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Motivation 

 Worked in academia from 2000-2010 

– developed many algorithmic solutions for schema/ontology matching 

 Worked in industry 2010-2014 

– realized that many of these solutions were not applicable 

– no open-source code that could be immediately used 

– impact of academic work was very limited 

 Back in academia in 2015 

– decided to focus on building systems that real users can immediately use 

– hoped that if such systems were built, academic work would follow, I can make more impacts 

 Decided to focus on entity matching 

– was easier to get data 

– but eventually want to consider other semantic matching tasks too  

 

2 



Entity Matching (EM) 
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Name City State 

Dave 

Smith 
Madison WI 

Joe Wilson San Jose CA 

Dan Smith Middleton WI 

Table A 

Name City State 

David D. Smith Madison WI 

Daniel W. 

Smith 
Middleton WI 

Table B 



The Magellan Project @ UW-Madison 

 Started in 2015 

 

 Develop a general-purpose EM platform  

 

 Inspired by  

– PostgreSQL for relational data management 

– Scikit-learn for machine learning 

– Hadoop/Spark for big data processing 
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Significant Progress in Past Five Years 

 Deployed at 12 companies and domain science groups 

– 8 companies: Walmart, Recruit Holdings, Johnson Control, AF Insurance, Informatica, etc.  

– 4 domain sciences: Economics, Limnology, Biomedicine, Land Use 

– Pushed into production in 8 cases 

 Contributed to several high-profile projects 

– saving Amazon forest, managing water quality in the Greater Lake region of the US 

 Used by 500+ students in 6 data science courses at UW-Madison 

 Commercialized by GreenBay Technologies 

– Acquired by Informatica in Aug 2020 

– Pushed into an EM platform to be used by thousands of customers 

– Influencing solutions for schema matching and knowledge graph construction 

 Multiple research papers, SIGMOD/ACM Research Highlight Awards 
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The R&D Template of Magellan 

1. Identify the problem and user populations 

2. Understand how a user typically does EM  

3. Identify pain points and develop tools/guidance  

– Goal is to improve productivity of the user 

4. Build tools into three data science ecosystems 

– On-prem, cloud, mobile 

– Make tools atomic and easy to combine 

– Combine tools to build easy-to-use EM systems for users 

5. Work with real users, learn, and repeat 

 

 Radically different from prior system building efforts 

 Can be applied to other problems: IE, schema/ontology matching, etc.  
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1. Identify Problems & User Populations 

- Focus on simple but common problems 

- Focus on user populations we can easily work with 
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Identify Problems 

 Use supervised machine learning 
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Name City State 

Dave 

Smith 
Madison WI 

Joe Wilson San Jose CA 

Dan Smith Middleton WI 

Table A 

Name City State 

David D. Smith Madison WI 

Daniel W. 

Smith 
Middleton WI 

Table B 



A “Very Boring” Problem 

 Received very little attention 

– judged trivial, hard to develop novel technical solutions,  

hard to publish 

 Most academic works focus on  

more complex problems 

– e.g., how to exploit a knowledge graph  

to improve the accuracy of EM 

– easier to develop novel technical solutions 

 We selected the above problem because  

many users need to solve it 

– especially the “horses” 

 

Elephants 

Horses 

Typical needs 

Horses 

Unusual needs 



“Horse” Populations That We Target 

 Domain scientists 

– Biomedicine, land use, limnology, economics, etc.  

– They are within walking distance 

– Domain experts, some coding skills (e.g., Python, R, SQL) 

 Students, educators, researchers in data integration, data science 

– Students form teams to do class project, we asked each team to solve an EM problem  

 Data scientists at companies 

– Often work in a way similar to domain scientists  

 Lay users, data enthusiasts 

– Journalists, citizen data scientists; domain experts, but often no coding skills 

 We do not target enterprise customers 

– They often want “hardcore” stuff: proprietary code, big/complex processes, lot of support 

– But we ended up working with a few 
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2. Understand How a User Typically Does EM 

- Observe how real users do it 

- Observe how students do it in class projects 
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Existing Work Has a Relatively Simple View 

of How User Does EM 

Name City State 

Dave Smith Madison WI 

Joe Wilson San Jose CA 

Dan Smith Middleton WI 

a1  

Name City State 

David D. Smith Madison WI 

Daniel W. 

Smith 

Middleton WI 

b1 

b2 

block on 

state = state 

(a1, b1) 

(a1, b2) 

(a3, b1) 

(a3, b2) 

(a1, b1) + 

(a1, b2) - 

(a3, b1) - 

(a3, b2) + 

match 

Table A 

Table B 

a2  

a3  

 Focuses on developing blockers and matchers 



We Observe That Real-World EM Processes  

Are Far More Complex 

 

 Development stage  

– finds an accurate workflow, using data samples 

 Production stage 

– executes workflow on entirety of data 

– focuses on scalability 
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A 

1M tuples 

1M tuples 
block match  

(using machine learning) 

B 



 

Development Stage 

yes 

no 

A 

B 

sample 
A’ 

B’ 

matcher 

V 

quality  

check  

select a good blocker: 

 blocker X, blocker Y 

blocker 

X 

(-,-) 

(-,-) 
(-,-) 
(-,-) 

(-,-) 
 

Cx 

sample 

(-,-) 

(-,-) 
(-,-) 
(-,-) 

(-,-) 

(-,-) 

(-,-) 
(-,-) 

(-,-) + 

(-,-) - 
(-,-) + 

cross-validate 
matcher U 

cross-validate 
matcher V 

0.89 F1 

0.93 F1 

label 

Cx S 

G 

(-,-) + 

(-,-) + 
(-,-) - 
(-,-) - 

(-,-) + 
 

 
A’ 

B’ 

blocker 

X 
Cx 

A’ 

B’ 

blocker 

Y 
Cy 

select a good matcher: 

 matcher U, matcher V 



Production Stage 

15 

(-,-) 

(-,-) 

(-,-) 

(-,-) 

(-,-) 

(-,-) 

(-,-) 

(-,-) 

(-,-) + 

(-,-) - 

(-,-) + 

(-,-) + 

(-,-) - 

(-,-) + 

(-,-) - 

(-,-) + 

A 

B 

blocker X matcher V 

Scaling, quality monitoring, exception handling, crash recovery, … 



3. Identify Pain Points and Develop Tools/Guidance 
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Example Pain Points 
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yes 

no 

A 

B 

sample 
A’ 

B’ 

matcher 

V 

quality  

check  

select a good blocker 

blocker 

X 

(-,-) 

(-,-) 
(-,-) 
(-,-) 

(-,-) 
 

Cx 

sample 

(-,-) 

(-,-) 
(-,-) 
(-,-) 

(-,-) 

(-,-) 

(-,-) 
(-,-) 

(-,-) + 

(-,-) - 
(-,-) + 

cross-validate 
matcher U 

cross-validate 
matcher V 

0.89 F1 

0.93 F1 

select a good matcher 

label 

Cx S 

G 

(-,-) + 

(-,-) + 
(-,-) - 
(-,-) - 

(-,-) + 
 

 
A’ 

B’ 

blocker 

X 
Cx 

A’ 

B’ 

blocker 

Y 
Cy 

How to sample 

and label? 

How to debug a 

matcher? 

How to debug 

a blocker? 



Debugging a Blocker 

 

 

 

 

 

 

 

 

 
 

 Does blocker Q kill off too many matches? 

 What are the killed-off matches? 

 Why are they killed off by Q? 
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Table A 
Name City Age 

Dave Smith Altanta 18 

Daniel Smith LA 18 

Joe Welson New York 25 

Charles Williams Chicago 45 

Charlie William Atlanta 28 

Table B 
Name City Age 

David Smith Atlanta 18 

Joe Wilson NY 25 

Daniel W. Smith LA 30 

Charles Williams Chicago 45 

a1  

a2  

a3  

a4  

a5  

b1  

b2  

b3  

b4  

blocker Q 

a.City = b.City 

(a2, b3) 

(a4, b4) 

(a5, b1) 

C 



Debugging a Blocker 

 Debugger quickly finds matches killed-off by the blocker 

 User examines these matches and improves the blocker 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 

 

 

 
 

 

A×B 

C = Q(A, B) 

D = A×B \ C 

 
 

 
 

 
 

  

 



  

 

Learning a Blocker 

Sample S 

from |A x B| 

Four examples  

supplied by user  

(2 pos, 2 neg) 

Stopping criterion satisfied? 

Select q “most informative” 

unlabeled examples 

Label the q selected 

examples   

User 

Random 

forest F 

 Train a random forest F 

 Take sample S from A x B (without materializing A x B) 

 Train a random forest F on S (to match tuple pairs) 

– using active learning, where user labels pairs 

Y 

N 



Learning a Blocker 
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Learning a Blocker 
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isbn_match 

N Y 

No #pages_match 

N Y 

No Yes 

title_match 

N Y 

No publisher_match 

N Y 

No year_match 

N Y 

No Yes 

(isbn_match = N)           No 

(isbn_match = Y)  and  (#pages_match = N)           No 

(title_match = N)            No 

(title_match = Y)  and  (publisher_match = Y)  and (year_match = N)          No 

Extracted candidate blocking rules 

(title_match = Y)  and  (publisher_match = N)         No 

 Extract candidate blocking rules from random forest F 

Example random  

forest F for  

matching books 



   

Collaborative Labeing 

Tool to highlight 

possible matching 

definitions 

Tool to 

debug labels 

Tool to help  

revise labels 



Tool to Highlight Possible Match Definitions 

 We do not have a tool yet, but we do have guidance for user 

1. Take a small sample S of tuple pairs (say 50) 

2. All labelers must label S 

3. Compare their outputs, highlight discrepancies, discuss 

4. Repeat Steps 1-3 until no more discrepancies 

5. During above steps, document all possible match definitions that come up 

 

 In addition to above guidance, currently we also recommend the following 

– Use blocking debugger to return pairs that are likely to be matches, collectively discuss them 

– Use an active learner to identify controversial pairs, collectively discuss them 
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What We Learn When Working with Users 

 They need to understand (and agree on) the match definition 

– KFC on Univ Ave = KFC on Farewell Ave?  

– iPhone 6s black = iPhone 6s white?  

– The Amazon rain forest group has worked on EM for three years, and yet still have problems 

 

 They need to understand the data (tables A and B) 

– How dirty? Lot of missing values? Any portion of data is unreliable?  

 

 They need to understand the limitations of tools 

– Can random forests match textual data accurately? 

 

 Need to develop tools and guidance to help them gain this understanding 

– As a part of the EM process 
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Summary 

 A user typically does EM in a multi-step iterative complex process 

– Far more complicated than we thought, we do not fully understand it today 

– Need more work to completely specify this EM process 

 

 Cannot be completely automated, aims instead to improve user productivity 

– Keep the same process, but make it easier for user to execute (far less ambitious goal) 

 

 Identify pain point steps in the process, for each such step 

– Develop (semi-)automatic tools to help user if possible 

– If not, develop guidance telling user how to do the step 
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4. Build Tools into Three Data Science Ecosystems 

- On-prem, cloud, mobile 

- Make tools atomic & easy to combine 

- Combine tools to build easy-to-use EM systems 
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Our First Observation 

 Tools need to exploit a wide variety of techniques 

– Relational data processing, ML, statistics, visualization, cleaning, etc.  

 Very time consuming to implement so many techniques from scratch 

– Best to exploit existing data science ecosystems 

– A natural starting point is PyData, ecosystem of DS tools in Python 

 We also don’t want complex “monolithic” tools 

– Difficult to build & maintain them in academia 

– Difficult to reuse 

– Difficult to combine them in unexpected ways, which users often do 

 So we build tools that are atomic and easy to combine 

 Build them as commands in Python packages, as part of PyData 

 Then combine them to build more complex tools 
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Current  

PyData 

Tools 

 



 

Our First System Architecture 

Development  

stage 

An EM  

scenario,  

e.g.,  

matching 

Tables 

 A, B 
Step 1 Step 2 . . . Step n 

EM  

workflow 

EM requirements  

(accuracy, runtime, etc.) Power 

 user 

How-to 

 guide 

Pain point 

Problem 

definition 

Data 

profile 

Tool 

profile Tools as commands 

in packages in 

the Python  

data analysis stack 

Tools as commands 

packages in the 

Python  

big data stack 
Matches Production 

stage 

Tables 

A, B 
Executor 

Optimizer 

EM plans 

EM workflow (procedural) 

EM operators 

EM workflow (declarative) 

Pain point 



Our Second Observation 

 Tools in PyData ecosystem can be used mostly on-prem 

 When doing EM, users often want to move among three exec environments 

– On-prem, cloud, mobile 
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So We Build into All Three Execution Environments 
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• py_stringmatching 

• py_stringsimjoin 

• py_entitymatching 

• deepmatcher 

• RuleExecutor 

• CloudLabeler 

• CloudProfiler 

• ActiveLearner 

AWS 
PyData 

• MobileLabeler 

• Cymphony 



Combine Tools to Create Easy-to-Use EM Systems 
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• py_stringmatching 

• py_stringsimjoin 

• py_entitymatching 

• deepmatcher 

• RuleExecutor 

• CloudLabeler 

• CloudProfiler 

• ActiveLearner 

• CloudMatcher 

AWS 
PyData 



Real-World Deployment of CloudMatcher 
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 Outperformed three commercial systems 



Discussion & Lessons Learned 

 Building systems then using them to do research  

– a great way to make impacts 

 

 It is possible to build such systems in academia with a small team 

– we have never had a full-time programmer, just a few graduate students 

– system has many small independent tools, each student works on a tool 

 

 Do not overlook “boring trivial problems” for the “horses” 

– often turn out to be very technically challenging 

 

 Our system-building template is very promising 

– validated by what we have seen at Informatica 
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Discussion & Lessons Learned 

 For the entity matching community 

– need a lot more data sets  

 that are diverse, otherwise hard to know if a technique is robust 

 that are big (10-50M tuples), many things break at scale 

 that have different levels of noise, as noisy data can really impact accuracy & runtime 

 really need gold for these data sets, but hard to create 

– benchmarks and competitions must focus on a lot more pain points 

 so far mostly focus on the matching step 

 need to consider more pain points 

– blocking, data cleaning in a pre-processing step, debugging, labeling, etc.  
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Discussion & Lessons Learned 

 For the ontology matching community 

– would be great if can help with two major problems  

faced by thousands of companies & domain scientists 

– schema matching for data lakes 

 given a data lake (say having 100K tables),  

find all column pairs that match 

– business glossary matching for data lakes 

 given a set of business terms and a data lake,  

find all pairs <term, column> that match 

 “Mfg Location Capacity” matches column “MLCap” 

 “House’s Listed Price” matches column “HPrice” 

 These are not ontology matching,  

but very closely related 

– major problems in industry & domain sciences 
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Discussion & Lessons Learned 

 Can apply the Magellan template to these two problems  

– identify the end-to-end process that a real user follows to solve them 

– identify pain points, develop tools & guidance 

 There are numerous pain points 

– cleaning column names 

 “MPCap” => Manufacturing Location Capacity 

 “HPrice” => House Price 

– finding synonyms in the lake 

 Manufacturing = Factory, Location = Area, A/C = Cooling 

– scaling up blocking 

 need to scale for lakes of up to 10M columns 

 But first must create data sets with gold 

– a critical but difficult problem 

– how to create gold for a data lake with 100,000 columns? Solving this makes big impacts 
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Conclusions 

 Magellan seeks to build a general platform for entity matching 

– generalized later to other semantic matching tasks 

 

 Departing radically from existing work 

– observes that the EM process is often very complex, driven by user, can’t be automated, so 

focus on improving the productivity of user 

 identify the complex EM process 

 identify pain points, develop tool/guidance 

 build tools into three data science ecosystems 

 

 Provide a promising R&D template for other semantic matching problems 

– schema/ontology matching, business glossary matching, etc.  
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