
AMD Results for OAEI 2022
Zhu Wang

1ADVIS Lab, Dept of Computer Science
University of Illinois at Chicago, Chicago IL 60607, USA

Abstract
AgreementMakerDeep (AMD) is a new flexible and extensible ontology matching system. It exploits
the contextual and structural information of ontologies by infusing knowledge to pre-trained masked
languagemodel, and then filter the outputmappings using knowledge graph embedding techniques. AMD
learns from classes and their relations between classes by constructing vector representations into the low
dimensional embedding space with knowledge graph embedding methods. The results demonstrate that
AMD achieves a competitive performance in many OAEI tracks, but AMD has limitations for property
and instance matching.

Keywords
Ontology matching, Knowledge graph embedding, pre-train language model

1. Presentation of the system

AgreementMakerDeep (AMD) is a new deep learning ontology matching system inspired by
AgreementMaker [1, 2], AgreementMakerLight (AML) [3] and BootEA [4]. It is designed
with the main goal of higher efficiency for ontology matching problems by applying pre-train
language models and knowledge graph embedding methods. This year is the second time that
AMD participates in OAEI.

1.1. State,purpose, general statement

Ontology matching aims to establish semantic correspondences or relationships between con-
cepts or properties of different ontologies [5]. There is a wide range of algorithms developed
for ontology matching, such as those that use lexical similarity with linguistic techniques [6],
partition large ontology sets based on structural proximity [7], or detect graph similarity [8, 9].
However, such strategies may be time consuming [10], may use sparse and a high-dimensional
training space [11], and may vary with the domains [12].
AMD mainly utilizes BERT-like pre-train language model for textual matching, but adopts

the representative learning models [13, 14] to capture the relations as structural information
with a translation vector between two classes.

OAEI’22: The 17th International Workshop on Ontology Matching, Oct 23–24, 2022, Hangzhou, China
Envelope-Open zwang260@uic.edu (Z. Wang)
GLOBE https://ellenzhuwang.github.io (Z. Wang)
Orcid 0000-0001-6374-8735 (Z. Wang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:zwang260@uic.edu
https://ellenzhuwang.github.io
https://orcid.org/0000-0001-6374-8735
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: The overall framework of AMD. Here, inputs are sub-graphs of source and target ontologies.
It learns language and knowledge embeddings by using a novel relation attention mechanism. Ontology
matching tasks are solved using the outputs of masked language model, and final mappings are selected
from candidate sets by knowledge graph embedding..

2. Specific Techniques Used

The architecture of AMD is shown in Fig. 1, including ontology parsing, textual matching with
large pre-train language models, knowledge graph embedding, model learning and candidate
selection.
Ontology parsing. owlready2 [15] is used to extract meta information of classes from

the source and target ontology, such as super/sub-classes, labels, annotations, partof and
disjointwith. BeautifulSoup [16] is used to extract synonyms.
Textualmatching. We apply several text per-processing techniques like stop-words removal

and tokenization on class labels and annotations. AMD uses sentence-BERT [17] to compute
cosine similarity between two concept labels and annotations in unsupervised tasks. We consider
to use textual matching results as our mapping candidations.
Knowledge graph embedding. We characterize the structure information of ontologies by

relations translated from one class to another class using a modified TransR [18] model into
relational embedding spaces.

2.0.1. Problem Formulation.

Given two ontologies O and O’, we construct knowledge graph X and Y, and define the corre-
spondence between two concepts as following triplets 𝑇𝑐,𝑐′ = < 𝑐, 𝑟 , 𝑐′ >, where r is the relation
between c and c’. The problem is to find mapping set M = {(𝑐𝑥, 𝑐𝑦)𝜖𝑋 × 𝑌 |𝑐𝑥 ≡ 𝑐𝑦}. In this study,
we focus on one-to-one alignment and the relation between concepts is equality.

Let 𝑣(𝑐𝑥)= {𝑣1, 𝑣2, ...𝑣𝑚} and 𝑣(𝑐𝑦)= {𝑣 ′1 , 𝑣 ′2 , ...𝑣 ′𝑛} be two d-dimensional vectors sets of size m and
n, we compute their distance with simple cosine similarity by d(𝑣(𝑐𝑥), 𝑣(𝑐𝑦)) = 1-sim(𝑣(𝑐𝑥), 𝑣(𝑐𝑦))
as follows:

𝑠𝑖𝑚(𝑣(𝑐𝑥), 𝑣(𝑐𝑦)) = ∑
𝑖=1

argmax
𝑗

𝑐𝑜𝑠(𝑣(𝑐𝑥), 𝑣(𝑐𝑦)) (1)



We define the probability of the aligned labels between concepts 𝑐𝑥 and 𝑐𝑦 by 𝑝(𝑐𝑦|𝑐𝑥) as follows:

𝑝(𝑐𝑦|𝑐𝑥) = 𝜎𝑠𝑖𝑚(𝑣(𝑐𝑥), 𝑣(𝑐𝑦)) (2)

where 𝜎 is the sigmoid function.

2.1. Masked Language Modeling

In bio-ML track, we train on ontologies corpus for semi-supervised tasks. We use standard
transformer architecture[19] following Roberta[20]. The text encoder takes a sequence of tokens
from triples {ℎ, 𝑟 , 𝑡} as inputs, and computes a numbers of L layers to obtain contextualized
representations 𝐻𝑖 ∈ ℝ𝑁×𝑑, where N is the number of tokens in our vocabulary and d is the
dimension.
Concept prediction Concepts are the dominant elements in ontology matching problem,

therefore, predicting the concepts forces the model to learn the of semantic information. At the
same time, we infuse structural knowledge by triples to enable the ability of the model to learn
the contextualized representations for each ontology. Here, the concept prediction is to predict
head or tail concept, and the difference is position embedding of the masked tokens.

For all the concepts 𝑐 ∈ 𝐶, we randomly select 30% of them to predict. And for each selected
concept 𝑐𝑖, the token 𝑤ℎ

𝑖 or 𝑤 𝑡
𝑖 is replaced with the special token [MASK] in probability of 80%,

another random token in 10% and the rest remain itself. The loss of concept prediction is defined
as:

𝐿𝑐2𝑟 = −
𝑛+𝑚+𝑘
∑
𝑛+𝑘

log 𝑃(𝑥𝑛+𝑘|𝑥<𝑛+𝑘) (3)

Relation prediction Relations express the way of connection head and tail concepts, and
also provide enrich hierarchy as structural information. We considers to concatenate all tokens
in 𝑟 to predict, because relation labels usually have few words or tokens and are meaningless
by separated tokens. For the training tasks, relation prediction is similar process as concepts
prediction by masking randomly. Thus, the loss of relation prediction is written as:

𝐿𝑟2𝑐 = −
𝑛+𝑚+𝑘
∑
𝑛+𝑚

log 𝑃(𝑥𝑛+𝑚|𝑥<𝑛+𝑚) (4)

Therefore, the masked language modeling loss function can now be written as,

𝐿𝑀𝐿𝑀 = 𝐿𝑐2𝑟 + 𝜃𝐿𝑟2𝑐 (5)

where we take a linear combination of both the loss terms.

2.2. Knowledge graph embedding

In AMD, we apply a modified TransR method which translates concepts and relations into
concept space and relation-specify concept spaces, since there are multiple relations in the
ontologies e.g subclassof and disjointwith. In the original TransR, the projected vectors are



defined as 𝑐𝑟 = 𝑐𝑀𝑟, 𝑐′𝑟 = 𝑐′𝑀𝑟, and the score function as 𝑓𝑟(𝑐, 𝑐′) = ‖𝑐𝑟 + 𝑟 − 𝑐′𝑟 ‖22 [18]. Inspired by
Sun et al. [4], the absolute scores of positive triples are lower than the negative ones, so we
modify the loss function by using two 𝛾 hyper-parameters as follows:

ℒ𝐾𝐸 = ∑
(𝑇 )∈𝑆

∑
(𝑇𝑛𝑒𝑔)∈𝑆𝑛𝑒𝑔

𝑚𝑎𝑥(0, (𝑓𝑟(𝑇 ) − 𝛾1) − 𝜇(𝑓𝑟(𝑇𝑛𝑒𝑔) + 𝛾2)) (6)

where T denotes ℎ, 𝑟 , 𝑡 and 𝑇𝑛𝑒𝑔 represent negative triples, 𝛾1, 𝛾2, 𝜇 > 0 and 𝛾2 > 𝛾1. Negative
triples are generated from negative sampling method by following AMD[14] and Multi-OM [6].

During the process that computes vectors, we need to generate negative triples. Following the
work of Sun et al. [4] and Li et al. [6], we refine the uniform negative sampling by choosing from
the k-nearest neighbors in the embedding space, and setting constraints of select candidates
excluding from the subclassOf or disjointWith related concepts. In this way, we can avoid vector
sparsity and obtain better quality of vector representations for the concepts.
Candidate selection We select candidates based on a threshold of the classes knowledge

graph embedding vectors similarity, and then compare the similarity with baseline if the pairs
are in baseline result sets.

2.3. Parameter settings

Ontology pre-processing. Ontologies always are in the format of owl or rdf, but the inputs
of masked language model and knowledge graph embedding models require the format of word
or token embeddings. Firstly, we extract meta information from ontologies using owlready2
1, such as ID, labels, resource, descriptions of class(or called concepts). The nature language
information of relations are extracted from restriction, property, subClass or superClass. Since
the ontologies in the tasks were developed by different organizations, we process the ontology
parsing from different tags, e.g rdf:ID=”isPartOf” and rdf:resource =”UNDEFINED_part_of”.
MLM pre-training settings. In practice, we use RoBERTa implementation by Hugging-

face2 as the base pre-trained model in our all experiments. LaKERMap is initialized with the
roberta.base parameters, and the base model size is 12 layers and 768-dimensional hiddden
states(𝐿 = 12, 𝑑 = 768). For the MLM training task, we use the words or tokens in knowledge
triples as our corpora for fine tuning. We select the first 5 mapping pairs from lexical matching
method in few-shot learning. Hyper-parameters are the same in [20].
KGE training settings. We use the outputs of MLM as word or token embedding in the

initialization for knowledge graph embbedding training process, as the dimension of d is set to
768. The remainder of our hyper-parameters in KGE are setup followed AMD [14].

The threshold for textual matching is 0.925, and the threshold for candidate selection is 0.9.

2.4. Datasets

We use the datasets provide by OAEI. AMD is able to be executed by organizers in four schema
matching tracks, including Conference, Anatomy, bio-ML and Common Knowledge Graph track.
However, AMD supports most of tracks in our local environment setups exclude for interactive
matching track.
1https://github.com/pwin/owlready2
2https://huggingface.co/roberta-base

https://github.com/pwin/owlready2
https://huggingface.co/roberta-base


Table 1
Results of AMD for Anatomy and Conference tracks.

Track runtime(s) Precision Recall F1-score
Anatomy 160 0.953 0.817 0.88
Conference - 0.82 0.41 0.55

2.5. Adaptations made for the evaluation

Our framework uses Python with Pytorch 3 and RDFLib 4, and is packed for SEALS using MELT.
We use the best parameter set in local alignments for the OAEI submission, see section 2.3.

3. Results

3.1. Anatomy

The Anatomy track results of AMD are shown in Table 1. In this year, AMD returns 1299
correspondences in 160 seconds. The result shows that AMD can be competitive among the top
promising matching systems. The mapping candidates generation runtime is still 3 seconds
which is same as last year. However, to improve overall performance in terms of recall and
F1-score, we conduct a filtering process with more time consuming.

3.2. Conference

The Conference track results of AMD are shown in Table 1. As expected, the performance
of AMD in the conference track is not good, with the F-measure only slightly higher when
comparing baseline method(StringEquiv). AMD shows a lack of ability to extract and match
the properties in M2 and M3 evaluation variants. However, AMD has higher values in term of
Precision in most tasks. We have 0.01 improvement in term of F1-score in this year.

3.3. bio-ML

Table 2 shows results of AMD in the bio-ML track. In this year, AMD is able to execute for
bio-ML tasks on large ontologies. We use masked languange modeling in section 2.1 in semi-
supervised tasks. We obtain promising and competitive results for most of the tasks in this
track comparing with AMD performance in last year[14].

4. General comments

4.1. Comments on the result

Overall, the results show that AMD is able to complete several tasks in different domains on
class-level matching in a timely manner. In this year, we have improvements in anatomy and

3https://pytorch.org
4https://github.com/RDFLib



Table 2
Results of AMD in bio-ML track.

Unsupervised(90%) Semi-supervised(70%)
Task

Precision Recall F1-score Precision Recall F1-score
OMIM-ORDO(Disease) 0.664 0.565 0.611 0.601 0.567 0.583
NCIT-DOID (Disease) 0.885 0.768 0.823 0.858 0.770 0.811
SNOMED-FMA (Body) 0.890 0.704 0.786 0.861 0.709 0.778
SNOMED-NCIT (Pharm) 0.962 0.745 0.840 0.952 0.746 0.836
SNOMED-NCIT (Neoplas) 0.836 0.534 0.652 0.792 0.528 0.633

bio-ML tracks in terms of evaluation metrics. By contrast to last year, we solved memory issues
for large scale ontologies. Moreover, we consider to enable semi-supervised capability of AMD,
and it is beneficial to train on triples in intra-ontology and inter-ontology.

However, AMD is still under development that it is only able to return class correspondences,
and is not able to match properties and instances in the current stage for some tracks.

4.2. Improvements

The current development of AMD touches on several aspects. Besides considering properties
and instances matching, we will utilize joint embedding to combine contextualized knowledge
graph embeddings like coKE and additional knowledge resources such as WebIsA [21] as a
lexicon database. Moreover, we will adapt AMD with more different data types parsing and
parameters selections for different tracks.

5. Conclusions

In this paper, we have introduced an ontology matching system called AMD. In this year, we
consider to use BERT-like pre-train language model to obtain contextualized representations.
To improve the overall performance, we adapted a modified transR model to fit the ontology
matching problem: thus, we learn low-dimensional representations for each class and relation
to capture the hidden semantics of ontologies, rather than measuring the similarities between
classes directly, as in other traditional systems. AMD makes full use of the textual and structure
knowledge of ontologies. The results demonstrate the high efficiency and the promising
performance of our proposed matching method as compared to other systems results in several
tracks.

References

[1] I. F. Cruz, F. Palandri Antonelli, C. Stroe, AgreementMaker: Efficient Matching for Large
Real-World Schemas and Ontologies, PVLDB 2 (2009) 1586–1589.

[2] I. F. Cruz, F. Palandri Antonelli, C. Stroe, Efficient Selection of Mappings and Auto-
matic Quality-driven Combination of Matching Methods, volume 551 of CEUR Workshop
Proceedings, 2009, pp. 49–60.



[3] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, F. M. Couto, The Agreement-
MakerLight Ontology Matching System, in: International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), Springer, 2013, pp. 527–541.

[4] Z. Sun, W. Hu, Q. Zhang, Y. Qu, Bootstrapping Entity Alignment with Knowledge Graph
Embedding, in: IJCAI, volume 18, 2018, pp. 4396–4402.

[5] J. Euzenat, P. Shvaiko, Ontology Matching, Springer-Verlag, Heidelberg (DE), 2007.
[6] W. Li, X. Duan, M. Wang, X. Zhang, G. Qi, Multi-view embedding for biomedical ontology

matching., OM@ ISWC 2536 (2019) 13–24.
[7] A. Laadhar, F. Ghozzi, I. Megdiche, F. Ravat, O. Teste, F. Gargouri, Partitioning and Local

Matching Learning of Large Biomedical Ontologies, in: ACM SIGAPP Symposium on
Applied Computing, 2019, pp. 2285–2292.

[8] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity Flooding: A Versatile Graph Matching
Algorithm and Its Application to Schema Matching, 2002, pp. 117–128.

[9] I. F. Cruz, W. Sunna, Structural Alignment Methods with Applications to Geospatial
Ontologies, Transactions in GIS, Special Issue on Semantic Similarity Measurement and
Geospatial Applications 12 (2008) 683–711.

[10] P. Kolyvakis, A. Kalousis, D. Kiritsis, Deepalignment: Unsupervised ontology matching
with refined word vectors, in: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), 2018, pp. 787–798.

[11] P. Ristoski, J. Rosati, T. Di Noia, R. De Leone, H. Paulheim, RDF2Vec: RDF Graph Embed-
dings Their Applications, Semantic Web 10 (2019) 721–752.

[12] M. Cheatham, P. Hitzler, String similarity metrics for ontology alignment, in: International
semantic web conference, Springer, 2013, pp. 294–309.

[13] J. Hao, M. Chen, W. Yu, Y. Sun, W. Wang, Universal Representation Learning of Knowledge
Bases by Jointly Embedding Instances and Ontological Concepts, in: ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1709–1719.

[14] Z. Wang, I. F. Cruz, Agreementmakerdeep results for oaei 2021., in: ISWC International
Workshop on Ontology Matching (OM), CEUR Workshop Proceedings, CEUR-WS.org,
2021, pp. 124–130.

[15] J.-B. Lamy, Owlready: Ontology-oriented programming in python with automatic clas-
sification and high level constructs for biomedical ontologies, Artificial intelligence in
medicine 80 (2017) 11–28.

[16] L. Richardson, Beautiful soup documentation, April (2007).
[17] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,

in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing, Association for Computational Linguistics, 2019. URL: http://arxiv.org/abs/1908.10084.

[18] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for
knowledge graph completion, in: AAAI Conference on Artificial Intelligence, 2015.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polo-
sukhin, Attention is all you need, in: Advances in neural information processing systems,
2017, pp. 5998–6008.

[20] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint

http://arxiv.org/abs/1908.10084


arXiv:1907.11692 (2019).
[21] J. Seitner, C. Bizer, K. Eckert, S. Faralli, R. Meusel, H. Paulheim, S. P. Ponzetto, A large

database of hypernymy relations extracted from the web., in: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC’16), 2016, pp.
360–367.


	1 Presentation of the system
	1.1 State,purpose, general statement

	2 Specific Techniques Used
	2.0.1 Problem Formulation.
	2.1 Masked Language Modeling
	2.2 Knowledge graph embedding
	2.3 Parameter settings
	2.4 Datasets
	2.5 Adaptations made for the evaluation

	3 Results
	3.1 Anatomy
	3.2 Conference
	3.3 bio-ML

	4 General comments
	4.1 Comments on the result
	4.2 Improvements

	5 Conclusions

