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Abstract
In this paper, a new perspective is suggested for unsupervised Ontology Matching (OM) or Ontology
Alignment (OA) by treating it as a translation task. Ontologies are represented as graphs, and the
translation is performed from a node in the source ontology graph to a path in the target ontology
graph. The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-to-sequence
transformer model to perform alignment across multiple ontologies in a zero-shot, unified and end-
to-end manner. Multi-tasking enables the model to implicitly learn the relationship between different
ontologies via transfer-learning without requiring any explicit cross-ontology manually labeled data.
This also enables the formulated framework to outperform existing solutions for both runtime latency
and alignment quality. The model is pre-trained and fine-tuned only on publicly available text corpus and
inner-ontologies data. The proposed solution outperforms state-of-the-art approaches, Edit-Similarity,
LogMap, AML, BERTMap, and the recently presented new OM frameworks in Ontology Alignment
Evaluation Initiative (OAEI22), offers log-linear complexity, and overall makes the OM task efficient and
more straightforward without much post-processing involving mapping extension or mapping repair.
We are open sourcing our solution+.
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1. Introduction

Ontology Matching (OM) or Ontology Alignment (OA) is the process of finding correspondence
between the entities of two ontologies. The purpose of this process is to unify data from different
sources and reduce heterogeneity, making data more viable for research and development [1].
Classical state-of-the-art (SOTA) approaches on OM are based on non-contextual matching,
where the model captures lexical similarity but fails to understand textual semantics. On the
other hand, with contextual approaches, the objective is to match complex pairs which are
lexically different but semantically similar and vice-versa.
Recently, a transformer-based contextual framework using BERT [2], has been proposed

in [3], which showed promising results compared to other OM systems. In their approach
the existing pre-trained BERT model was used which allowed to learn the textual semantics.
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However, it did not understand the ontology graph structure, which could significantly extend
the capabilities of ontologies graph matching.
Motivated by the potential of the transformer models for understanding textual semantic

context and overcoming the limitations in the existing methods, the present work proposes
Truveta Mapper (TM), a novel zero-shot sequence-to-sequence multi-task transformer-based
framework for OM,with the capability of learning both the graph-structure and textual semantics
of the ontologies. The model is first pre-trained to learn the hierarchical graph structure of
ontology and semantics of each class using Masked Language Modeling (MLM), then fine-tuned
using class labels and synonyms as input and class hierarchical-ID as the output, capturing
the structure of the ontology. As such, we treat OM as a translation task, where the source
ontology class is translated to a path in the matching target ontology class in a zero-shot and
multitask manner. Proposed approach is based on zero-shot learning and prediction, where
“zero-shot learning” refers to the ability of the model to make source-to-target predictions
without requiring manually labeled cross-ontologies matching pairs, and “zero-shot prediction”
performs end-to-end mapping from the source to the target without the need of similarity
calculation across the entire/subset target ontology or post-processing like extension/repair.
With multi-task training, a single model is capable of matching different ontologies such as
SNOMED to FMA, SNOMED to NCIT, and so on, by taking advantage of transfer learning.
In this work, empirical comparison is made with the state-of-the-art lexical matching ap-

proaches and the recent contextual models presented in [4, 5] on the Unified Medical Language
System (UMLS) datasets as part of the Bio-ML track for OAEI 2022. The Ontology Alignment
Evaluation Initiative (OAEI) organizes yearly campaigns on ontology matching tasks. Our
solution surpasses state-of-the-art LogMap, AML models, Edit-similarity, and recently proposed
BERTMap, AMD, LogMap-Lite, BERTMap-Lite, LSMatch, Matcha and ATMatcher.

The remainder of this paper is as follows. Section 2 reviews the recent SOTA-related works
on OM/OA; Section 3 defines the problem statement; Section 4 elaborates on pre-training,
fine-tuning, zero-shot learning, and predictions; Section 5 shows the overall model performance;
and lastly, Section 6 provides conclusion and outlines our potential future works.

2. Related Work

OM classical approaches are primarily based on non-contextual matching. Related to that, some
notable works in the field of OM include Edit-Similarity [6], LSMatch [7], LogMap [8], and
AgreementMakerLight (AML) [9], among others. Edit-Similarity is a naïve lexical matching
approach based on normalized edit similarity scores. LSMatch is another lexical matching
approach based on string similarity match. LogMap and AML are two classical OM systems
with leading performance in many equivalence matching tasks. These two approaches are
based on lexical matching, mapping extension (adding new mappings for semantically related
classes of the current mappings), and mapping repair (removing mappings that can lead to
logical conflicts). However, these lexical approaches do not consider contextual semantics.

Several OM systems, such as OntoEmma [10], DeepAlignment [11], VeeAlign [12] leveraged
dense word embeddings, in which words are projected into a vector. Word pairs with smaller
Euclidean distances in the vector space have closer semantic meanings. Different techniques



Figure 1: The equivalence matching between the SNOMED class ID 78904004 – “Chest Wall Structure”
and two FMA concepts, “Wall of thorax” with ID fma10428 and “Chest wall” with ID fma50060. TM
translates from the source node encoding “Chest Wall Structure” in the SNOMED graph to the high-
lighted path “A …C …F” (Chest Wall) and “A …B …E” (Thoracic Wall) in FMA ontology.
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Figure 2: Training Architecture. Pre-training is done using MLM on the full ontology graphs and
fine-tuning is done on downstream tasks, translating from the source ontology class descriptions (label
and synonyms) to the target ontology node path (hierarchical-IDs). Pre-training and fine-tuning are
done in a multi-task manner. Pre-training is performed on both source and target inner-ontologies, and
fine-tuning is done on target subset ontologies.

are used to generate these embeddings. OntoEmma and [13] uses word2vec [14], which is
trained on Wikipedia; [15] uses FastText [16]; LogMap-ML [17] uses OWL2Vec* [18], which
is a word2vec model trained on corpora extracted from the ontology with different kinds
of semantics; DeepAlignment uses refined word embeddings using counter-fitting; VeeAlign



proposes dual embeddings using class labels; [19] employs hyperbolic embeddings. These are
primarily traditional non-contextual word embedding methods and do not consider contextual
meaning. Some of these approaches, such as VeeAlign, are based on supervised training, which
requires high-quality labeled mappings for training and can be challenging to obtain.
Transformer-based models [20], thanks to their ability to learn textual contexts, obtained

SOTA for several tasks in natural language processing such as machine translation [21, 22, 23],
question answering [24], among others. Similarly, in the field of OM, recent developments have
also shown the potential of using transformer-based frameworks [1, 3, 25]. Neutel and de Boer
[1] employed contextual BERT embeddings to match two domain ontologies associated with
occupations. Each sentence is embedded using BERT, and similarity is applied to get the scores
for OM. More recently, [3] proposed BERTMap model, which is obtained by fine-tuning the
already pre-trained BERT model for the binary classification task. The BERTMap model often
outperformed non-contextual approaches such as LogMap, AML, and LogMap-ML. AMD [25]
is another recent context-based matching approach that uses a BERT-based model to generate
mappings and then filters these mappings using graph embedding techniques. Other related
ontology matching systems that participated in OAEI 2022 [4] are LogMap-Lite, BERTMap-Lite,
Matcha, and ATMatcher.

3. Methodology

3.1. Problem statement

Ontology Matching (OM) or Ontology Alignment (OA) is the process of finding correspondence
between the entities/classes of two ontologies [5]. In this work, a new perspective is presented
by treating OM as a translation task for equivalence matching and can be mathematically
presented as 𝑓 (𝑐1, 𝑇 ), where function 𝑓 gives the matching target ontology class 𝑐2 ∈ 𝐶2, given
a source class 𝑐1 ∈ 𝐶1 and alignment task identifier as 𝑇. 𝑂1 and 𝑂2 as the source and target
ontologies, with 𝐶1 and 𝐶2 being their respective named class sets. Since we are training a
multi-task model, a unique identifier is used for each task.

The present work focuses on equivalence matching, where classes having the same semantic
meaning in different ontologies are matched with each other. As shown in Figure 1, each
ontology is presented in the form of a hierarchical graph structure with parent-child relation,
where each class presents a node in the given ontology graph and target class 𝑐2 ∈ 𝐶2 is obtained
as a path in the target ontology graph, for a given input node 𝑐1 ∈ 𝐶1 in the input ontology1.

3.2. Ontologies

In this work, as a part of the OAEI 2022 Bio-ML track [4], we focus on three UMLS equivalence
matching tasks, SNOMED to FMA (Body), SNOMED to NCIT (Neoplas), and SNOMED to
NCIT (Pharm), in an unsupervised setting from [4], where the matching pairs between these
ontologies are only divided into validation (10%) and testing (90%) sets, without any training
data. Pharm, Neoplas, and Body are associated with the semantic types of “Pharmacologic

1Note, each class is presented as a node in the ontology hierarchical graph-structure, as such, class and node are
used interchangeably, as appropriate.



Substance”, “Neoplastic Process”, and “Body Part, Organ, or Organ Components” in UMLS,
respectively. Based on these semantic types, subset ontologies are provided in [4], and are given
as SNOMED (Body), SNOMED (Neoplas), SNOMED (Pharm), FMA (Body), NCIT (Neoplas) and
NCIT (Pharm), where the first three are the source and last three are the target ontologies in
our matching task. For each of the classes present in the given ontologies, class ID is provided
along with its associated label and possible synonyms (class descriptions). For example, in
Figure 1, for Snomed ID 78904004, the class label is “Chest Wall Structure,” and its synonyms
are “Thoracic Wall” and “Chest Wall”.

4. Truveta Mapper (TM): Proposed approach for OM

Figure 3: Hierarchical-IDs generation for the Enzyme concept
in the SNOMED ontology. The shortest ID (high-
lighted) is chosen as a Hierarchical-ID, and others
are SynonymIDs for this concept.

Figure 2 demonstrates the train-
ing architecture, and more
details are provided in the
subsequent subsections, start-
ing from the generation of
hierarchical-ID to the final zero-
shot predictions. We use ByT5
[26] as the base languagemodel
which is used for pre-training,
fine-tuning and zero-shot pre-
dictions. ByT5 is token-free, is
pre-trained on the mC4 dataset
and supports multi-task train-
ing.

4.1. Hierarchical-ID
generation

An ontology is represented in
the form of a graph where each
node represents a class, and the
parent and child relations of
the ontology serve as connec-
tions between classes. Based
on this graph structure of each
full ontology, hierarchical-IDs
are generated for all the classes.
These are constructed by starting from the root node, separated by “-” at each hierarchy level,
and traversing through each node in that level as shown in Figure 3. Following this method, a
unique ID is generated for each path traversed. As such, for ontologies like SNOMED, where
there are multiple paths between the root and any given class, there could be multiple IDs
for that node. In such cases, the shortest ID is considered the hierarchical-ID of that node
(highlighted in yellow in Figure 3), while the other path IDs are considered its synonymIDs.



Pre-training tasks Example
ID: Child & Parent CP: 0-2-3-1-43-1 0-2-3-42-1
ID: SYN & SYN 0-2-3-1-43-1 0-2-3-42-1-0
ID & SYN 0-10-40-13-9 S0: Oromucosal solution for gargle
ID & FSN 0-9-18-6-10-28-2 F0: Coagulation or electrocoagulation of inner ear
FSN & SYN F0: Coagulation or electrocoagulation of inner ear S0: electrocoagulation of ear

Fine-tuning tasks Example (Source ontology FSN/SYN input, Target ontology ID output)
Pharm F0: Ceprotin 2-, 5-5-6-4-93
Neoplas F0: FAB M1 2-, 0-0-6-2-1-2-8-0-0-7
Body F0: Hairs set 1-, 1-0-0-1-7-0-41

Table 1
Pre-training and fine-tuning tasks examples. Task identifiers are in bold. During pre-training, a random
part of the input in the examples get masked. During fine-tuning, root node of the hierarchical-ID is
used as a suffix to provide appropriate task identifier. Different identifiers are used for FMA and NCIT,
and acronyms SYN and FSN corresponds to synonyms and Fully-Specified-Name (label) respectively.

Each node ID inherently captures the information of all its ancestors. This enables the model to
trace from a broader class, starting from the root and getting more granular at each level, thus
simplifying the translation task.

4.2. Pre-training

After generating the hierarchical-IDs, multi-task pre-training is done on the full ontologies
(SNOMED, FMA, NCIT) using MLM by randomly masking the nodes, enabling the model to
learn the hierarchy and semantics. For instance, “Structure of Forel’s H2 bundle” is represented
as “1-1-0-0-0-0-4-1-1-0-0-0-7” and is masked as “1-1-0-0-0-0-[MASK]-1-0-0-0-7”. Furthermore,
additional tasks are included in order for the model to learn the semantics of each class in
the form of class-level synonyms, labels, and descriptions; class-level relations between child
and parent nodes; and the relation between synonym-ID and hierarchical-ID, using separate
identifiers for each task in the pre-training step (Figure 2). Task identifiers are added in the
form of prefixes, to distinguish between different ontologies. For example, SNOMED ontology
is prefixed as “F0:”, where “F” represents fully specified name (class label) and “0” indicates
SNOMED Ontology. Similarly, FMA and NCIT are represented using “1” and “2” identifiers.
Some representative examples are presented in Table 1, where similar tasks are defined for each
ontology, with the objective of learning their hierarchical structure and semantics using MLM.

Based on the tasks stated in Table 1, we generate the pre-training dataset which has 2,406,456
instances constituting SNOMED, NCIT, and FMA ontologies. The model is trained for 3 epochs,
with an increasing masking percentage linearly over time, starting at 10% and increasing to 35%
in the final batch. The pre-training is done on 8 V100 32GB Nvidia GPUs with a batch size of 20,
using a learning rate of 1e-3 with linear decay scheduler and AdamW optimizer.

4.3. Fine-tuning

The fine-tuning step aims to train the model on the downstream OM tasks. Only target subset
ontologies, i.e., NCIT (Pharm), NCIT (Neoplas), and FMA (Body), are used for fine-tuning. The



training data of each target sub-ontologies is augmented using the exact matches present in
the labels and synonyms of the other subset ontologies. We are also taking advantage of older
ontology versions to add more synonyms to each target label. This expands the training corpus,
enriches the data with minimal processing, and helps to perform more comprehensive learning.
After the data augmentation for all the target sub-ontologies, fine-tuning is performed only
on these target sub-ontologies corpora. Training data is generated for each class in the target
ontologies, where the input is the class label, synonyms, and descriptions, and output is the
corresponding node hierarchical-ID (generated in Section 4.1), using a separate identifier for
each task. Similar to our pre-training approach, multi-task fine-tuning is performed on the
downstream OM tasks. Some examples are presented in Table 1.
Based on the fine-tuning tasks described in Table 1, we generate the fine-tuning training

data which has 462,789 samples from Pharm, Neoplas, and Body subsets. Using 8 Nvidia V100
32GB GPUs with a batch size of 20, the fine-tuning took around 21 epochs. For the fine-tuning,
a learning rate of 1e-3 with linear decay scheduler and warm-up of 1.5 epoch using AdamW
optimizer with eps of 1e-8 and weight decay of 1e-2 is used.

4.4. Zero-shot Predictions

TM is a multi-task model with the capability to translate between multiple ontologies from the
input source class labels/synonyms to target hierarchical-IDs. Thus, given a source term, the
model predicts the potential candidate in the target ontology graph. For confidence scoring,
two approaches have been adopted here: (i) Greedy search score: Scores are generated based
on greedy search with softmax probabilities using temperature scaling. This is a naive way
to compute the confidence directly from the model prediction. (ii) Using embeddings: This
is a sophisticated method proposed to make the TM predictions more robust and improve
model precision, by leveraging semantic similarity using embeddings of source terms and
predicted target candidates. Using the same model, the embeddings are generated for the target
candidate and the similarity score is obtained between the source term and predicted target term
embeddings. Scores are generated across the source and predicted class labels and synonyms, all
of which are also augmented by singularization. The maximum generated score is considered
as the similarity score. As such, the proposed model takes advantage of both graph search and
semantic matching. Mathematically, similarity score 𝑆 is given as:

𝑆 = {
1.0, if Ω(𝑐1) ∩ Ω(𝑐2) ≠ ∅
𝑚𝑎𝑥(𝑆𝑖𝑚(Ω(𝑐1), Ω(𝑐2)), otherwise

(1)

where 𝑐2 is the predicted class for 𝑐1,Ω(𝑐1) andΩ(𝑐2) are sets of labels and synonyms for 𝑐1 and 𝑐2,
respectively, and 𝑚𝑎𝑥(𝑆𝑖𝑚(Ω(𝑐1), Ω(𝑐2)) selects the maximum cosine similarity score across all
the labels and synonyms of 𝑐1 (source) and 𝑐2 (predicted). If an exact match is available between
the labels and synonyms of source and target classes, we assign a maximum similarity score,
since embedding similarity will also give a similar result. The source and the target candidates
are considered valid mapping pairs if their similarity score exceeds a selected threshold for both
the approaches.



One of the main advantages of our proposed TM is that it reduces the time complexity to
log-linear as opposed to the naive solution of search that results in quadratic complexity2. Given
an input term with a specified task identifier, TM is able to predict the best possible match
from the target ontology with 𝑂(𝑙𝑜𝑔(𝑛)) complexity, where 𝑛 corresponds to the number of
nodes in the target ontology graph (same as the number of classes). Overall, TM reduces the
time-complexity to 𝑂(𝑛𝑙𝑜𝑔(𝑛)), noting that a single search in a tree structure with 𝑛 nodes can
be performed in 𝑂(𝑙𝑜𝑔(𝑛)) time.

5. Results

5.1. Evaluation criteria

Commonly used metrics for evaluating OM systems [5]: Precision (P), Recall (R), and F-score
are used as the global evaluation metrics. Mathematically,

𝑃 =
|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑟𝑒𝑓|

|𝑀𝑜𝑢𝑡|
, 𝑅 =

|𝑀𝑜𝑢𝑡 ∩ 𝑀𝑟𝑒𝑓|

|𝑀𝑟𝑒𝑓|
, 𝐹𝛽 = (1 + 𝛽2) 𝑃.𝑅

𝛽2.𝑃 + 𝑅
(2)

where, 𝑀𝑟𝑒𝑓 are the reference mappings, consisting of matching pairs, 𝑚 = (𝑐, 𝑐′), such that 𝑐
and 𝑐′ are two classes from the to-be-aligned ontologies, and 𝑀𝑜𝑢𝑡 are the mappings computed
by OM systems and 𝛽 = 1.
Local evaluation metrics, 𝐻𝑖𝑡𝑠@𝐾 and Mean Reciprocal Rank (𝑀𝑅𝑅), introduced in [5] are

also used for current evaluation and can be represented as:

𝐻𝑖𝑡𝑠@𝐾 =
|{𝑚 ∈ 𝑀𝑟𝑒𝑓|𝑅𝑎𝑛𝑘(𝑚) ≤ 𝐾}|

|𝑀𝑟𝑒𝑓|
, 𝑀𝑅𝑅 =

∑𝑚∈𝑀𝑟𝑒𝑓
𝑅𝑎𝑛𝑘(𝑚)−1

|𝑀𝑟𝑒𝑓|
(3)

where 𝑅𝑎𝑛𝑘(𝑚) returns the ranking position of 𝑚 among 𝑀𝑚 ∪ {𝑚} according to their scores,
𝑀𝑚 represents a set of negative mappings pairs for each of the source term 𝑐 in 𝑀𝑟𝑒𝑓, such that
(𝑐, 𝑐″𝑖 ) ∈ 𝑀𝑚 with 𝑖 ∈ {1, 2, ..., 100} and 𝑐″𝑖 are the 100 negative output candidates from target
ontologies for each of the source terms 𝑐 in 𝑀𝑟𝑒𝑓. As such, the Hits and MRR would be different
for different selected 100 samples. We have published the results of our model based on the
provided𝑀𝑚 set in [5] for a fair comparison. To provide a more robust measure of local metrics,
we are reporting overall accuracy as well, although this is not provided for any of the other
models. Accuracy here can be mathematically presented as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|{𝑚 ∈ 𝑀𝑟𝑒𝑓|𝑓 (𝑐, 𝑇 ) = 𝑐′}|

|𝑀𝑟𝑒𝑓|
(4)

2Note that BERTMap reduces the time complexity from 𝑂(𝑛2) in traditional approaches to 𝑂(𝑘𝑛), where 𝑘 << 𝑛 with
an additional preprocessing step by considering only a small portion of target subset ontology classes with at least
one subword token common to the source class candidate, which adds dependency on the tokenizer and could be
error prone since some semantically matching cases with lexical variations could get filtered out in this process.
Contrary to that, such limitation does not exist in TM since it performs matching from source to target without
reducing the target corpora size.



Task Precision Recall F-score MRR Hit@1 Accuracy
TM(Ours)1 0.947 0.738 0.830 0.960 0.942 0.801
TM(Ours)2 0.960 0.720 0.823
Edit-Similarity∗ 0.976 0.660 0.787 0.895 0.869 NA
LogMap∗ 0.702 0.581 0.636 0.545 0.330 NA
AML∗ 0.841 0.776 0.807 NA NA NA
BERTMap∗ 0.997 0.639 0.773 0.954 0.930 NA
LogMap-Lite∗∗ 0.967 0.543 0.695 NA NA NA
AMD ∗∗ 0.890 0.704 0.786 NA NA NA
BERTMap-Lite∗∗ 0.976 0.660 0.787 0.895 0.869 NA
Matcha∗∗ 0.875 0.594 0.707 NA NA NA
ATMatcher ∗∗ 0.264 0.226 0.244 NA NA NA
LSMatch∗∗ 0.809 0.072 0.132 NA NA NA

Table 2
Result for equivalence matching – SNOMED (Body) to FMA (Body).

where 𝑚 = (𝑐, 𝑐′) represents matching pairs in the 𝑀𝑟𝑒𝑓 set, and 𝑓 (𝑐, 𝑇 ) refers to the target
candidate predicted by the model, given an input term 𝑐 and appropriate task identifier 𝑇.

Baselines. Results are compared with the SOTA approaches: Edit-Similarity, LogMap, AML,
BERTMap [5], and recently published results in [4]. To be consistent, evaluation for P, R, F-score,
Hit@1, and MRR is done using [6] library.

5.2. Prediction Results

Prediction results are shown in Tables 2–4, for the three equivalence OM tasks, from SNOMED
to FMA (Body), SNOMED to NCIT (Pharm), and SNOMED to NCIT (Neoplas). The results
demonstrate precision, recall, F-score, Hit@1, MRR, and accuracy for TM and baseline ap-
proaches presented in He et al. [5] and OAEI [4] on the test data for the unsupervised setting.
In the given tables, superscripts1,2 are based on our proposed TM, where the former is based
on embedding similarity score and later is based on greedy search score, superscript∗ results
are based on He et al. [5] and we used the same evaluation metrics for TM, and superscript∗∗

correspond to OAEI [4] published results. The highest numbers for each of these metrics are
highlighted in the tables to emphasize which model is outperforming others in each category.
The overall results illustrate that TM is outperforming all the baselines for all three OM

tasks in F-score, Hit@1, and MRR. A high threshold is selected to generate the most confident
cross-ontology matching pairs. Note that a single unified model is trained and leveraged here to
predict all the results in the form of a source class to target hierarchical-IDs, using appropriate
task identifiers.
There are two TM results presented in the given tables, and both are based on different

scoring schemes. TM2 is based on greedy search scores and TM1 is based on a new and more
robust prediction scheme using embeddings described in Subsection 4.4, taking advantage of
both graph search and semantic similarity. It can be seen that both of our methods surpass
SOTA for all the tasks, but TM1 is more robust and has significant improvements as compared



Task Precision Recall F-score MRR Hit@1 Accuracy
TM(Ours)1 0.972 0.929 0.950 0.987 0.982 0.946
TM(Ours)2 0.977 0.872 0.922
Edit-Similarity∗ 0.979 0.432 0.600 0.836 0.760 NA
LogMap∗ 0.915 0.612 0.733 0.820 0.695 NA
AML∗ 0.940 0.615 0.743 NA NA NA
BERTMap∗ 0.966 0.606 0.745 0.919 0.876 NA
LogMap-Lite∗∗ 0.995 0.598 0.747 NA NA NA
AMD ∗∗ 0.962 0.745 0.840 NA NA NA
BERTMap-Lite∗∗ 0.979 0.432 0.600 0.836 0.760 NA
Matcha∗∗ 0.941 0.613 0.742 NA NA NA
ATMatcher ∗∗ 0.937 0.566 0.706 NA NA NA
LSMatch∗∗ 0.982 0.551 0.706 NA NA NA

Table 3
Results for equivalence matching – SNOMED (Pharm) to NCIT (Pharm).

Task Precision Recall F-score MRR Hit@1 Accuracy
TM(Ours)1 0.809 0.795 0.802 0.962 0.944 0.802
TM(Ours)2 0.812 0.773 0.792
Edit-Similarity∗ 0.815 0.709 0.759 0.900 0.876 NA
LogMap∗ 0.823 0.547 0.657 0.824 0.747 NA
AML∗ 0.747 0.554 0.636 NA NA NA
BERTMap∗ 0.655 0.777 0.711 0.960 0.939 NA
LogMap-Lite∗∗ 0.947 0.520 0.671 NA NA NA
AMD ∗∗ 0.836 0.534 0.652 NA NA NA
BERTMap-Lite∗∗ 0.815 0.709 0.759 0.900 0.876 NA
Matcha∗∗ 0.754 0.564 0.645 NA NA NA
ATMatcher ∗∗ 0.866 0.284 0.428 NA NA NA
LSMatch∗∗ 0.902 0.238 0.377 NA NA NA

Table 4
Result for equivalence matching – SNOMED (Neoplas) to NCIT (Neoplas).

to any of the existing methods. To be precise, 2.3% improvement over the second best result
(AML) in Body, 11.0% improvement for Pharm (as compared to AMD), and 4.3% improvement
for Neoplas as compared to BertMap-Lite and Edit-Similarity, is seen for TM1 in the F-score. It
should be noted that even without TM, none of these methods are SOTA in all the tasks.
For generating local metrics for Hit@1 and MRR, TM is used to generate the embedding

similarity score of input terms in the test set and their corresponding candidates in𝑀𝑚 ∪ {𝑚} set.
We are also outperforming all existing SOTA methods based on MRR and Hit@1. Additionally,
we are reporting accuracy metric, which is consistent, and more representative of the model
performance. For this metric, the TM predictions are obtained across the entire target ontology
without using any smaller subset of negative samples from the test set, while reducing the time
complexity from quadratic to log-linear.



6. Conclusions and Discussions

This work presents a new approach to OM by treating the OM process as a translation task
and performing multi-task pre-training, fine-tuning, and predictions in a zero-shot, unified
and end-to-end manner. The proposed approach takes advantage of transfer learning across
different ontologies and does not require manual annotations for training. Additionally, the
trained model understands the semantics of the text as well as the structure of the ontologies.
We show that our proposed method outperforms Edit-Similarity, LogMap, AML, BERTMap, and
the recently proposed OM frameworks in the OM22 conference [4] in all the tasks.
Our approach provides several advantages: (1) It reduces the time complexity to log-linear

during inference, (2) It is based on zero-shot prediction, without requiring much post-processing
and does not employ mapping extension or mapping repair in contrast to the other methods,
(3) It does not require any manual labeled cross-ontologies matching pairs due to zero-shot
learning, (4) One unified framework is used as a result of multi-tasking, which makes it easier to
productionize these large transformer-based models, (5) It is robust toward different tokenization
schemes as it uses byte level tokenization, (6) It learns complete ontologies graphs, using the
hierarchical-IDs which provides a more natural path for translation, and would be significantly
helpful for subsumption mappings.

In the future, we will pre-train the starting checkpoint with more domain-related corpus (e.g.,
PubMed, MIMIC-III, clinical notes) instead of the mC4 dataset. Another interesting track can be
ensemble learning of existing SOTA models with TM.
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