
Magellan: Toward a System-Building Agenda

for Semantic Matching

AnHai Doan

University of Wisconsin-Madison & Informatica

Joint work with many students & colleagues

Motivation

 Worked in academia from 2000-2010

– developed many algorithmic solutions for schema/ontology matching

 Worked in industry 2010-2014

– realized that many of these solutions were not applicable

– no open-source code that could be immediately used

– impact of academic work was very limited

 Back in academia in 2015

– decided to focus on building systems that real users can immediately use

– hoped that if such systems were built, academic work would follow, I can make more impacts

 Decided to focus on entity matching

– was easier to get data

– but eventually want to consider other semantic matching tasks too

2

Entity Matching (EM)

3

Name City State

Dave

Smith
Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Table A

Name City State

David D. Smith Madison WI

Daniel W.

Smith
Middleton WI

Table B

The Magellan Project @ UW-Madison

 Started in 2015

 Develop a general-purpose EM platform

 Inspired by

– PostgreSQL for relational data management

– Scikit-learn for machine learning

– Hadoop/Spark for big data processing

4

Significant Progress in Past Five Years

 Deployed at 12 companies and domain science groups

– 8 companies: Walmart, Recruit Holdings, Johnson Control, AF Insurance, Informatica, etc.

– 4 domain sciences: Economics, Limnology, Biomedicine, Land Use

– Pushed into production in 8 cases

 Contributed to several high-profile projects

– saving Amazon forest, managing water quality in the Greater Lake region of the US

 Used by 500+ students in 6 data science courses at UW-Madison

 Commercialized by GreenBay Technologies

– Acquired by Informatica in Aug 2020

– Pushed into an EM platform to be used by thousands of customers

– Influencing solutions for schema matching and knowledge graph construction

 Multiple research papers, SIGMOD/ACM Research Highlight Awards

 5

The R&D Template of Magellan

1. Identify the problem and user populations

2. Understand how a user typically does EM

3. Identify pain points and develop tools/guidance

– Goal is to improve productivity of the user

4. Build tools into three data science ecosystems

– On-prem, cloud, mobile

– Make tools atomic and easy to combine

– Combine tools to build easy-to-use EM systems for users

5. Work with real users, learn, and repeat

 Radically different from prior system building efforts

 Can be applied to other problems: IE, schema/ontology matching, etc.

6

1. Identify Problems & User Populations

- Focus on simple but common problems

- Focus on user populations we can easily work with

7

Identify Problems

 Use supervised machine learning

8

Name City State

Dave

Smith
Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Table A

Name City State

David D. Smith Madison WI

Daniel W.

Smith
Middleton WI

Table B

A “Very Boring” Problem

 Received very little attention

– judged trivial, hard to develop novel technical solutions,

hard to publish

 Most academic works focus on

more complex problems

– e.g., how to exploit a knowledge graph

to improve the accuracy of EM

– easier to develop novel technical solutions

 We selected the above problem because

many users need to solve it

– especially the “horses”

Elephants

Horses

Typical needs

Horses

Unusual needs

“Horse” Populations That We Target

 Domain scientists

– Biomedicine, land use, limnology, economics, etc.

– They are within walking distance

– Domain experts, some coding skills (e.g., Python, R, SQL)

 Students, educators, researchers in data integration, data science

– Students form teams to do class project, we asked each team to solve an EM problem

 Data scientists at companies

– Often work in a way similar to domain scientists

 Lay users, data enthusiasts

– Journalists, citizen data scientists; domain experts, but often no coding skills

 We do not target enterprise customers

– They often want “hardcore” stuff: proprietary code, big/complex processes, lot of support

– But we ended up working with a few

10

2. Understand How a User Typically Does EM

- Observe how real users do it

- Observe how students do it in class projects

11

Existing Work Has a Relatively Simple View

of How User Does EM

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

a1

Name City State

David D. Smith Madison WI

Daniel W.

Smith

Middleton WI

b1

b2

block on

state = state

(a1, b1)

(a1, b2)

(a3, b1)

(a3, b2)

(a1, b1) +

(a1, b2) -

(a3, b1) -

(a3, b2) +

match

Table A

Table B

a2

a3

 Focuses on developing blockers and matchers

We Observe That Real-World EM Processes

Are Far More Complex

 Development stage

– finds an accurate workflow, using data samples

 Production stage

– executes workflow on entirety of data

– focuses on scalability
13

A

1M tuples

1M tuples
block match

(using machine learning)

B

Development Stage

yes

no

A

B

sample
A’

B’

matcher

V

quality

check

select a good blocker:

 blocker X, blocker Y

blocker

X

(-,-)

(-,-)
(-,-)
(-,-)

(-,-)

Cx

sample

(-,-)

(-,-)
(-,-)
(-,-)

(-,-)

(-,-)

(-,-)
(-,-)

(-,-) +

(-,-) -
(-,-) +

cross-validate
matcher U

cross-validate
matcher V

0.89 F1

0.93 F1

label

Cx S

G

(-,-) +

(-,-) +
(-,-) -
(-,-) -

(-,-) +

A’

B’

blocker

X
Cx

A’

B’

blocker

Y
Cy

select a good matcher:

 matcher U, matcher V

Production Stage

15

(-,-)

(-,-)

(-,-)

(-,-)

(-,-)

(-,-)

(-,-)

(-,-)

(-,-) +

(-,-) -

(-,-) +

(-,-) +

(-,-) -

(-,-) +

(-,-) -

(-,-) +

A

B

blocker X matcher V

Scaling, quality monitoring, exception handling, crash recovery, …

3. Identify Pain Points and Develop Tools/Guidance

16

Example Pain Points

17

yes

no

A

B

sample
A’

B’

matcher

V

quality

check

select a good blocker

blocker

X

(-,-)

(-,-)
(-,-)
(-,-)

(-,-)

Cx

sample

(-,-)

(-,-)
(-,-)
(-,-)

(-,-)

(-,-)

(-,-)
(-,-)

(-,-) +

(-,-) -
(-,-) +

cross-validate
matcher U

cross-validate
matcher V

0.89 F1

0.93 F1

select a good matcher

label

Cx S

G

(-,-) +

(-,-) +
(-,-) -
(-,-) -

(-,-) +

A’

B’

blocker

X
Cx

A’

B’

blocker

Y
Cy

How to sample

and label?

How to debug a

matcher?

How to debug

a blocker?

Debugging a Blocker

 Does blocker Q kill off too many matches?

 What are the killed-off matches?

 Why are they killed off by Q?

18

Table A
Name City Age

Dave Smith Altanta 18

Daniel Smith LA 18

Joe Welson New York 25

Charles Williams Chicago 45

Charlie William Atlanta 28

Table B
Name City Age

David Smith Atlanta 18

Joe Wilson NY 25

Daniel W. Smith LA 30

Charles Williams Chicago 45

a1

a2

a3

a4

a5

b1

b2

b3

b4

blocker Q

a.City = b.City

(a2, b3)

(a4, b4)

(a5, b1)

C

Debugging a Blocker

 Debugger quickly finds matches killed-off by the blocker

 User examines these matches and improves the blocker

19

A×B

C = Q(A, B)

D = A×B \ C

Learning a Blocker

Sample S

from |A x B|

Four examples

supplied by user

(2 pos, 2 neg)

Stopping criterion satisfied?

Select q “most informative”

unlabeled examples

Label the q selected

examples

User

Random

forest F

 Train a random forest F

 Take sample S from A x B (without materializing A x B)

 Train a random forest F on S (to match tuple pairs)

– using active learning, where user labels pairs

Y

N

Learning a Blocker

21

Learning a Blocker

22

isbn_match

N Y

No #pages_match

N Y

No Yes

title_match

N Y

No publisher_match

N Y

No year_match

N Y

No Yes

(isbn_match = N) No

(isbn_match = Y) and (#pages_match = N) No

(title_match = N) No

(title_match = Y) and (publisher_match = Y) and (year_match = N) No

Extracted candidate blocking rules

(title_match = Y) and (publisher_match = N) No

 Extract candidate blocking rules from random forest F

Example random

forest F for

matching books

Collaborative Labeing

Tool to highlight

possible matching

definitions

Tool to

debug labels

Tool to help

revise labels

Tool to Highlight Possible Match Definitions

 We do not have a tool yet, but we do have guidance for user

1. Take a small sample S of tuple pairs (say 50)

2. All labelers must label S

3. Compare their outputs, highlight discrepancies, discuss

4. Repeat Steps 1-3 until no more discrepancies

5. During above steps, document all possible match definitions that come up

 In addition to above guidance, currently we also recommend the following

– Use blocking debugger to return pairs that are likely to be matches, collectively discuss them

– Use an active learner to identify controversial pairs, collectively discuss them

24

What We Learn When Working with Users

 They need to understand (and agree on) the match definition

– KFC on Univ Ave = KFC on Farewell Ave?

– iPhone 6s black = iPhone 6s white?

– The Amazon rain forest group has worked on EM for three years, and yet still have problems

 They need to understand the data (tables A and B)

– How dirty? Lot of missing values? Any portion of data is unreliable?

 They need to understand the limitations of tools

– Can random forests match textual data accurately?

 Need to develop tools and guidance to help them gain this understanding

– As a part of the EM process

25

Summary

 A user typically does EM in a multi-step iterative complex process

– Far more complicated than we thought, we do not fully understand it today

– Need more work to completely specify this EM process

 Cannot be completely automated, aims instead to improve user productivity

– Keep the same process, but make it easier for user to execute (far less ambitious goal)

 Identify pain point steps in the process, for each such step

– Develop (semi-)automatic tools to help user if possible

– If not, develop guidance telling user how to do the step

26

4. Build Tools into Three Data Science Ecosystems

- On-prem, cloud, mobile

- Make tools atomic & easy to combine

- Combine tools to build easy-to-use EM systems

27

Our First Observation

 Tools need to exploit a wide variety of techniques

– Relational data processing, ML, statistics, visualization, cleaning, etc.

 Very time consuming to implement so many techniques from scratch

– Best to exploit existing data science ecosystems

– A natural starting point is PyData, ecosystem of DS tools in Python

 We also don’t want complex “monolithic” tools

– Difficult to build & maintain them in academia

– Difficult to reuse

– Difficult to combine them in unexpected ways, which users often do

 So we build tools that are atomic and easy to combine

 Build them as commands in Python packages, as part of PyData

 Then combine them to build more complex tools

28

Current

PyData

Tools

Our First System Architecture

Development

stage

An EM

scenario,

e.g.,

matching

Tables

 A, B
Step 1 Step 2 . . . Step n

EM

workflow

EM requirements

(accuracy, runtime, etc.) Power

 user

How-to

 guide

Pain point

Problem

definition

Data

profile

Tool

profile Tools as commands

in packages in

the Python

data analysis stack

Tools as commands

packages in the

Python

big data stack
Matches Production

stage

Tables

A, B
Executor

Optimizer

EM plans

EM workflow (procedural)

EM operators

EM workflow (declarative)

Pain point

Our Second Observation

 Tools in PyData ecosystem can be used mostly on-prem

 When doing EM, users often want to move among three exec environments

– On-prem, cloud, mobile

31

So We Build into All Three Execution Environments

32

• py_stringmatching

• py_stringsimjoin

• py_entitymatching

• deepmatcher

• RuleExecutor

• CloudLabeler

• CloudProfiler

• ActiveLearner

AWS
PyData

• MobileLabeler

• Cymphony

Combine Tools to Create Easy-to-Use EM Systems

33

• py_stringmatching

• py_stringsimjoin

• py_entitymatching

• deepmatcher

• RuleExecutor

• CloudLabeler

• CloudProfiler

• ActiveLearner

• CloudMatcher

AWS
PyData

Real-World Deployment of CloudMatcher

34

 Outperformed three commercial systems

Discussion & Lessons Learned

 Building systems then using them to do research

– a great way to make impacts

 It is possible to build such systems in academia with a small team

– we have never had a full-time programmer, just a few graduate students

– system has many small independent tools, each student works on a tool

 Do not overlook “boring trivial problems” for the “horses”

– often turn out to be very technically challenging

 Our system-building template is very promising

– validated by what we have seen at Informatica

35

Discussion & Lessons Learned

 For the entity matching community

– need a lot more data sets

 that are diverse, otherwise hard to know if a technique is robust

 that are big (10-50M tuples), many things break at scale

 that have different levels of noise, as noisy data can really impact accuracy & runtime

 really need gold for these data sets, but hard to create

– benchmarks and competitions must focus on a lot more pain points

 so far mostly focus on the matching step

 need to consider more pain points

– blocking, data cleaning in a pre-processing step, debugging, labeling, etc.

36

Discussion & Lessons Learned

 For the ontology matching community

– would be great if can help with two major problems

faced by thousands of companies & domain scientists

– schema matching for data lakes

 given a data lake (say having 100K tables),

find all column pairs that match

– business glossary matching for data lakes

 given a set of business terms and a data lake,

find all pairs <term, column> that match

 “Mfg Location Capacity” matches column “MLCap”

 “House’s Listed Price” matches column “HPrice”

 These are not ontology matching,

but very closely related

– major problems in industry & domain sciences

37

Discussion & Lessons Learned

 Can apply the Magellan template to these two problems

– identify the end-to-end process that a real user follows to solve them

– identify pain points, develop tools & guidance

 There are numerous pain points

– cleaning column names

 “MPCap” => Manufacturing Location Capacity

 “HPrice” => House Price

– finding synonyms in the lake

 Manufacturing = Factory, Location = Area, A/C = Cooling

– scaling up blocking

 need to scale for lakes of up to 10M columns

 But first must create data sets with gold

– a critical but difficult problem

– how to create gold for a data lake with 100,000 columns? Solving this makes big impacts

 38

Conclusions

 Magellan seeks to build a general platform for entity matching

– generalized later to other semantic matching tasks

 Departing radically from existing work

– observes that the EM process is often very complex, driven by user, can’t be automated, so

focus on improving the productivity of user

 identify the complex EM process

 identify pain points, develop tool/guidance

 build tools into three data science ecosystems

 Provide a promising R&D template for other semantic matching problems

– schema/ontology matching, business glossary matching, etc.

39

Reference Papers
 Magellan: Toward Building Ecosystems of Entity Matching Solutions, AnHai Doan, Pradap Konda,

Paul Suganthan G. C., Yash Govind, Derek Paulsen, Kaushik Chandrasekhar, Philip Martinkus,

Matthew Christie, Communications of the ACM, 2020

 Entity Matching Meets Data Science: A Progress Report from the Magellan Project, Y. Govind, P.

Konda, and others. SIGMOD-19

 Toward a System Building Agenda for Data Integration (and Data Science), A. Doan, P. Konda, P.

Suganthan G.C., A. Ardalan, J. Ballard, S. Das, Y. Govind, H. Li, P. Martinkus, S. Mudgal, E.

Paulson, H. Zhang. IEEE Data Engineering Bulletin, Special Issue on Large-Scale Data

Integration, 2018

 Magellan: Toward Building Entity Matching Management Systems, P. Konda, S. Das, P.

Suganthan G.C., A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton, S.

Prasad, G. Krishnan, R. Deep, V. Raghavendra. VLDB-16

 CloudMatcher: A Cloud/Crowd Service for Entity Matching, Y. Govind, E. Paulson, M. Ashok, P.

Suganthan G.C., A. Hitawala, A. Doan, Y. Park, P. Peissig, E. LaRose, J. Badger. BIGDAS

Workshop @ KDD-17

40

http://pages.cs.wisc.edu/~anhai/papers1/magellan-sigmod19.pdf
http://pages.cs.wisc.edu/~anhai/papers1/agenda-ieee-deb18.pdf
http://pages.cs.wisc.edu/~anhai/papers/magellan-vldb16.pdf
http://pages.cs.wisc.edu/~anhai/papers1/cloudmatcher-bigdas17.pdf
http://pages.cs.wisc.edu/~anhai/papers1/cloudmatcher-bigdas17.pdf

