
Increasing Interactivity in Agent-based

Advanced Pocket-Device Service Application

Sameh Abdel-Naby, Paolo Giorgini and Stefano Fante

Department of Information and Communication Technology (DIT)
University of Trento, Povo 38100, Italy.

{sameh, paolo.giorgini, stefano.fante}@dit.unitn.it

Abstract. Independence, intelligence and interactiveness are making
software agents strongly approach the development of advanced service
applications for both, pocket and fixed computing devices. In this paper
we present an interactions protocol that is used by intelligent agents op-
erating in a dynamic environment. In particular, we focus our research
on the situation where a multi-agent system is serving lightweight de-
vices through advanced communication methods (e.g., Bluetooth). Like
similar contributions, our interactions protocol provides agents with a
monetary system and a mechanism for feedback calculation. The goal of
our research was to accelerate efficient agents interactions while resolving
end-user composite tasks.

1 Introduction

Lightweight devices such as cellular phones and PDAs are increasingly involved
in most of our daily life duties. Nowadays, people can go anywhere carrying
their pocket devices which allow them to check their emails, surf the internet
and do shopping. Services are provided through user-friendly and well-developed
interfaces, and almost costless in regard to the value of services users are getting.
Currently, standard mobile services that never existed before are becoming a
must (e.g., SMS and MMS), and advanced ones that newly existed are now
highly desired (e.g., Service Guides and Group Gaming).

Several efforts in literature, for example [3], tackled the scenario where the
cellular phone of a visiting scholar establishes a connection with a localized
Multi-Agent System (MAS) and, a synchronization is made to finally come up
with meetings agenda. Participants of such scenario are moving within a uni-
versity carrying their lightweight devices or, they have previously delegated an
agent to act on their behalf. Automated system agents cooperate and negoti-
ate available times to create a suitable agenda for everybody. Accordingly, the
visiting scholar and meeting requesters are forming together a Mobile Virtual
Community [7] that is location-based.

Another approached scenario is about tourists that turn to be MAS users
after enabling the Bluetooth functionality of their pocket devices and, using a
preinstalled application, their devices communicate with distributed servers and
retrieve useful information related to the places they are visiting (e.g., [1]). In dif-
ferent approaches, every single item available at a museum can be represented by



its own software agent, and this agent can cooperate with others to fulfill certain
complex user desires (e.g., relevant places opening times and transportations).

Through lightweight devices, users in previous scenarios are performing a
set of actions that are driven by application instructions to finally create a del-
egative agent. Eventually, this agent will be searching for methods to fulfill user
desires and, a matchmaking process will take place; an agent that carries specific
information will look for another agent that is willing to give extra data so a task
gets completed. Still, sometimes an agent will never find a single completer and
thus, there are complex one-to-many scenarios where group of agents cooperate.

Unless software agents learn to properly interact there will not be an extra
capability for people to cooperate. A negotiation language that is applied among
distributed agents is helping them to understand each other, discuss their de-
sires and finally achieve their objectives. Several of the negotiation protocols
proposed by scholars are inspired from sociological, political and psychological
studies about human negotiation in real-life situations such as auctions, peace
agreements and biddings.

We focus on multi-agent systems that deliver location-based services to users
of lightweight devices through advanced communication capabilities. We con-
tribute to existing literature by presenting a negotiation algorithm we adopted
in a rideshare application, which increased the interactivity level among involved
agents. Although there are some restrictions given by users (e.g. time to achieve)
and others given by involved technologies (e.g. Bluetooth data exchange rate),
still the architecture we developed is reliable and increases system usability.

The remainder of this paper is structured as follows. Next section emphasizes
our research motivation. Section 3 looks at the building blocks of the proposed
interactions protocol. Section 4 applies the presented negotiation algorithms to a
testbed application. Section 5 highlights the related work. Section 6 demonstrates
our future work and concludes the paper.

2 Motivating Scenario

In a MAS delivering service content to lightweight devices, a set of uncooperative
agents that are self-interested and benefits maximizers are located. It is more
often that this set contains two different types of agents, BUYER AGENT (BA)
and SELLER AGENT (SA). Each of them holds information related to its role
in the system and, a BA keeps data that helps SA increases his profit, and the
data SA keeps helps BA to achieve the overall objectives of the system. If agents
predefined behavior is strict and intelligent “usual case in MAS” this will lead
both agents to - sometimes - reach a situation of disagreement.

The fact of having two successfully matched agents and yet no useful results
are gained is quite challenging. The existence of autonomous agents in MAS is
necessary to increase system reliability and, interactivity between all application
entities is still highly desired, but an unfruitful negotiation process among in-
volved software agents is what a complete application should avoid, and this is
what we precisely try to address.



Fig. 1. Different devices use different communication methods to interact.

In figure 1, we assume that three different users are interested in using the
same multi-agents architecture to obtain a certain item or service. This service is
limited to the demand and supply of a specific product among system users (e.g.,
available care seats in a carpooling system or used books in trade environment).
These users are using their lightweight devices to communicate with the service
architecture and, each is adjusted to the use its pocket application. Actors differ,
one can be a service giver and the others are the requesters. If we move to the
point where the number of acquisition requests is greater than the number of
offered items, insufficient matches occur.

Each of the involved lightweight devices is configured to utilize specific com-
munication method to access the service, a cellular phone or a notebook may
exchange service requests using SMSs, The Web or a distributed Bluetooth or
even Wi-Fi access points. If a user is offering a single item that more than a
single requester is interested to have, the managing MAS will drive these three -
or more - users to a complex situation where the ownership of the offered item is
not determined. In this case, the system hangs at the pre-agreement point where
the service preferences are matching, items are available, but conflict is located
and no actions are taken.

An auction mechanism can be invoked to resolve any complex situation that
may occur among several competing agents. This mechanism can be restricted to
different conditions, such as time and location constraints, and it can be wisely
adapted to ensure ultimate benefits gaining for both, the supplier and demander
agents. The invoked mechanism can also be heuristic by storing auctions results
that involve same software agents - representing same users - more than a certain
number of same scenario participation.



3 The Auctioning Interactions Protocol

In this section we present the negotiation scenario involving concerned agents
to finally establish proper communication channels, achieve better results, and
increase the level of efficient interactivity.

Given a set of lightweight devices that are capable of communicating specific
data with central MAS servers via distributed access points and, given that
the overall architecture is providing end-users with a predefined location-based
service. The lightweight devices here are used to clarify users preferences and
consequently, a Mobile-to-Server Link Agent (MSLA) is created. This particular
agent carries specific user desires details and, it is capable of transferring from a
lightweight device through the nearest access point to reach server side. When
the MSLA arrives to one of the central service servers, its carried desires are
forming an autonomous software agent that reflects certain user characteristics.
This MSLA is basically a configuration file that is produced by each lightweight
device participating in a certain trade scenario.

Eventually, the arrival of a new agent to the server side requires the running
MAS to verify whether this agent is new and to be bootstrapped or, it already
exists and it meant to update the behavior of a running agent.

A group of delegative autonomous agents that are seeking to achieve different
tasks in different times is located at the server side of the architecture. When
some of the tasks to be achieved are complex and require high level coordination,
a negotiation scenario that requires a single agent to deal with several service
requests coming from different greedy agents is situated. However, in agent-to-
agent situations, the negotiation protocol applied is simple and efficient; it is
the same as market demand and supply equality. When the supplier and the
demander are matched, a mutual benefits exchange is achieved. This usually
occurs because only one demander and one supplier are located within the service
range of each other. Unsurprisingly, in agent-to-many it is more complex.

In figure 2, Algorithm 1, we show the algorithm used by Seller Agent (SA) to
invoke an auctioning situation that is expected to resolve a complex negotiation
situation. From line 1 to line 3, both SA variables, bestValue and numLoop, are
initially set to ’0’. In line 4, the seller agent requests the Buyer Agent (BA)
to start the auction by sending the value of the best offer previously obtained
during the pre-offer session. From line 5 to line 7, the SA waits to receive new
offers from all involved BAs, and a val is created as a function to calculate the
currently obtained best-offer-value. From line 8 to line 10, if the algorithm had
its first round and a val is gained, the bestvalue in line 1 is now updated with
the value of val and the number of loops numLoop is gradually incremented.

Otherwise, since it is not the first loop, from line 11 down to line 19, the
SA checks whether the val function is increasing with respect to last obtained
best value. At this point, two scenarios may occur, if val is greater, the value
obtained from the concerned BA is communicated with other BAs and, they are
asked to Re-offer if applicable, then the algorithm is restarted - line 14 and line

15. If the val is less or equal to the best value previously obtained, the auction
is suspended and the BA currently had the bestValue wins - line 17 to line 19.



Fig. 2. The negotiation protocol assisting agents to establish proper communications.

Finally, the algorithm is terminated and the auction scenario is ended - line 20

and 21. Following to that, we explain the BA responses with respect to SA.

In the same figure but Algorithm 2, from line 1 and line 2, a variable
BABestOffer that carries the buyer agent best offer value is created and set
to ’0’. A variable sent is initially set to false and it changes to true only
after a BA has communicated his offer. From line 3 to line 6, while the auction
is open, BA holds its offer transfer until a communication was received from the
Seller Agent (SA) asking for an auction participation decision. The BA puts the
results from the evaluation function into the decision variable.

From line 7 to line 9, if the BA accepts the SA call for auction participation a
self-revision for its parameters is made. This revision indicates BA’s insistence to
obtain the auctioned item and its intentions to show extra negotiation flexibility.
The part from line 10 down to line 13 refers to the comparison made by the BA
to put together the newly obtained value and the existing one. If the new value
obtained is greater than the previous one and, greater than the bestOffer, the
future offered value BABestOffer is set to new one and stored in newVal and
the offer is sent to the corresponding SA.

Line 14 to line 16, after the BA self-revision, if the value gained is the
same as the previous one, this specific BA do not send the previous value if
modificationArePossible is true. The BA continues to review the carried pa-
rameters until modificationArePossible becomes false or it communicates new



better offer. If modificationArePossible stays on false and parameters are
not sent, the BA communicates same previous offer.

From line 17 to 19, if BA refuses the auction call the algorithm terminates
and the auction involves this particular agent ends. Eventually, the algorithm
passes on the first condition if decision == accept but the condition of the
successive while modificationArePossible&&!sent return false. The method
decideIfAcceptOrRefuse return refuse if for instance, a BA has enough time
before the auction deadline and it decides to refuse present participation. Finally,
the algorithm is terminated - line 20 and 21.

Auctioning among agents requires high level agent-to-user interactivity and
network resources consumption. Therefore, agents’ intelligence may appear when
a repetitive scenario occurs. The algorithms presented can be further adapted
to maintain system and participants history.

Once the pocket-device application is configured to repeat the same service
request on daily or weekly basis, and similar agreements are achieved between a
specific supplier and a demander at a certain price, the next time this demander
agent will be first looking-up the very exact supplier agent that has potential
agreement than others. This can be simply added through a learning agent be-
havior that maintains an array that saves last successful agreement details.

4 A Case Study

ToothAgent [2] is an example of a Multi-agent system (MAS) that allows uni-
versity frequenters to use any of their computing devices to exchange used
books requests and offers. Once an agreement is reached, the system helps stu-
dents to agree on meeting places and times. This is all done through normal
Bluetooth communications that take place between both, user and distributed
servers. Agent-oriented programming techniques are used to form a Mobile Vir-
tual Community [7]. This helps the system, including its Intelligent, Mobile and
Autonomous agents to go through the matchmaking and exchange of requests
processes and, support the price negotiation phase.

Andiamo [11], is an example of a MAS implementation that provides its users
with a possibility to utilize their lightweight devices to offer/look-up shared car
rides. To understand the Rideshare service or Carpooling as stated in literature;
it is a method to reduce the use of cars in a specific town or area, and it take place
by having a car owner who uses his/her car to move from a place to another,
and another person who is interested to go somewhere along the car owner’s way
to destination, and at the same time the ride seeker is willing to share the ride
cost with the car owner. This system would, among other advantages, rationalize
energy consumption, save money, and decrease traffic jams and human stress,
and eventually make a significant improvement in human life.

In this section, we further elaborate on the mechanism we proposed through
the demonstration of a pocket-device rideshare service architecture we developed.
In our example, we primarily assume that a car ride giver (Seller Agent) - SA
Started - has communicated and submitted the offer details to the Multi-Agent



Fig. 3. Auction call and termination in a Rideshare MAS service architecture.

System, this MAS is managing the exchange of service requests among connected
computing devices, and we assume that only one available car seat is given by
the car owner, and a matching phase has resulted three or more interested ride
seekers that are all willing to share the given ride cost.

As shown in figure 3, from this point on SA Ready, which is the agent acting
on behalf of the ride-giver, will be responsible of resolving this complex situation
by: 1) according to the parameters given by agents of the ride seekers, a calcu-
lation process is performed and each agent is assigned a value, 2) a comparison
between the yielded values is made and sent to interested ride seekers, then a
call for auction is made, 3) a request to all interested agents to send new offers is
communicated. Each agent acting on behalf of a ride seeker is free to choose to
participate in the auction, but hence an agent has decided to skip an auction, the
negotiation process involving both parties is ended - SA Ending - BA Ending.

This was considered because end-users may put more rigid or loose behavior
on the representing agent at anytime. But once a seeker agent has decided to
go through the auction - BA Ready, a self-revision process for the carried pa-
rameters is made - BA Computation, and then a value calculation is made and
compared to the previous one obtained, then results are communicated with the
ride giver agent originally invoked the mechanism. The seeker agent keeps trying
to compromise in accordance with interests so a new agreement is reached.

Results reached after parameters modification - BA Ready to Respond - will
indicate if a new auction winning potential is found. Depending on the value ob-
tained in earlier step, the same old parameters or new ones will be communicated



back with the ride giver agent (SA) - BA with Increased Function Value or
BA with Same Function Value. The ride giver agent re-evaluates the received
parameters including those received from newly joined agents, if any. Then, an
announcement is made for the only available car seat winner. Accordingly, the
auction terminates and the entire negotiation process ends. The mechanism can
be repetitive only if no agreement situation was found and the time to achieve
the actual ride is yet far.

Auction invocation and the exchange of messages among involved agents
consume time and network resources. Therefore, the operating MAS can further
store the auction initiator and winner to rapidly resolve future complications.
This can only happen if the algorithms used were adapted to observe certain
auction results that are identically repeated, so the system would automatically
consider this winning ride seeker agent as high-potential future auctions winner,
or one of the winners - if more available seats were given.

5 Related Work

Part of the research conducted in Distributed Artificial Intelligence (DAI) focuses
on the coordination among objects located in distributed environments. Thus far,
a research topic under DAI that is Distributed Problem Solving (DPS) proposes
negotiation strategies that mostly seek the construction of what we call Dis-
tributed Objects Communication Language (DOCL). Among other advantages,
negotiation languages are helping the establishment of cooperative environment
that successfully achieve multipart tasks and deliver refined services.

Scholars have also attempted to address the problem of enhancing multi-
agent coordination by reflecting real human negotiation skills inside a comput-
ing environment [4, 5, 6]. These studies were mainly carried out because, 1)
the need to construct a computing program that entirely acts on behalf of its
operator has imposed the need to apply Agent-oriented concepts and theories.
2) The need to construct a cooperative computing program that automatically
interacts with other entities to achieve complex tasks has raised the need for a
proper negotiation language. These two reasons are forming together the need to
design the negotiating agents that are able to meaningfully interact, talkatively
negotiate and mutually maximize their benefits.

In their book [9], J. S. Rosenschein and G. Zlotkin are doing what they call
Social Engineering; they have dedicated part of their research on how designers of
software agents would react to the development process of Multi-agent systems
and, the use of certain design steps regarding the accomplishment of suitable
negotiation protocol, which in return will lead to appropriate interactions among
several MASs. They emphasized the urgent need to look at agents as the new
era of human surrogates, and this is because of the nowadays speed taken to
approach full system and machines delegation.

In Game Theory [12], a clear approach was taken to study the rational be-
havior among self-interested agents. Different software designers are working on
the development of several software agents; these development processes will



only produce an agent that is reflecting designer’s personal behavior. Although
the agents produced are self-interested and autonomous, they are going to inter-
act with different agents that are designed differently and contain different level
of autonomous performance and complexity. An agent that is rationally driven
within a system entities will make goals and procedures to achieve them clear for
all system actors, but it will apply an atmosphere of firmness and inflexibility in
formed interactions. This earlier discussion has raised the confrontation of two
important design aspects, would it be more appropriate to design an agent that
is deterministic or an agent that is flexible?

When Distributed Artificial Intelligence (DAI) started to have its own struc-
ture as independent research area, Reid G. Smith has contributed significantly
to this structure formation by having his PhD thesis defense, in 1978, discussing
a new perspective in achieving proper negotiation and interactivity among mul-
tiple automated network-nodes. Later to that, an important contribution was
added to literature regarding the same topic, which is Contract Net [10]. When
applied to multi-agent systems, the Contract Net protocol assumes that each
node in the network is an agent that is seeking another completer-agent that
may, together, form a coalition to resolve a complex task. This coalition can
yield some results that can not be achieved if each agent is operating separately.

When the exact rare resources are to be used by several agents, an Auc-
tion [8] is formed between these agents so that system resources are utilized at
the highest possible value, and certain negotiation language that perfectly ap-
plies in this situation is used. Due to issues related to equality, ordering and
planning, Auctions have gained a wide range of applications in multi-agent sys-
tems. Four major auction types that are widely recognized: 1) English, 2) Dutch
3) First-Price Sealed-bid, 4) Vickrey’s Mechanism or Second-price Sealed-bid.
These auctions are reflecting real human behavior in different auction styles and
similarly apply it to agents.

6 Conclusions and Future Work

Negotiation protocols used among agents that are serving computer based ap-
plications differs from those used for computing pocket devices. We are rapidly
approaching the era of lightweight device services, and as a result a great focus
and immediate redirection is realized towards the achievement of cooperative
agents in mobile-based service architectures. In this paper we explained the
motivation behind our interests to find an appropriate agents’ negotiation pro-
tocol that serves pocket-oriented applications. We demonstrated the research
conducted in reaching cooperative MAS architectures, and the negotiation pro-
tocols previously proposed by scholars that mostly targeted fixed computing
devices environments. We proposed our negotiation protocol, and we applied it
on Rideshare service architecture.

Our future research will focus on increasing the usability of agent-based
pocket service application, and accelerating the efficient delivery process of any
mobile service content. We will work on integrating the newly proposed negoti-



ation protocols to architectures that support lightweight devices. Eventually, we
will simulate agents behavior in achieving complex tasks while applying different
adaptive negotiation mechanism. This will help us observe differences in applica-
tion performance and refine the proposed protocols. We also intend to study the
possibility to make developers of pocket software agents able to a standardized
but customizable negotiation protocol.

Acknowledgement

This work partially involves EU-SERENITY, PRIN-MEnSA, PAT-MOSTRO,
PAT-STAMPS, and PAT UNIQUIQUE SUUM. We also thank ArsLogica for
the unabated cooperation and support given to innovation.

References

1. M. Bombara, D. Cali, and C. Santoro. Kore: A multi-agent system to assist museum
visitors. In Proceedings of the Workshop on Objects and Agents (WOA2003), Pp
175-178, Cagliari, Italy.

2. V. Bryl, P. Giorgini, and S. Fante. Toothagent: A multi-agent system for virtual com-
munities support. In Proceedings of The Eighth International Bi-Conference Work-
shop on Agent-Oriented Information Systems (AOIS), Hakotade, Japan, May’06.

3. O. Bucur, P. Beaune, and O. Boissier. Representing context in an agent architecture
for context-based decision making. In Proceedings of the Workshop on Context
Representation and Reasoning (CRR’05), Paris, France, 2005.

4. K.-M. Chao, R. Anane, J.-H. Chen, and R. Gatward. Negotiating agents in a market
oriented grid. In Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, pages 436-437, IEEE Computer Society, 2002.

5. Jennings, N. R., Parsons, S., Noriega, P. and Sierra, C. On argumentation-based
negotiation. In Proceedings of the IWMAS, MIT Endicott House, Massachusetts,
USA, October’98.

6. S. Kraus. Negotiation and cooperation in multi-agent environments. Artificial In-
telligence journal, Special Issue on Economic Principles of Multi-Agent Systems,
94(1-2):79-98, 1997.

7. A. Rakotonirainy, S. W. Loke, and A. Zaslavsky. Multi-agent support for open mo-
bile virtual communities. In Proceedings of the International Conference on Articial
Intelligence (IC-AI 2000), Las Vegas, Nevada, USA, pages 127-133, 2000.

8. Kate Reynolds. A survey of auction types. Agorics, Inc., 1996.
9. J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for

Automated Negotiation among Computers. The MIT Press, 1994.
10. R. G. Smith. The contract net protocol: High-level communication and control in a

distributed problem solver. IEEE Transactions on Computers, C-29(12):1104-1113,
December, 1980.

11. A. Sameh. F. Stefano and G. Paolo. Auctions Negotiation for Mobile Rideshare
Service. In the Proceeding of the Second International Conference on Pervasive
Computing and Applications (ICPCA07), July’07, Birmingham, UK.

12. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1980.


