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Abstract
Metadata is used to describe data. It includes information about the who, when, where, how, and why of
data collection. Ideally, it should be in a machine-understandable format like RDF. This enables queries
using structured query languages like SPARQL and empowers further data usage. In this paper, we
investigate metadata as a source for generating Knowledge Graphs (KGs). We introduce a fully automatic
approach that transforms raw metadata files into a Knowledge Graph (KG). Our resources and code are
publicly available1.
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1. Introduction

Knowledge Graphs (KGs) are widely used to represent information about entities of interest
and their relations [1]. Lately, this includes information encoded in scientific datasets. Often,
these datasets are accompanied by metadata describing the who, when, where, how, and why
of data collection. Transforming metadata into KGs increases the FAIRness [2] of the data by
enhancing its reusability.
Embeddings are a well-established technique that captures the semantics of a given word

or sentence. Previous works have shown their significant impact on many Natural Language
Processing (NLP) applications [3]. In this work, we transform raw metadata files into a KG
using an embedding-based matching technique. We tested our technique on a biodiversity use
case; however, we expect our method to be domain-independent.

2. Methodology

Figure 1 shows the four phases of our pipeline. 1) Data AcquisitionWe collected our metadata
files from various biodiversity data portals to develop the data model and evaluate our matching
technique. 2) Ontology Development The data-driven process of crafting our data model

1https://github.com/fusion-jena/Meta2KG
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Figure 1: Abstract overview of our workflow to transform raw metadata to KG.

(Biodiversity Metadata Ontology (BMO)). We applied several cleaning steps to the collected data.
During this phase, we held several meetings with a biodiversity expert to validate and review
our conceptual model. In addition, we developed mean-based techniques to transform BMO
to the embedding space (BMOE). 3)Match & Populate Our unsupervised learning methods
for ontology matching and instance population. For matching, we used cosine similarity in
the embedding space between the ontological embeddings, BMO E, and metadata embeddings,
Keys E. We used embeddings to capture the semantic meaning of words. For population, We
limit the population to a triple if and only if its value has the expected datatype. For example,
we accept the triple, e.g., (author, phone, XXX) if “XXX” is a phone. We implemented such
kind of validations using regular expressions. 4) Release We published our resources and code
under the Creative Commons Attribution 4.0 International (CC BY 4.0) and Apache License 2.0,
respectively.
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