
KGMatcher+ Results for OAEI 2022
Omaima Fallatah1,2, Ziqi Zhang1 and Frank Hopfgartner3

1Information School, The University of Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, UK
2Information Systems, Umm Al Qura University, Mecca 24382, Saudi Arabia
3Universität Koblenz-Landau, Mainz 55118, Germany

Abstract
KGMatcher+ is a scalable and domain-independent matching system that matches the schema (classes)
of large Knowledge Graphs by following a hybrid matching approach. KGMatcher+ is composed of an
instance-based matcher which only uses annotated instances of knowledge graph classes to generate
candidate class alignments and a string-based matcher. This year is the second OAEI participation of
KGMatcher+, formerly known as KGMatcher. More improvements have been added to the matcher,
particularly in terms of handling imbalanced class distribution, and it is the best-performing system in
the common knowledge graphs track this year.

Keywords
Knowledge Graphs, Instance-based Ontology Matching, Machine Learning, Schema Matching.

1. Presentation of the system

1.1. State, purpose, general statement

Combining different matching techniques is a common practice in ontology matching tools.
Matching techniques are divided into three main categories [1]: (1) Element level techniques
which discover similar entities by processing textual annotation of ontology entities, (2) Struc-
tural level techniques which study the relation between ontology entities to generate candidate
pairs, and finally (3) Extensional or Instance_based techniques which utilize populated instances,
i.e., (ABox) data to generate alignments at schema level (TBox).

The matcher proposed here is a hybrid approach that combines an element-level matcher
with an instance-based one. The first matcher uses entity labels to generate candidate pairs, and
the latter produces candidate class alignments by only using annotated instance names. While
conventional ontologies mainly focus on modeling classes and properties, Knowledge Graphs
(KGs), particularly those available on the web, are large-scale and describe numerous instances.
Following a self-supervised and two-way classification approach, the presented matcher trains a
classifier using instances annotated in each KG as training data. A KG classifier can then be used
to classify any instance name into one of its own classes. The system is domain independent
and is capable of coping with KGs with unbalanced populations (for details, see [2, 3]). This

OM2022: the International Workshop on Ontology Matching, October 23, 2022, Hangzhou, China
$ oafallatah1@sheffield.ac.uk (O. Fallatah); ziqi.zhang@sheffield.ac.uk (Z. Zhang); hopfgartner@uni-koblenz.de
(F. Hopfgartner)
� 0000-0002-5466-9119 (O. Fallatah); 0000-0002-8587-8618 (Z. Zhang); 0000-0003-0380-6088 (F. Hopfgartner)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:oafallatah1@sheffield.ac.uk
mailto:ziqi.zhang@sheffield.ac.uk
mailto:hopfgartner@uni-koblenz.de
https://orcid.org/0000-0002-5466-9119
https://orcid.org/0000-0002-8587-8618
https://orcid.org/0000-0003-0380-6088
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: An overview of KGMatcher+ process

makes the matcher particularly useful for matching large KGs with numerous populated and
overlapping instances such as DBpedia [4] and YAGO [5]. This is the second OAEI participation
of this matching system, KGMatcher participated in the OAEI in 2021 [6].

1.2. Specific techniques used

Given two input knowledge graphs,𝒪 and𝒪′, where𝒪 has a set of classes𝒪 = {𝐶0
𝒪, 𝐶

1
𝒪, .., 𝐶

𝑖
𝒪},

and each class contains a set of instances 𝐶𝑖
𝒪 = {𝑒𝑖0, 𝑒𝑖1, ..., 𝑒𝑖𝑛}. Similarly, 𝒪′ contains a set

of classes such that 𝒪′ = {𝐶0
𝒪′ , 𝐶1

𝒪′ , .., 𝐶
𝑗
𝒪′} where 𝐶𝑗

𝒪′ = {𝑒𝑗0, 𝑒
𝑗
1, ..., 𝑒

𝑗
𝑚}. KGMatcher+ has

two main components: an instance-based matcher and a name matcher. The workflow of
KGMatcher+ is illustrated in figure 1.

1.2.1. Preprocessing

Given the two input KGs, the matcher starts by parsing and indexing the lexical data of the two
KGs separately. Following the standard free text search/index approach, an index is created
for each KG where each class is treated as a document and the content of each ‘document‘
is the concatenation of the class’s instance labels. In addition to the standard text cleaning
processes, a word segmentation method is applied in order to separate multi-word entities, e.g.,
academicfield. Using a general dictionary, this method is able to infer the spaces between
words and replace them with a space.

1.2.2. Instance-based Matcher

The first matching component of KGMatcher+ belongs to the extensional matcher category. It
uses a self-supervised machine learning approach to map KG classes based on their instances
overlap. The matching is done in a two-way classification fashion where a KG classifier is
trained using one KG’s instances data. Later on, that classifier is used to classify any instance

name into one of its classes. Here, we summarize the matching process of KGMatcher+, however,
readers may refer to [3] for further details.

• Exact Name Filtering. The matcher starts by applying an exact name filter to exclude class
labels that exist in both input KGs. Given the large number of classes in typical KGs, this
step works as a blocking strategy that reduces the search space of the instance-based
matcher.

• Resampling KGs Instances. The class distribution in typical public KG tends to be highly
imbalanced. Thus, the goal of this step is to balance the number of populated instances
in the two input KGs to avoid biased classification results. The previous version of
the system was only targeting the majority, i.e., large classes, by undersampling their
instances using TF-IDF approach [7]. Different from the previous version, here, we
introduced a new sampling strategy that combines undersampling the majority classes
with oversampling classes with fewer instances, i.e., the minority classes. In [2], we
studied 6 different strategies for handling class distribution including state-of-the-art
methods such as SMOTE [8] and using cost-sensitive learning [9]. The sampling method
that outperformed all other methods was when we used the TF-IDF undersampling
method in addition to using random oversampling. The standard TF-IDF method which
is often deployed to measure word relevance in a collection of documents is used to
undersample KGs classes. Here, the TF-IDF of a word in each class represents the relevance
of that word in a particular class in comparison to other classes in the KG. Therefore,
for each majority class, the most frequent words in terms of TF-IDF score are used to
undersample its instance names. Therefore, instance names that do not compose any of
the words with high TF-IDF scores are discarded. Then, random oversampling is used to
generate repeated random samples of instances in the classes that fall in the minority
class category. As a result, a more balanced and indicative set of KG instances is obtained
to be used as training data. Readers interested in further details of the sampling strategies
incorporated in KGMatcher+ may refer to [2].

• Training KG classifiers. Here, a KG classifier will be separately trained for each input KG
using the previously re-sampled instances data. Pre-trained word embedding is used here
as a feature to capture and present the semantics of KG instance names. Compared to
traditional feature representation methods, word embedding and language models are
recognized as effective ways to capture the semantic similarity of words. KGMatcher+
is able to train two types of classifiers, a Deep Neural Network (DNN) model1 2 similar
to other successful NLP tasks such as [10] and [11], and a pre-trained BERT model [12].
KGMatcher+ will automatically opt to use the BERT model if a GPU is available during
the runtime. The output of this phase is two classifiers, 𝐶𝐿𝑆𝒪 and 𝐶𝐿𝑆𝒪′ trained using
the instances from the two input KGs 𝒪, and 𝒪′ respectively.

1The parameters selected for the DNN model: an input layer of pre-trained word embedding model followed
by four fully connected hidden layers with 128, 128, 64, 32 rectified linear units. A dropout layer of 0.2 is added
between each pair of dense layers for regulation. Finally, a softmax layer for multi-class classification, taking the
total number of classes in the KG we are training a classifier for.

2The input layer is the Google News token-based model https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1

https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1

• KG1 alignment elicitation is the process of generating candidate pairs using the classifier
trained on the first input KG. Candidate pairs are generated by iteratively applying the
classifier 𝐶𝐿𝑆𝒪 to instances in the other KG’s classes. As a result, each instance name in
𝐶𝑗
𝒪′ is now classified into a class in 𝒪. The candidate pair (𝐶𝑖

𝒪 ,𝐶𝑗
𝒪′) is added to the first

candidate alignments set 𝐴𝒪→𝒪′ if the majority of 𝐶𝑗
𝒪′ were classified as instances of

𝐶𝑖
𝒪 . A similarity score between [0,1] is obtained using the percentage of instances that

voted for a particular class. Therefore, if 600 out of 1000 instance names in 𝐶𝑗
𝒪′ were

voting for, 𝐶𝑖
𝒪 the similarity score of that pair will be 0.6.

• KG2 alignment elicitation is similar to the above-illustrated elicitation process. However,
the roles of the two KGs are reversed where𝐶𝐿𝑆𝒪′ , i.e., the classifier trained on the second
KG (𝒪′), is applied to 𝒪 instances in order to obtain the second candidate alignment set
𝐴𝒪′→𝒪 .

• Similarity computing is where KGMatcher+ combines the two candidate alignment sets
resulting from the two-way classification method. First, the matcher separately stores
each directional alignment in an alignment matrix of a |𝒪|.|𝒪′| dimension. The two
matrices are then aggregated into one matrix by taking the average similarity score of
each pair. For example, if (𝐶6

𝒪 ,𝐶3
𝒪′ ,0.88) in 𝐴𝒪→𝒪′ and (𝐶5

𝒪′ ,𝐶3
𝒪 , 0.64) in 𝐴𝒪′→𝒪) their

aggregated similarity value will be 0.76. Consequently, the final alignments for this
matcher are chosen by following the state-of-the-art automatic final alignment selection
approach introduced in [13]. Given an alignment matrix, this method iteratively selects
the pair with the highest similarity score for each class in both KGs.

1.2.3. Name Matcher

The second component of KGMatcher+ is an element-level matcher, which measures the simi-
larity of KG class labels. First, the edit distance of each class pair is measured, and then their
semantic similarity is measured by a word embedding method. First, the Levenshtein distance
is calculated for each class pair. Then, in terms of the word embedding similarity, a pre-trained
word2vec model is used to represent class labels before measuring their cosine similarities.
The semantic similarity is measured in a Vector Space Model, where words with high semantic
relations are often represented closer to each other. In the case of multi-word labels, the vector
representation of each word composing the label is aggregated with an element-wise average
of the composing word vectors. Finally, the maximum of the two similarity measures is chosen
as the name similarity of that pair. The threshold value of the name matcher is set to 0.8. To
illustrate, if the word embedding similarity of (RailwayStation,TrainStation) is 0.83 while
their Levenshtein distance is 0.56, the maximum similarity value, i.e., the word embedding
similarity which is also higher than 0.8. Nonetheless, in case the two similarity scores are lower
than the threshold, that pair will be excluded from the candidate alignment.

1.2.4. Post Processing

KGMatcher+ combines the results generated from the two matching components by following
the same method described earlier to combine the two instance classification alignments.

1.2.5. Instance Matching

For the OAEI participation, we have adapted KGMatcher+ to also match the instances of KGs.
The instance matching component is very simple. First, standard text preprocessing techniques
such as lower casing, and removing stopwords and non-alphanumeric characters are applied.
Then, KGMatcher+ generates candidate instance pairs based on the existence of the label in the
opposite knowledge graph.

1.3. Adaptations made for the evaluation

KGMatcher+ is mainly developed with Python. To facilitate reusing and evaluating KGMatcher+
and for the OAEI submission, it was packaged using a SEALS client. The wrapping service from
the Matching EvaLuation Toolkit (MELT) [14] was used to warp the system’s Python-process,
and to generate the SEALS package.

2. Results

In this section, we present and discuss the results for each of the OAEI tracks where KGMatcher+
was able to produce a non-empty alignment file. The results include the following OAEI tracks:
Conference, Knowledge Graph, and Common Knowledge Graphs track.

2.1. Conference

In the Conference track, when following the rar2-M3 evaluation, KGMatcher+ F1 score (0.52)
is slightly lower than both baselines, i.e., StringEquiv (0.53) and edna (0.56). This particular
evaluation, i.e., M3 takes into consideration both class and property matches. The fact that
KGMatcher+ does not match property justifies the negative impact of the undiscovered property
alignments on the matcher’s performance on this task. Further, given that the Conference
track datasets do not include enough instances to apply the instance-based matcher, the name
matcher is the only matcher applied to map classes. In terms of the cross-domain test case of
mapping DBpedia and OntoFram, KGMatcher+ is the second to the best-performing system.

2.2. Knowledge Graph

In the Knowledge Graph track, KGMatcher+ was able to generate results for all 5 test cases at
both classes and instances level. In terms of class matching, the matcher yields satisfactory
results, with 0.79 for F1 score. The added instance matcher has positively impacted the overall
matcher result on this task, with a precision of 0.94, a recall of 0.66, and F1 of 0.82. KGMctcher+
is the second to the best-performing system in this track.

2.3. Common Knowledge Graphs

In this track, KGMatcher+ was able to complete the task of matching the classes from 4 cross-
domain and common KGs. On the task of matching NELL and DBpedia, the matcher obtained
the highest F1 score of 0.95. In terms of the second task, which maps classes from Yago and

Wikidata, KGMatcher+ is also the best-performing matching system with a recall of 0.83 and an
F1 score of 0.91. KGMctcher+ yields the best performance results on this track.

3. General comments

The results of KGMatcher+ have been very encouraging. In the common knowledge graph track,
it achieves outstanding results. This indicates that our hybrid approach, utilizing instances data
to map KG classes, is able to outperform systems that use other matchers’ combinations. It is
important to note that the performance of KGMatcher+ instance-based component depends on
the dataset nature. Since KGMatcher+ is learning KG classifiers by using general pre-trained
word embedding models, the more representative the KG instances of real-world entities, the
better the instance classification results. Figure 2 shows the difference between the performance
when classifying instances from common KGs, e.g., NELL, compared to a single domain KG from
the knowledge graph track. Note that the latter mainly annotates classes in the entertainment
domain [15].

(a) (b)

Figure 2: The instance classification report of a 20 randomly sampled classes from the OAEI KG
MemoryAlpha in (a) and NELL in (b). Note that y-axis numbers indicate class IDs.

4. Conclusion

As part of OAEI 2022, this paper presents KGMatcher+, a system for matching the schema of
large-scale and domain-independent KGs by utilizing instances data. The process is done by
learning KG classifiers, which are able to classify instances into a particular KG class. The results
suggest that a hybrid approach that incorporates an instance-based technique can be highly
effective particularly for matching large cross-domain KGs with imbalanced class distribution,
such as Yago and Wikidata.

References

[1] L. Otero-Cerdeira, F. J. Rodríguez-Martínez, A. Gómez-Rodríguez, Ontology matching: A
literature review, Expert Systems with Applications (2015) 949–971.

[2] O. Fallatah, Z. Zhang, F. Hopfgartner, The impact of imbalanced class distribution on
knowledge graphs matching, in: Proceedings of the 17th International Workshop on
Ontology Matching (OM 2022), CEUR-WS, 2022.

[3] O. Fallatah, Z. Zhang, F. Hopfgartner, A hybrid approach for large knowledge graphs
matching, in: Proceedings of the 16th International Workshop on Ontology Matching
(OM 2021), CEUR-WS, 2021.

[4] C. Bizer, J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mende, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, C. Bizer, DBpedia – A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia, Semantic Web (2012) 1–5.

[5] T. P. Tanon, G. Weikum, F. Suchanek, Yago 4: A reason-able knowledge base, in: European
Semantic Web Conference, Springer, 2020, pp. 583–596.

[6] O. Fallatah, Z. Zhang, F. Hopfgartner, Kgmatcher results for oaei 2021, in: CEUR Workshop
Proceedings, volume 3063, 2021, pp. 160–166.

[7] H. Schütze, C. D. Manning, P. Raghavan, Introduction to information retrieval, volume 39,
Cambridge University Press Cambridge, 2008.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: synthetic minority
over-sampling technique, Journal of artificial intelligence research 16 (2002) 321–357.

[9] C. Elkan, The foundations of cost-sensitive learning, in: International joint conference on
artificial intelligence, volume 17, Lawrence Erlbaum Associates Ltd, 2001, pp. 973–978.

[10] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, J. Gao, Deep learning
based text classification: A comprehensive review, arXiv preprint arXiv:2004.03705 (2020).

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language
processing (almost) from scratch, Journal of machine learning research 12 (2011) 2493–2537.

[12] A. S. Maiya, ktrain: A low-code library for augmented machine learning, arXiv preprint
arXiv:2004.10703 (2020).

[13] M. Gulić, B. Vrdoljak, M. Banek, Cromatcher: An ontology matching system based on
automated weighted aggregation and iterative final alignment, Journal of Web Semantics
41 (2016) 50–71.

[14] S. Hertling, J. Portisch, H. Paulheim, MELT - matching evaluation toolkit, in: Semantic
Systems. The Power of AI and Knowledge Graphs - 15th International Conference, 2019,
pp. 231–245.

[15] S. Hertling, H. Paulheim, The knowledge graph track at oaei, in: European Semantic Web
Conference, Springer, 2020, pp. 343–359.

	1 Presentation of the system
	1.1 State, purpose, general statement
	1.2 Specific techniques used
	1.2.1 Preprocessing
	1.2.2 Instance-based Matcher
	1.2.3 Name Matcher
	1.2.4 Post Processing
	1.2.5 Instance Matching

	1.3 Adaptations made for the evaluation

	2 Results
	2.1 Conference
	2.2 Knowledge Graph
	2.3 Common Knowledge Graphs

	3 General comments
	4 Conclusion

