated by
a case study, it can be used to compute and measure culture.

Second, focusing on the problem of behavior transfer (a subset of the more general prob-
lem of culture transfer), we have proposed the Implicit Culture Framework, an agent-based
framework that includes a meta-model for defining the application domain, a general archi-
tecture of SICS for behavior transfer, a detailed architecture of SICS modules, algorithms
for achieving the implicit culture relation by using SICS. It also includes the IC-Service,
a general-purpose, domain-independent service that implements the SICS architecture
and the algorithms, and a methodology for applying the Implicit Culture Framework in
practice. In this thesis, we have described all the components of the framework in detail.

We have applied the proposed approach in the domain of recommendation systems to
develop three systems: Implicit, a system for recommending web links; IC-Patterns, a
system that recommends software patterns; and a system for web service discovery. The
systems were implementing different architectures: a multi-agent architecture has been
chosen for the Implicit and IC-Patterns systems, and s service-oriented architecture has
been used for the system for web service discovery. The applications followed the prin-
ciple of non-intrusiveness, i.e., integration in the community practices and using implicit

129

130 CHAPTER 8. CONCLUSION

feedback from the users when possible.
We have presented the evaluation methodology and performed evaluation of the de-

veloped applications with real users and with simulated user models. The results of the
evaluation have shown that the quality (measured as precision and recall) of recommen-
dations of the SICS increased as the number of the community members or the number
of searches increased. The precision reached the level of 0.8, and recall reached the level
of 0.7, depending on the application. In most cases the SICS outperformed conventional
retrieval methods, such as IR or CBR. The response time of the SICS in small commu-
nities was acceptable even when XML files were used for storing data about past user
actions. We expect that the use of a relational database in the IC-Service will improve
the scalability of the approach and greatly improve the performance of the system, as
shown by preliminary experiments. The real-user evaluation of the Implicit system has
shown that the system attracted the critical mass of the community members and was
perceived useful. Overall, we can say that applications have shown how the use of our
approach leverages community culture to provide more social benefits (expressed in terms
of quality of the recommendations) to communities.

Finally, we have reviewed a number of research fields that are related to our approach:
collaborative filtering, recommendation systems, stigmergy, and social navigation.

8.1 Future work

Future work will follow different directions. First, we would like to extend the Implicit
Culture Framework to deal with more general problem of behavior transfer, and with the
problem of knowledge transfer. Second, we are planning to develop and test inductive
module that uses more sophisticated algorithms of the SICS architecture and to apply the
framework in other domains, e.g. software testing. For some applications we foresee the
need of integration with other approaches. Third, we will develop tools for solving some
of the problems involving culture from the proposed classification. In particular, tools
for discovering culture of communities, and clustering communities based on their culture
can be developed. Finally, we would like to use measures we introduced in Section 3.5 to
test the results of the application of our framework. For instance, we can check if a SICS
improves homogeneity of a culture and of a group, and to measure the degree and the
speed of culture transfer.

8.2 Dissemination of results

The results of the thesis have been published in the IEEE Software journal, in the
proceedings of AAMAS’05, AAMAS’06, ISC’06, BIS’07, ACM-SAC’07 conferences and
have been presented at the following workshops: Workshop on Multi-Agent Informa-
tion Retrieval and Recommender Systems at IJCAI’05, Workshop on the Social Navi-
gation and Community-Based Adaptation Technologies at AH’06, Workshop on Wikis
for Software Engineering at ACM WikiSym’07. As an extension of the work on the
system for recommending software patterns, a focus group on pattern repositories was

8.2. DISSEMINATION OF RESULTS 131

organized at the 12th European Conference on Pattern Languages of Programs (Euro-
PLoP’07), and a wiki for hosting collections of software patterns (available at http:

//www.patternforge.net/wiki/index.php?title=Main_Page) was developed together
with other members of *PLoP community, which includes pattern writers, researchers,
and practitioners. Journal papers derived from the results of the thesis are being prepared
for submission to the Journal of Autonomous Agents and Multi-Agent Systems, the Jour-
nal of Artificial Intelligence, and the Journal of Decision Support Systems. Conference
papers have been submitted to UMAP’09 and EuroPLoP’09.

The IC-Service has been applied in several student projects (see the list at http:

//disi.unitn.it/~birukou/index.php?page=students), in particular, for the devel-
opment of a system that helps to leverage knowledge of a community of biologists [111],
a self-organizing system for traffic management [15], and an adaptive system for Internet
radio[133]. The IC-Service is being prepared to be released as an open source project.

We are working on the development of an integrated service supporting the whole
lifecycle of software patterns The system is a mash-up of several pattern-related services
for pattern retrieval, tagging, application and detection in code. It is targeted at and is
being developed in close collaboration with *PLoP community.

A pattern for collaborative service discovery1 has been derived from the web service
discovery application, and included to NEXOF-RA project. NEXOF-RA is a part of the
Networked European Software and Services Initiative (NESSI), a European research col-
laboration network. The goal of NEXOF-RA is to build an Open Reference Architecture
for the developers and architects of service-oriented systems.

1Position paper is available at http://www.nexof-ra.eu/?q=rep/term/158, the patterns will be released in the nearest
future.

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational is-
sues,methodological variations, and system approaches. AI Communications,
7(1):39–59, March 1994.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Procedings of the 20th International Conference on Very
Large Data Bases (VLDB), pages 487–499. Morgan Kaufmann, 1994.

[3] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. An-
gel. A pattern language. Oxford University Press, 1977.

[4] R. Almeida and V. Almeida. A community-aware search engine. In Proceedings of
the 13th international conference on World Wide Web, 2004.

[5] Yariv Aridor and Danny B. Lange. Agent design patterns: elements of agent appli-
cation design. In AGENTS ’98: Proceedings of the second international conference
on Autonomous agents, pages 108–115, New York, NY, USA, 1998. ACM.

[6] Kit G. August, Mark H. Hansen, and Elizabeth Shriver. Mobile web searching. Bell
Labs Technical Journal, 6(2):84–98, 2001.

[7] Robert Axelrod. The dissemination of culture: A model with local convergence and
global polarization. The Journal of Conflict Resolution, 41(2):203–226, 1997.

[8] Garrick Bailey and James Peoples. Introduction to Cultural Anthropology.
Wadsworth Publishing, September 1998.

[9] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recom-
mendation. Commununications of the ACM, 40(3):66–72, 1997.

[10] Pierre Baldi, Paolo Frasconi, and Padhraic Smyth. Modeling the Internet and the
Web: Probabilistic Methods and Algorithms. Wiley, 2003.

[11] Wolfgang Balzer and Raimo Tuomela. Collective intentions and the maintenance of
social practices. Autonomous Agents and Multi-Agent Systems, 6(1):7–33, January
2003.

[12] P Baumard. Tacit knowledge in organizations. London & Thousand Oaks: Sage,
1999.

133

134 BIBLIOGRAPHY

[13] Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE (Wiley Series in Agent Technology). Wiley, April 2007.

[14] S. Bender and A. Fish. The transfer of knowledge and the retention of expertise: the
continuing need for global assignments. Journal of Knowledge Management, pages
125–137, 2000.

[15] Massimiliano Bernabe. Implicit culture for self-organizing systems: a concrete sce-
nario and its performance analysis. available at http://disi.unitn.it/~birukou/
students/theses/MassimilianoBernabe-MS-2007.pdf. Master thesis, 2007.

[16] Aliaksandr Birukou, Enrico Blanzieri, Vincenzo D’Andrea, Paolo Giorgini, Natallia
Kokash, and Alessio Modena. IC-Service: A service-oriented approach to the de-
velopment of recommendation systems. In Proceedings of the ACM Symposium on
Applied Computing (SAC), pages 1683–1688. ACM Press, 2007.

[17] Aliaksandr Birukou, Enrico Blanzieri, and Paolo Giorgini. Implicit: An agent-based
recommendation system for web search. In Proceedings of the 4th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
618–624. ACM Press, 2005.

[18] Aliaksandr Birukou, Enrico Blanzieri, and Paolo Giorgini. Choosing the right desing
pattern: the implicit culture approach. In Proceedings of the fourth Industrial Sim-
ulation Conference 2006 (ISC-2006)., pages 55–57. EUROSIS, June 2006.

[19] Aliaksandr Birukou, Enrico Blanzieri Vincenzo D’Andrea, Paolo Giorgini, and Na-
tallia Kokash. Improving web service discovery with usage data. IEEE Software,
24(6):47–54, 2007.

[20] Aliaksandr Birukov, Enrico Blanzieri, and Paolo Giorgini. Implicit: A recommender
system that uses implicit knowledge to produce suggestions. In Proceedings of
the Workshop on Multi-Agent Information Retrieval and Recommender Systems at
IJCAI-05, 2005.

[21] Enrico Blanzieri and Paolo Giorgini. From collaborative filtering to implicit culture:
a general agent-based framework. In Proceedings of the Workshop on Agents and
Recommender Systems, Barcelona, 2000.

[22] R. Bova, H. Paik, B. Benatallah, L. Zeng, and S. Benbernou. Task memories and task
forums: A foundation for sharing service-based personal processes. In Proceedings
of the International Conference on Service Oriented Computing (ICSOC), 2007.

[23] Robert Boyd and Peter J. Richerson. Culture and the Evolutionary Process. Uni-
versity of Chicago Press, 1988.

[24] Adda B. Bozeman. Strategic Intelligence and Statecraft: Selected Essays. Washing-
ton, DC: Brassey’s, 1992.

[25] Christoph Brumann. Writing for culture: Why a successful concept should not be
discarded [and comments and reply]. Current Anthropology, 40, 1999.

BIBLIOGRAPHY 135

[26] Peter Brusilovsky, Rosta Farzan, and Jae wook Ahn. Comprehensive personalized
information access in an educational digital library. In JCDL ’05: Proceedings of
the 5th ACM/IEEE-CS joint conference on Digital libraries, pages 9–18, New York,
NY, USA, 2005. ACM Press.

[27] Tung Bui and Jintae Lee. An agent-based framework for building decision support
systems. Decision Support Systems, 25(3):225–237, April 1999.

[28] Robin Burke. Hybrid recommender systems: Survey and experiments. User Model-
ing and User-Adapted Interaction, 12(4):331–370, 2002.

[29] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Ther-
aula, and Eric Bonabeau. Self-Organization in Biological Systems. Princeton Uni-
versity Press, 2003.

[30] Douglas K. Candland. Feral Children and Clever Animals: Reflections on Human
Nature. Oxford University Press, USA, October 1995.

[31] Kathleen Carley. A theory of group stability. American Sociological Review,
56(3):331–354, 1991.

[32] Kathleen M. Carley and Michael J. Prietula, editors. Computational Organization
Theory. Routledge, 1994.

[33] Cristiano Castelfranchi. Modelling social action for ai agents. Artificial Intelligence,
103(1-2):157–182, August 1998.

[34] Marcelo Cataldo, Kathleen Carley, and Linda Argote. The effect of personnel
selection schemes on knowledge transfer. In In Proceedings of the 9th Interna-
tional Conference on Computational Analysis of Social and Organizational Systems,
2000. A longer version available as a techreport at http://www.casos.cs.cmu.

edu/publications/papers/marcelo_paper.pdf.

[35] Michael Chau, Daniel Zeng, Hsinchun Chen, Michael Huang, and David Hendri-
awan. Design and evaluation of a multi-agent collaborative web mining system.
Decision Support Systems, 35(1):167–183, 2003.

[36] Liren Chen and Katia Sycara. Webmate: a personal agent for browsing and search-
ing. In AGENTS ’98: Proceedings of the second international conference on Au-
tonomous agents, pages 132–139, New York, NY, USA, 1998. ACM Press.

[37] Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit interest
indicators. In International Conference on Intelligent User Interfaces, pages 33–40.
ACM Press, 2001.

[38] M.D. Cohen, J.G. March, and J.P. Olsen. A garbage can model of organizational
choice. Administrative Sciences Quarterly, 17(1):1–25, 1972.

[39] Francisco Curbera, Donald F. Ferguson, Martin Nally, and Marcia L. Stockton.
Toward a programming model for service-oriented computing. In ICSOC: Proc. of
the 3d Int. Conference on Service-Oriented Computing, volume 2172 of LNCS, pages
33–47. Springer, 2005.

136 BIBLIOGRAPHY

[40] Andreas Dieberger. Supporting social navigation on the world wide web. Int. J.
Human-Computer Studies, 46:805–825, 1997.

[41] Andreas Dieberger, Paul Dourish, Kristina Hook, Paul Resnick, and Alan Wexel-
blat. Social navigation: Techniques for building more usable systems. interactions,
7(6):36–45, 2000.

[42] Vania Dimitrova, Manolis Tzagarakis, and Julita Vassileva, editors. SociUM: Adap-
tation and Personalisation in Social Systems: Groups, Teams, Communities, 2007.

[43] Tung T. Do, Manuel Kolp, and Alain Pirotte. Social patterns for designing multia-
gent systems. In Proceedings of the Fifteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE’2003), pages 103–110, 2003.

[44] Paul Dourish and Matthew Chalmers. Running out of space: Models of information
navigation, short paper. In HCI’94, Glasgow, August 1994.

[45] Hubert L. Dreyfus and Stuart E. Dreyfus. Mind over machine: the power of human
intuition and expertise in the era of the computer. The Free Press, 2000.

[46] Jon Dron. Control, termites and e-learning. In Proc. of IADIS International Con-
ference Web Based Communities 2005, pages 103–110, 2005.

[47] Joshua M. Epstein and Robert L. Axtell. Growing Artificial Societies: Social Science
from the Bottom Up. The MIT Press, November 1996.

[48] Thomas Erickson and Wendy A. Kellogg. Designing Information Spaces: The Social
Navigation Approach, chapter Social Translucence: Using Minimalist Visualisations
of Social Activity to Support Collective Interaction, pages 17–41. Springer Verlag,
2003.

[49] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
About Knowledge. The MIT Press, 1995.

[50] Weiguo Fan, Michael Gordon, and Praveen Pathak. On linear mixture of expert ap-
proaches to information retrieval. Decision Support Systems, 42(2):975–987, Novem-
ber 2006.

[51] Rosta Farzan and Peter Brusilovsky. Community-based conference navigator. In
Proceedings of SociUM Workshop (1st Workshop on ”Adaptation and Personalisa-
tion in Social Systems: Groups, Teams, Communities”) at UM2007, 2007.

[52] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Professional, February 1999.

[53] Eduardo B. Fernandez and Rouyi Pan. A pattern language for security models. In
Proceedings of the 8th Conference on Pattern Languages of Programs (PLoP), 2001.

[54] Sally Fincher. PLML: Pattern language markup language. Technical report, Report
of Workshop held at CHI, Interfaces, 56 (pp. 26-28), 2003.

BIBLIOGRAPHY 137

[55] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas White.
Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst.,
23(2):147–168, 2005.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[57] Peter Geczy, Noriaki Izumi, Shotaro Akaho, and Koiti Hasida. Knowledge worker
intranet behaviour and usability. International Journal of Business Intelligence and
Data Mining, pages 447–470, December 2007.

[58] J.L. Gillin and J.P. Gillin. An Introduction to Sociology. The Macmillan Company.,
1942.

[59] Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, Jose L.
Ferreira, and Carlos Bento. Using CBR for automation of software design patterns.
In Proceedings of the 6th European Conference on Advances in Case-Based Reason-
ing (ECCBR’02), pages 534–548, London, UK, 2002. Springer-Verlag.

[60] Patricia Gongla and Christine R. Rizzuto. Evolving communities of practice: Ibm
global services experience. IBM Syst. J., 40(4):842–862, 2001.

[61] Marco Gori and Ian Witten. The bubble of web visibility. Communications of the
ACM, 48(3):115–117, 2005.

[62] Stephen Gourlay. Tacit knowledge, tacit knowing or behaving? In 3rd European
Organizational Knowledge, Learning, and Capabilities conference, Athens, Greece,
5-6 April, 2002.

[63] Stephen Gourlay. Tacit knowledge: the variety of meanings in empirical research.
In 5th European Organizational Knowledge, Learning and Capabilities conference,;
Innsbruck, Austria, 2-3 April, 2004.

[64] Markus Grabert and Derek Bridge. Case-based reuse of software examplets. Journal
of Universal Computer Science, 9(7):627–640, 2003.

[65] Sharon L. Greene, Paul M. Matchen, Lauretta Jones, John C. Thomas, and Matt
Callery. Tool-based decision support for pattern assisted development. In CHI 2003
workshop on HCI Patterns: Concepts and Tools, 2003.

[66] Daniel Gross and Eric S. K. Yu. From non-functional requirements to design through
patterns. Requirements Engineering, 6(1):18–36, 2001.

[67] M. Hafiz, P. Adamczyk, and R. E. Johnson. Organizing security patterns. Software,
IEEE, 24(4):52–60, 2007.

[68] Marvin Harris. Culture, people, nature: An introduction to general anthropology.
New York: Thomas Y. Crowell, 1975.

138 BIBLIOGRAPHY

[69] Richard J. Harrison and Glenn R. Carroll. Culture and Demography in Organiza-
tions. Princeton University Press, December 2006.

[70] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[71] Paul M. Hildreth and Chris Kimble. The duality of knowledge. Information Re-
search, 8(1), October 2002.

[72] Brian R. Hirshman, Aliaksandr Birukou, Michael K. Martin, Michael W. Bigrigg,
and Kathleen M. Carley. The impact of educational interventions on real & stylized
cities. Technical Report CMU-ISR-08-114, Carnegie Mellon University, 2008.

[73] Brian R. Hirshman, Kathleen M. Carley, and Michael J. Kowalchuck. Loading
networks in construct. Technical Report CMU-ISRI-07-116, Carnegie Mellon Uni-
versity, July 2007.

[74] Brian R. Hirshman, Kathleen M. Carley, and Michael J. Kowalchuck. Specifying
agents in construct. Technical Report CMU-ISRI-07-107, Carnegie Mellon Univer-
sity, July 2007.

[75] Bemardo A. Huberman and Michael Kaminsky. Beehive: A system for cooperative
filtering and sharing of information. Technical report, Xerox Palo Alto Research
Center, 1996.

[76] Hiroshi Ishikawa, Manabu Ohta, Shohei Yokoyama, Takuya Watanabe, and Kaoru
Katayama. Active knowledge mining for intelligent web page management. In
Knowledge-Based Intelligent Information and Engineering Systems: 7th Interna-
tional Conference, KES 2003. Proceedings, Part I, volume 2773 of Lecture Notes in
Computer Science, pages 975–983, Oxford, UK, 2003. Springer.

[77] Juan, Belén D. Agudo, Derek Bridge, and Pedro. Semantic templates for designing
recommender systems. In M. Petridis, editor, Proceedings of the 12th UK Workshop
on Case-Based Reasoning, pages 64–75. CMS Press, University of Greenwich, 2007.

[78] Roger M. Keesing. Cultural anthropology: A contemporary perspective. Holt, Rine-
hart and Winston, 1981.

[79] U. Keller, R. Lara, and A. Polleres. WSMO web service discovery. Working draft,
WSML Working Group, http://www.wsmo.org/2004/d5/d5.1/., 2004.

[80] Elizabeth A. Kendall, Murali P. V. Krishna, Chirag V. Pathak, and C. B. Suresh.
Patterns of intelligent and mobile agents. In AGENTS ’98: Proceedings of the second
international conference on Autonomous agents, pages 92–99, New York, NY, USA,
1998. ACM.

[81] M. Kerrigan. Web service selection mechanisms in the web service execution envi-
ronment (WSMX). In Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 1664–1668. ACM Press, 2006.

BIBLIOGRAPHY 139

[82] Alfred Kobsa. Tailoring privacy to users’ needs. In UM ’01: Proceedings of the
8th International Conference on User Modeling 2001, pages 303–313, London, UK,
2001. Springer-Verlag.

[83] N. Kokash, A. Birukou, and V. D’Andrea. Web service discovery based on past user
experience. In International Conference on Business Information Systems (BIS),
volume 4439 of LNCS, pages 95–107. Springer, 2007.

[84] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. Grouplens: applying collaborative filtering to usenet news.
Commun. ACM, 40(3):77–87, 1997.

[85] A. L. Kroeber and C. Kluckhohn. Culture: A critical review of concepts and defi-
nitions. Papers of the Peabody Museum, 47:643–656, 1952.

[86] David C. Kung, Hitesh Bhambhani, Riken Shah, and Gaurav Pancholi. An expert
system for suggesting design patterns: a methodology and a prototype. In Taghi M.
Khoshgoftaar, editor, Software Engineering With Computational Intelligence, Series
in Engineering and Computer Science. Kluwer International, 2003.

[87] Yasumasa Kuroda and Tatsuzo Suzuki. Arab students and english: the role of
implicit culture. Behaviormetrica, 29:23–44, 1991.

[88] Jean Lave and Etienne Wenger. Situated Learning: Legitimate Periperal Participa-
tion. Cambridge University Press, 1991.

[89] Henry Lieberman. Letizia: An agent that assists web browsing. In Chris S. Mellish,
editor, Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), pages 924–929, Montreal, Quebec, Canada, 1995. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA.

[90] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[91] Ralph Linton. The study of man: An introduction. New York: D. Appleton-Century,
1936.

[92] Zoe Lock and Daniel Kudenko. Interactions between stereotypes. In AH’06: Pro-
ceedings of the 4th International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems, 2006.

[93] Umardand Shripad Manikrao and T. V. Prabhakar. Dynamic selection of web ser-
vices with recommendation system. In Proceedings of the International Conference
on Next Generation Web Services Practices (NWESP), pages 117–121, Washington,
DC, USA, 2005. IEEE Computer Society.

[94] D. Martin, M. Burstein, and et al. OWL-S: Semantic markup for
web services. W3c member submission, Web Ontology Working group,
http://www.w3.org/Submission/OWL-S/, 2004.

140 BIBLIOGRAPHY

[95] Claudio Masolo, Laure Vieu, Emanuele Bottazzi, Carola Catenacci, Roberta Fer-
rario, Aldo Gangemi, and Nicola Guarino. Social roles and their descriptions. In
Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth
International Conference (KR2004), Whistler, Canada, 2004.

[96] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In RecSys ’07:
Proceedings of the 2007 ACM conference on Recommender systems, pages 17–24,
New York, NY, USA, 2007. ACM.

[97] Montgomery McFate. The military utility of understanding adversary culture. Joint
Force Quarterly, 38, July 2005.

[98] Mead. Cooperation and Competition Among Primitive Peoples. Transaction Pub-
lishers, December 2002.

[99] Margaret Mead and Rhoda Métraux, editors. The Study of Culture at a Distance.
University of Chicago Press, 1953.

[100] Filippo Menczer. Complementing search engines with online web mining agents.
Decis. Support Syst., 35(2):195–212, 2003.

[101] Stuart E. Middleton, Nigel R. Shadbolt, and David C. De Roure. Ontological user
profiling in recommender systems. ACM Trans. Inf. Syst., 22(1):54–88, 2004.

[102] CJ. Mimnagh and M. Murphy. Junior doctors working patterns: application of
knowledge management theory to junior doctors training. In Proceedings of the
conference on current perspectives in healthcare computing, pages 42–47, Harrogate,
22-24 March 2004.

[103] Monique B. Mulder, Charles L. Nunn, and Mary C. Towner. Cultural macroevolu-
tion and the transmission of traits. Evolutionary Anthropology: Issues, News, and
Reviews, 15(2):52–64, 2006.

[104] Gunter Mussbacher, Michael Weiss, and Daniel Amyot. Formalizing architectural
patterns with the goal-oriented requirement language. In Proceedings of the Fifth
Nordic Pattern Languages of Programs Conference (VikingPLoP’06), September
2006.

[105] James Noble. Classifying relationships between object-oriented design patterns. In
Proceedings of the Australian Software Engineering Conference, pages 98–107. IEEE
Computer Society Press, 1998.

[106] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge Creating Company. Oxford
University Press, New York, May 1995.

[107] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456, December 2008.

BIBLIOGRAPHY 141

[108] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and Luca
Tummolini. Coordination artifacts: Environment-based coordination for intelligent
agents. In AAMAS ’04: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 286–293, Washington, DC,
USA, 2004. IEEE Computer Society.

[109] Charles O’Reilly. Corporations, culture, and commitment: Motivation and social
control in organizations. California Management Review, 31(4):9–25, 1989.

[110] Sascha Ossowski. Co-ordination in Artificial Agent Societies, Social Structure and
Its Implications for Autonomous Problem-Solving Agents, volume 1535 of Lecture
Notes in Computer Science. Springer, 1999.

[111] Andrei Papliatseyeu. Supporting PCRrelated activity with Implicit Culture. Mas-
ter’s thesis, University of Trento, March 2007.

[112] Patternseer. http://doc-it.fe.up.pt/aaguiar/space/Projects/PatternSeer.

[113] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. In CSCW
’94: Proceedings of the 1994 ACM conference on Computer supported cooperative
work, pages 175–186, Chapel Hill, North Carolina, United States, 1994. ACM Press.

[114] Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico Oliva.
Cognitive stigmergy: Towards a framework based on agents and artifacts. In Envi-
ronments for Multi-Agent Systems III, pages 124–140. Springer, 2007.

[115] Matt Ridley. Nature Via Nurture: Genes, Experience, and What Makes Us Human.
HarperCollins, May 2003.

[116] Linda Rising. The Pattern Almanac. Addison-Wesley Longman Publishing Co.,
Inc., 2000.

[117] Edgar H. Schein. Organizational Culture and Leadership (Jossey-Bass Psychology
Series). Jossey-Bass, 2 edition, December 1996.

[118] Craig Schreiber and Kathleen Carley. The impact of databases on knowledge trans-
fer: Simulation providing theory. In In Proceedings of NAACSOS Conference, 2003.

[119] Markus Schumacher. Security Engineering with Patterns Origins, Theoretical
Model, and New Applications. Number 2754 in LNCS. Springer, 2003.

[120] Ingo Schwab and Alfred Kobsa. Adaptivity through unobstrusive learning. KI,
16(3):5–9, 2002.

[121] Nuno Seco, Tony Veale, and Jer Hayes. An intrinsic information content metric
for semantic similarity in WordNet. In Proceedings of the European Conference on
Artificial Intelligence (ECAI), pages 1089–1090. IOS Press, 2004.

[122] A. Seffah and H. Javahery. On the usability of usability patterns. In Workshop
Patterns in Practice, CHI, 2002.

142 BIBLIOGRAPHY

[123] Phoebe Sengers. Anti-Boxology: Agent Design in Cultural Context. PhD thesis,
Carnegie Mellon University, 1998.

[124] Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, Charles Isbell, and
Ashwin Ram. Transfer learning in real-time strategy games using hybrid cbr/rl.
In Proceedings of the Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI-07), pages 1041–1046. AAAI Press, 2007.

[125] Mildred L. G. Shaw and Brian R. Gaines. Supporting modeling of the social prac-
tices of other users in internet communities. In UM ’99: Proceedings of the 7th
International Conference on User Modeling, 1999.

[126] Wanita Sherchan, Seng W. Loke, and Shonali Krishnaswamy. A fuzzy model for
reasoning about reputation in web services. In Proceedings of ACM Symposium on
Applied Computing (SAC), pages 1886 – 1892. ACM Press, 2006.

[127] Yoav Shoham and Moshe Tennenholtz. Co-learning and the evolution of social
activity. Technical report, Stanford university, 1993.

[128] Yoav Shoham and Moshe Tennenholtz. On social laws for artificial agent societies:
off-line design. Artif. Intell., 73(1-2):231–252, 1995.

[129] Yoav Shoham and Moshe Tennenholtz. On the emergence of social conventions:
modeling, analysis, and simulations. Artificial Intelligence, 94(1-2):139–166, July
1997.

[130] Barry Smyth, Evelyn Balfe, Jill Freyne, Peter Briggs, Maurice Coyle, and Oisin
Boydell. Exploiting query repetition and regularity in an adaptive community-based
web search engine. User Modeling and User-Adapted Interaction, 14(5):383–423,
2005.

[131] Gabriel L. Somlo and Adele E. Howe. Using web helper agent profiles in query
generation. In AAMAS ’03: Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages 812–818, New York, NY, USA,
2003. ACM.

[132] Ian Sommerville. Software engineering (7th ed.). Addison-Wesley, Boston, MA,
USA, 2004.

[133] Paolo Alberto Spada. Sistema adattivo per internet radio basato su cultura
implicita (in italian). available at http://disi.unitn.it/~birukou/students/

theses/PaoloASpada-BS-2008.pdf. Bachelor thesis, 2008.

[134] George Spanoudakis and Panos Constantopoulos. Elaborating analogies from con-
ceptual models. Applied Artificial Intelligence, 10(4):281–306, 1996.

[135] Dan Sperber. Explaining Culture: A Naturalistic Approach. Blackwell Publishers,
September 1996.

[136] Dan Sperber and Lawrence A. Hirschfeld. The cognitive foundations of cultural
stability and diversity. Trends in Cognitive Sciences, 8(1):40–46, January 2004.

BIBLIOGRAPHY 143

[137] M.I. Stadler and P.A. Frensch. Handbook of Implicit Learning. Sage Publications,
Inc, 1 edition, October 1997.

[138] Lucy A. Suchman. Plans and Situated Action. Cambridge University Press, 1987.

[139] Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning. In Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI-07), pages 1065–1070. AAAI Press, 2007.

[140] Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based
reinforcement learning. In AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 53–59, New
York, NY, USA, 2005. ACM Press.

[141] Roberto Torres, Sean M. McNee, Mara Abel, Joseph A. Konstan, and John Riedl.
Enhancing digital libraries with techlens+. In JCDL ’04: Proceedings of the 4th
ACM/IEEE-CS joint conference on Digital libraries, pages 228–236, New York, NY,
USA, 2004. ACM Press.

[142] Roy Turner, Elise Turner, Thomas Wagner, Thomas Wheeler, and Nancy Ogle.
Using explicit, a priori contextual knowledge in an intelligent web search agent. In
Modeling and Using Context, pages 343–352. Springer, 2001.

[143] Edward B. Tylor. Primitive culture. London: J. Murray, 1871.

[144] Bert van den Berg, Ren van Es, Colin Tattersall, Jos Janssen, Jocelyn Manderveld,
Francis Brouns, Hub Kurvers, and Rob Koper. Swarm-based sequencing recommen-
dations in e-learning. In Proc. of the 5th International Conference on Intelligent
Systems Design and Applications (ISDA05), 2005.

[145] Bart van den Hooff, Wim Elving, Jan Michiel Meeuwsen, and Claudette Dumoulin.
Knowledge sharing in knowledge communities. In Volker Wulf M.H. Huysman, Eti-
enne Wenger, editor, Communities and technologies, pages 119–141. Kluwer, B.V.,
Deventer, The Netherlands, The Netherlands, 2003.

[146] L. Vignollet, M. Plu, J. C. Marty, and L. Agosto. Regulation mechanisms in an open
social media using a contact recommender system. In Proceedings of the Second
Communities and Technologies Conference, pages 419–436, 2005.

[147] Frank Walter, Stefano Battiston, and Frank Schweitzer. A model of a trust-based
recommendation system on a social network. Autonomous Agents and Multi-Agent
Systems, 16(1):57–74, February 2008.

[148] Jing Wang, Yeong-Tae Song, and Lawrence Chung. From software architecture
to design patterns: A case study of an nfr approach. In SNPD-SAWN ’05: Pro-
ceedings of the Sixth International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing and First ACIS Inter-
national Workshop on Self-Assembling Wireless Networks, pages 170–177, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

144 BIBLIOGRAPHY

[149] Yan Wei, Nicholas Jennings, Luc Moreau, and Wendy Hall. User evaluation of a
market-based recommender system. Autonomous Agents and Multi-Agent Systems,
17(2):251–269, October 2008.

[150] Yan Zheng Wei, Luc Moreau, and Nicholas R. Jennings. A market-based approach
to recommender systems. ACM Trans. Inf. Syst., 23(3):227–266, 2005.

[151] E.D. Weinberger and S.A. Kauffman. The nk model of rugged fitness landscapes
and its application to maturation of the immune response. Journal of Theoretical
Biology, 141:211–245, 1989.

[152] Etienne Wenger. Communities of practice a brief introduction. available at http:

//www.ewenger.com/theory/.

[153] Etienne Wenger. Communities of Practice: Learning, Meaning, and Identity. Cam-
bridge University Press, December 1999.

[154] Richard Wyatt-Haines. Align IT: Business Impact Through IT. Wiley, June 2007.

[155] Bin Yu and Munindar P. Singh. An agent-based approach to knowledge manage-
ment. In CIKM ’02: Proceedings of the eleventh international conference on In-
formation and knowledge management, pages 642–644, New York, NY, USA, 2002.
ACM Press.

[156] Uwe Zdun. Systematic pattern selection using pattern language grammars and
design space analysis. Software: Practice and Experience, 37(9):983–1016, 2007.

Appendix A

The syntax of the language used for
describing actions in the Implicit
Culture Framework

In this section, we give the definition of the syntax of the language we use to give examples
of actions in the Implicit Culture Framework. We also provide several examples of using
the language.

The language LSICS is expressed in the Backus-Naur form. We use <String> to refer to
a string, <Integer> to refer to an integer number, and <Real> to refer to a real number.

<Timestamp>::=<TemporalVariable>|<TemporalConstant>

<TemporalVariable>::=<Variable>

<TemporalConstant>::=<Integer>

<Variable>::=<String>

<Action>::=<ActionName>(<Agent>;<Objects>;<Attributes>;<Timestamp>)

<ActionName>::=<String>

<Attributes>::= |<Attribute>{,<Attribute>}

<Attribute>::=<AttributeName>=<AttributeVariable>|"<AttributeValue>"

<AttributeName>::=<String>

<AttributeValue>::=<String>|<Integer>|<Real>

<AttributeVariable>::=*|<Variable>

145

146 APPENDIX A. THE LANGUAGE USED IN THE IMPLICIT CULTURE FRAMEWORK

<Objects>::= |<Object>{,<Object>}

<Object>::=<ObjectInstance>|<ObjectVariable>

<ObjectInstance>::=<ObjectName>[(<Attributes>)]

<ObjectVariable>::=*|<Variable>

<ObjectName>::=<String>

<Agent>::=<AgentInstance>|<AgentVariable>

<AgentVariable>::=*|<Variable>

<AgentInstance>::=<AgentName>[(<Attributes>)]

<AgentName>::=<String>

Example 1. The following sentence in the language LSICS says that Peter is a 29
year old and he invoked the operation getWeatherByZip of the DOTSFastWeather web
service 25-June-07 at 14:22, using the BSD operating system. Here Peter is the name
of the agent, age=29 is the agent attribute, the operation is specified as an object, and
the web service is an attribute of the operation. OS=BSD is an action attribute, and
25-Jun-07-14:22 is a timestamp of the action.

invoke(Peter(age=29); getWeatherByZip(service=DOTSFastWeather); OS=BSD;
25-Jun-07-14:22)

The following sentence illustrate using a wildcard to say that the action is performed by
an agent who is 29 year old.

invoke(*(age=29); getWeatherByZip(service=DOTSFastWeather); OS=BSD;
25-Jun-07-14:22)

�
Example 2. This example illustrates the use of variables in the cultural theory.

The theory contains two actions described in LSICS. The first action says that someone,
at some point of time, requests [pattern] for the problem x described by the attribute
keyword = y. The second action says that someone, at some point of time, applies
some pattern (specified with the attribute pattern name = ∗) for the problem x. Note
that x and y are variables (start with ’ ’) and not constants. If y in the antecedent is
substituted with some value, e.g. “single access point”, then y in the consequent is also
substituted with the same value.

if request(*; x(keyword= y);;*) then apply(*; x(keyword= y),*(pattern name=*);;*).

�

Appendix B

The list of publications

Here is the list of publications derived from the content of the thesis. Please see http:

//disi.unitn.it/~birukou/index.php?page=publications for the complete list.

Journal papers

1. A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, N. Kokash. Improving Web
Service Discovery with Usage Data. IEEE Software, 24(6): 47-54, 2007. Special
issue on Realizing Service-Centric Software Systems.

Conference papers

1. A. Birukou, M. Weiss. A service for software pattern selection. Submitted to the 14th
European Conference on Pattern Languages of Programs (EuroPLoP2009), Irsee
Monastery, Bavaria, Germany, July 8-12, 2009.

2. A. Birukou, E. Blanzieri. A model of culture for software. Submitted to the 1st and
17th International Conference on User Modeling, Adaptation, and Personalization
(UMAP2009), Trento, Italy, June 22-26, 2009.

3. N. Kokash, A. Birukou, V. D’Andrea. Web Service Discovery Based on Past User Ex-
perience. Proceedings of the 10th International Conference on Business Information
Systems (BIS2007), Poznan, Poland, April 25-27, 2007.

4. A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, N. Kokash, A. Modena. IC-
Service: A Service-Oriented Approach to the Development of Recommendation Sys-
tems. Proceedings of ACM Symposium on Applied Computing. Special Track on
Web Technologies (SAC2007), Seoul, Korea, March 11-15, 2007.

5. A. Birukou, E. Blanzieri and P. Giorgini. Choosing the Right Design Pattern: the
Implicit Culture Approach. Workshop on Multi-Agent Systems and Simulations at
the 4th Industrial Simulation Conference (ISC2006), Palermo, Italy, June 5-7, 2006.

6. A. Birukou, E. Blanzieri and P. Giorgini. A Multi-Agent System that Facilitates
Scientific Publications Search. In Proceedings of the 5th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS2006), Hakodate, Hokkaido,
Japan, May 8-12, 2006.

147

148 APPENDIX B. THE LIST OF PUBLICATIONS

7. A. Birukou, E. Blanzieri and P. Giorgini. Implicit: An agent-based recommendation
system for web search. In Proceedings of the 4th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS2005), Utrecht, the Nederlands,
July 25-29, 2005.

Workshop papers

1. M. Weiss, A. Birukou. Building a Pattern Repository: Benefiting from the Open,
Lightweight, and Participative Nature of Wikis. Workshop on Wikis for Software
Engineering at ACM WikiSym, 2007 International Symposium on Wikis (WikiSym),
Montre’al, Que’bec, Canada, October 21-23, 2007.

2. A. Birukou, E. Blanzieri and P. Giorgini. Implicit Culture as a Tool for Social
Navigation . Workshop on the Social Navigation and Community-Based Adaptation
Technologies at the International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH2006), Dublin, Ireland, June 20-23, 2006.

3. A. Birukou, E. Blanzieri and P. Giorgini. Implicit: A recommender system that uses
implicit knowledge to produce suggestions. Workshop on Multi-Agent Information
Retrieval and Recommender Systems at the Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, July 30-August 5,
2005.

