
ATBox Results for OAEI 2020

Sven Hertling[0000−0003−0333−5888] and Heiko Paulheim[0000−0003−4386−8195]

Data and Web Science Group, University of Mannheim, Germany
{sven,heiko}@informatik.uni-mannheim.de

Abstract. ATBox matcher is a scalable system for instance (Abox) and
schema (Tbox) matching. It uses two pipelines for generating candidates
for the schema and instance matching, and utilizes the schema matches
to further improve the instance correspondences. Using a string blocking
method, ATBox is able to align large ontologies and can run on OAEI
tracks like largebio and knowledge graph. The results look promising,
but further features for better finding correct instance matches can be
developed.

Keywords: Ontology Matching · Knowledge Graph

1 Presentation of the system

Nearly all systems submitted to the Ontology alignment Evaluation Initiative
(OAEI) are able to align ontologies, schemas, or Tboxes, as they are called in de-
scription logics (DL). On the other hand, there are more and more instance tracks
like spimbench, link discovery, geolink cruise, and knowledge graph, matching
instances, or Aboxes, becomes equally important. The matcher presented in this
paper, called ATBox, focuses on both the Abox and Tbox.

Especially the knowledge graph track needs scalable systems which can deal
with hundred of thousands of instances [4]. Thus, the basis of this matcher is
a blocking approach, which focuses on high recall. Its result is succesively fine
tuned to increase the precision. Given this design, ATBox is also able to match
large knowledge graphs like DBpedia [1] or YAGO [6].

1.1 State, purpose, general statement

The overall matching strategy of ATBox is shown in figure 1. The Tbox and
Abox have different processing pipelines but the correspondences are combined
in the end to get the final alignment.

Tbox matching is applied for all classes and properties (owl:ObjectProp-
erty, owl:DatatypeProperty, and rdf:Property). They are retrieved by the
jena1 methods OntModel.listClasses() and OntModel.listAllOntProperties().

0 Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1 https://jena.apache.org

https://jena.apache.org


String Matching

TBox1

TBox 2

Stopword
Extraction

Synonym 
Extension

Similar Neighbors
Filter

ABox1

ABox 2

String Matching

Cosine Similarity
Filter

Common 
Properties Filter

Type Filter

Instance Filter

final 
alignment

Cardinality Filter

if #entities < 10,000

Fig. 1. Overview of the ATBox matcher strategy.

The Tbox matching (classes and properties) starts with the stopword ex-
traction. In some cases the labels and/or fragments (which we define as the part
after the last hashtag symbol # or slash /) contains tokens which appears very
often like class, infobox etc. If such tokens appears in more than 20 % of all
classes/properties (considered separately), then it is extracted as a corpus spe-
cific stop word. In case there are many such stop words, they are restricted to
the five most occurring ones.

The synonyms (used during string matching) are extracted from the English
Wiktionary to cover many different domains. The extraction is done with DB-
nary [8], a dataset containing Wiktionary as RDF. The extraction process starts
with all resources of type dbnary:Page 2 within the English domain 3. Then we
follow the describes relation and extract all resources connected with property
synonym. Furthermore we follow the relation sense to also find all the given
senses and their synonyms. The lemmas are extracted directly from the URI.

Table 1. String processing steps in ATBox matcher for schema matches.

Processsing Confidence Levenshtein

equality 1.0 no
normalize 0.9 no
normalizeParentheses 0.8 no
defaultStopwords 0.7 no
corpusStopwords 0.6 yes
synonyms 0.5 no

2 http://kaiko.getalp.org/dbnary#Page
3 http://kaiko.getalp.org/dbnary/eng/

http://kaiko.getalp.org/dbnary#Page
http://kaiko.getalp.org/dbnary/eng/


The string matching contains multiple different steps which are shown in ta-
ble 1. All processing applies to rdfs:label and in case it is missing to the URI
fragment. If the extracted text is exactly the same, the generated correspon-
dence has a confidence of 1.0. During the normalization process, a word written
in camel case4 is separated with whitespace (e.g. hasAge to has Age) and after-
wards lowercased. In case some UTF-8 characters are not normalized, we apply
a normalization step for them (e.g. an accented character can be encoded in
multiple different ways in UTF-8). All possible punctuations are furthermore
removed and multiple whitespaces are combined into one. In case the normal-
ized text matches, a confidence of 0.9 is assigned. In the normalizeParentheses
step, all text within parentheses is removed. If the remaining normalized text
(same as in normalize step) is equal, it assigns a confidence of 0.8. The reason
behind is that many articles in KGs define concepts with same names to have the
discriminating term in parentheses e.g. “Harry Potter (character)” and “Harry
Potter (film series)”. DefaultStopwords removes a given set of stopwords while
keeping all other processing steps as before (confidence is 0.7). In the last pro-
cessing step, the corpus specific stopwords, extracted before, are also removed
and additionally allow a levenshtein distance[7] of 1 (but only in case the text is
longer than 6 characters). In case it matches a correspondence with confidence
of 0.6 is generated. If the amount of concepts are less than 10,000 for source
and target, then a synonym step is added with a confidence of 0.5. In this step,
the extracted synonyms are used to replace (possibly multiple) tokens with all
available synonyms.

All string processing steps are executed in order starting with the highest con-
fidence. If a match is found the remaining steps are also executed to find possible
other candidates. As an example, a correspondence like <Harry Potter,harry
potter, =, 0.9> is already found, then the processing continues and also add
<Harry Potter,Harry Potter(Book), =, 0.8> to the resulting alignment.

The instance matching (Abox - shown in the lower part of the figure 1)
starts directly with the string matching component. It reuses the processing
steps described in the previous section without the corpus dependent stopword
removal and synonym replacement. The applied steps are shown in table 2. The
first four steps applies to the rdfs:label and if it is missing to the fragment of
the URI. The confidence is decreasing with a step size of 0.1 starting with 1.0. In
the second part, the additional properties skos:prefLabel and skos:altLabel

are taken into account. If they match, the confidence is set to maximally 0.6
depending in which preprocessing step the match occurs. Once again, we allow
matches which a lower confidence, even when a correspondence with a higher
confidence is found. This increases the recall because it might be the case that
the matched entity with a high confidence is not the best available match.

The string processing step generated an alignment with a high recall. All
following steps try to increase the precision by generating additional confi-
dences for each correspondence. This helps at the end of the processing pipeline
to enforce a one to one alignment and selecting the right correspondence in

4 https://en.wikipedia.org/wiki/Camel_case

https://en.wikipedia.org/wiki/Camel_case


Table 2. Processing steps for generating instance matches.

Processsing Confidence Property

equality 1.0 rdfs:label (or fragment)
normalize 0.9 rdfs:label (or fragment)
normalizeParentheses 0.8 rdfs:label (or fragment)
defaultStopwords 0.7 rdfs:label (or fragment)

equality 0.6 + skos:preflabel, skos:altLabel
normalize 0.5 + skos:preflabel, skos:altLabel
normalizeParentheses 0.4 + skos:preflabel, skos:altLabel
defaultStopwords 0.3 + skos:preflabel, skos:altLabel

case there are multiple target entities for one source entity (or the other way
around). Thus the following filters only add additional confidences (with the
addAdditionalConfidence function of YAAA [5]) and do not yet remove any
correspondences:

– Similar Neighbors Filter

– Cosine Similarity Filter

– Common Properties Filter

– Type Filter

All these filters are explained in the following. The similar neighbors filter
uses the instance alignment (generated by the previous string processing step) to
count for each instance correspondence how many resources or literals are shared
between the two instances. Figure 2 shows an example where two neighbors are
detected for correspondence <one:Harry Potter, two:Harry Potter> because the
literal “blue” and the resource “Gryffindor” is shared. Note that the properties
are not taken into account (which is done later by the common properties filter).
Thus we do not need a mapping of property “eyeColor” to “eye”. We further
exclude the properties rdfs:label and skos:altLabel and all properties which
have the same literal as those. This will not count the literals which just repeats
the name of the resource with a different (maybe not matched) property like
“name”. Two literals are the same when their lowercased lexical value is equal.
The additional confidence is the absolute amount of neighbors.

The cosine similarity filter compares text which is extracted from instances.
It is generated by iterating over all literals and checking if the datatype of it
is xsd:string,rdf:langString or if the literal has a language tag. All lexical
representations of such literals are concatenated to generate a textual represen-
tation. These representations are then compared with a cosine similarity which
is added to the correspondence.

The common properties filter checks for each instance correspondence the
number of shared properties. This heavily relies on already matched schema
because all properties with the same URI are excluded beforehand. Thus we
only check if the instances share some matched properties regardless of their
objects. The number of overlap is then added to the correspondence.



one:Harry_
Potter

two:Harry_
Potter

one:Gryffindor
two:Gryffindor

(House)

one:Half
-blood

two:James_
Potter

“blue“

KG 1 KG 2

“blue“

one:house two:house

one:bloodStatus two:father

Fig. 2. The similar neighbors filter would assign two neighbors for the correspon-
dence <one:Harry Potter, two:Harry Potter> because of literal “blue” and the already
matched entites one:Gryffindor and two:Gryffindor(House).

The type filter is similar to the neighbors filter but only checks if the types
(retrieved by rdf:type) actually overlap. This again requires already matched
classes. The absolute overlap is added as an additional confidence.

The final step during instance matching is to actually filter these correspon-
dences and create a one to one alignment. This instance filter sorts the correspon-
dences by confidence (which is initially set by the string matching) and iterating
over it. If a source or target resource is already matched, then it continues with
the next correspondence. In all other cases it checks if there is a correspondence
in the whole instance alignment which should be used instead. The criteria for
being better is fixed to have greater values in two additional confidences.

As a last step, all correspondences are combined and a final cardinality filter
ensures a one to one alignment by comparing the confidence scores.

1.2 Specific techniques used

We used the following matching components of MELT [5]:

– ScalableStringProcessingMatcher
– StopwordExtraction
– SimilarNeighborsFilter
– CommonPropertiesFilter
– CosineSimilarityConfidenceMatcher
– SimilarTypeFilter
– NaiveDescendingExtractor

1.3 Adaptations made for the evaluation

ATBox matcher is also available as a SEALS package. Due to clashes of depen-
decies of SEALS and ATBox, we decided to use the external SEALS packaging
mechanism of the MELT framework[5]. It generates an intermediate matcher
which executes an external process which runs in its own java virtual machine
(JVM). Thus different versions of dependencies are not a problem.



1.4 Link to the system and parameters file

ATBox matcher can be downloaded from
https://www.dropbox.com/s/q57rzoec9zeumi2/ATBox.zip?dl=0.

2 Results

This section discusses the results of ATBox for each track of OAEI 2020 where the
matcher is able to produce results. The following tracks are included: anatomy,
conference, largebio, phenotype, and knowledge graph track.

Specific matching strategies and interfaces for the interactive and complex
track are currently not implemented and are thus not described. Due to no multi
language support, the multifarm track is also excluded.

2.1 Anatomy

ATBox could achive a slightly higher F-measure than the baseline (0.799 vs
0.766). Even though a synonym step is included in the matcher, the recall is
only at 0.671 but therefor a high precision of 0.987 could be achieved (third best
value).

Some examples were the matcher could find some non-trivial matches are:

– <cranium, Skull, =, 0.5>
– <lienal vein, Splenic Vein, =, 0.5>
– <inner ear, Internal Ear, =, 0.5>
– <celiac artery, Coeliac Artery, =, 0.6>
– <grey matter, Gray Matter, =, 0.6>

The first three have a confidence of 0.5 and thus the matches are mainly
generated by synonym replacements. The last two contain different spellings like
“grey” and “gray”. They are matched because the levenshtein distance is one
between the two strings.

Some examples where the synonym step yields wrong results are:

– <naris, Nostril, =, 0.5>
– <upper arm, Biceps, =, 0.5>

This shows that not only true positives are generated and it is also the reason
why the correspondence has a low confidence.

2.2 Conference

In the conference track ATBox matcher (0.56) is a bit better in terms of F-
Measure than the baselines edna (0.54) and StringEquiv (0.52) when using the
ra2-M3 evaluation. It covers the class and property alignments (M3) and uses
the ra2 reference alignment which is a transitive closure of the original refer-
ence alignment ra1[9]. Analyzing the precision/recall triangular graph which is

https://www.dropbox.com/s/q57rzoec9zeumi2/ATBox.zip?dl=0


based on the same evaluation dataset is can easily be seen that ATBox matcher
has the best tradeoff between recall and precision. The reason is mainly the
higher recall and the lower precision which is not easily avoidable. The schema
matching capabilities of ATBox are rather limited and thus only the synonym
expansion helps a lot. The ontology specific stopwords do not help here be-
cause they do not exist in the given dataset. Some examples where the synonym
step help: <Trip, Excursion>, <Participant, Attendee>, <Place, Location>,
and <SubjectArea, Topic>. The levenshtein distance helps finding <Sponsor,
Sponzor> and <Organization, Organisation>. Furthermore ATBox is one of the
seven matching systems which returns a wide variation of confidence values.

2.3 Largebio

ATBox matcher is one of six systems which are able to run on all six test cases
and return meaningful alignments. It was consequently the second fastest system
after LogMapLt. The results are very good in terms of precision but the recall
is to low to compete with the other participants. Only in the FMA-SNOMED
small fragments test cases the presented matcher could perform better than
Wiktionary and LogMapLt.

2.4 Phenotype

In this track the presented matcher only returns 759 correspondences for the first
task HP-MP and 1,318 correspondences for the second task DOID-ORDO. The
evaluation result thus contains a low recall of 0.298 respectively 0.333. Together
with a high precision, a F-measure of 0.457 and 0.498 can be achieved. This is
probably due to the missing background knowledge because LogMapBio uses
BioPortal, LogMap uses spelling variants of SPECIALIST lexicon, and AML
uses three sources (Uberon, DOID, and MeSH). All these systems achieve a
higher recall than ATBox. Nevertheless in task HP-MP we could rank higher
than ALOD2Vec and Wiktionary.

2.5 Biodiv

In the Biodiv track ATBox could only return results in FLOPO-PTO test case.
Once again the F-measure of 0.714 is much better than those of Wiktionary and
ALOD2Vec but less than all LogMap variants and AML.

2.6 Knowledge Graph

ATBox could score int the overall evaluation(which contains classes, proper-
ties, and instances) the second highest F-measure score of 0.85 together with
AML. Only ALOD2Vec and Wiktionary scores 0.01 better. When matching only
classes, the presented matcher is the second best system after AML and for
properties it is the best matcher. The instance matching pipeline is helpful for
finding the correct correspondences but with 0.84 it is a bit below AML (0.85),
ALOD2Vec (0.87), and Wiktionary (0.87).



3 General comments

3.1 Discussions on the way to improve the proposed system

We would like to increase the number of feature generators. For example, all
texts connected to an instance could be compared not only with cosine simi-
larity but also with a BERT classifier[2]. Another feature would be to compare
images associated with the instances to further distinguish true positive from
false positive correspondences.

Furthermore the schema matches could be improved with the help of all
instance correspondences as already shown in DOME matcher [3].

4 Conclusions

In this paper, we have analyzed the results of ATBox matcher in OAEI 2020.
It shows that the system is very scalable and can generate class, property and
instance alignments. It usually has a high precision but on some tracks like
Largebio, Phenotype, and Biodiv the recall can be increased by utilizing external
knowledge despite the already used synonym lexicon from Wiktionary.

Most of the used matching components are furthermore included in the
MELT framework[5] to allow other system developers to reuse them.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A
nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer (2007)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

3. Hertling, S., Paulheim, H.: Dome results for oaei 2019. OM@ ISWC 2536, 123–130
(2019)

4. Hertling, S., Paulheim, H.: The knowledge graph track at oaei - gold standards,
baselines, and the golden hammer bias. In: The Semantic Web: ESWC 2020. pp.
343–359 (2020)

5. Hertling, S., Portisch, J., Paulheim, H.: Melt - matching evaluation toolkit. In:
SEMANTICS. Karlsruhe. (2019)

6. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: A spatially and
temporally enhanced knowledge base from wikipedia. Artificial Intelligence 194,
28–61 (2013)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and re-
versals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

8. Sérasset, G.: Dbnary: Wiktionary as a lemon-based multilingual lexical resource in
rdf. Semantic Web 6(4), 355–361 (2015)

9. Zamazal, O., Svátek, V.: The ten-year ontofarm and its fertilization within the
onto-sphere. Journal of Web Semantics 43, 46–53 (2017)


