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Abstract. This paper presents the results of the ALOD2Vec Matcher in
the Ontology Alignment Evaluation Initiative (OAEI) 2020. The match-
ing system exploits a Web-scale dataset, i.e. WebIsALOD, as background
knowledge source. In order to make use of the dataset, the RDF2Vec ap-
proach is applied to derive embeddings for each concept available in the
dataset. ALOD2Vec Matcher participated in the OAEI 2018 campaign
before. This is the system’s second participation. The matching system
has been extended, improved, and achieves better results this year.
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1 Presentation of the System

1.1 State, Purpose, General Statement

The ALOD2Vec Matcher is an element-level, label-based matcher which uses
a large-scale Web-crawled RDF dataset of hypernymy relations as general pur-
pose background knowledge. The dataset contains many tail-entities as well as
instance data such as persons or places which cannot be found in common the-
sauri. In order to exploit the external dataset, a neural language model approach
is used to obtain a vector for each concept contained in the dataset. This match-
ing system system was initially introduced at the OAEI 2018 [14] and has been
completely re-implemented. The implementation is now based on the Matching
EvaLuation Toolkit [5,11] as well as the KGvec2go [12] REST API. A contribu-
tion of this paper is also an extension to the MELT framework in the form of a
KGvec2go Java client available in the MELT-ML module [6] of MELT 2.6.

1.2 Specific Techniques Used

After the basic concepts of this matcher are introduced (Foundations), the spe-
cific techniques applied are presented.
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Foundations

WebIsALOD Dataset A frequent problem that occurs when working with exter-
nal background knowledge is the fact that less common entities are not contained
within a knowledge base. The WebIsA [17] database is an attempt to tackle this
problem by providing a dataset which is not based on a single source of knowl-
edge – like DBpedia [8] – but instead on the whole Web: The dataset consists
of hypernymy relations extracted from the Common Crawl3, a freely download-
able crawl of a significant portion of the Web. A sample triple from the dataset
is european union skos:broader international organization4. The dataset is also
available via a Linked Open Data (LOD) endpoint5 under the name WebIsA-
LOD [4]. In the LOD dataset, a machine-learned confidence score c ∈ [0, 1] is
assigned to every hypernymy triple indicating the assumed degree of truth of
the statement.

RDF2Vec The background dataset can be viewed as a very large knowledge
graph; in order to obtain a similarity score for nodes and edges in that graph,
the RDF2Vec [16] approach is used. It applies the word2vec [9,10] model to
RDF data: Random walks are performed for each node and are interpreted as
sentences. After the walk generation, the sentences are used as input for the
word2vec algorithm. As a result, one obtains a vector for each word, i.e., a
concept in the RDF graph. Multiple flavors of RDF2Vec have been developed in
the past such as biased walks [1] or RDF2Vec Light [13].6

KGvec2go Training embeddings on large knowledge graphs can be computa-
tionally very expensive. Moreover, the resulting embedding models can be very
large since a multidimensional vector needs to be persisted for every node in the
knowledge graph. However, most downstream applications require only a small
subset of node vectors. The KGvec2go project [12] addresses these problems by
providing a free REST API7 for pre-trained RDF2Vec models on various large
knowledge graphs (among which WebIsALOD is also available).

Monolingual Matching ALOD2Vec Matcher is a monolingual matching sys-
tem. For the alignment process, the system retrieves the labels of all elements
of the ontologies to be matched. A filter adds all simple string matches to the
final alignment in order to increase the performance. The remaining labels are
linked to concepts in the background dataset, are compared, and the best solu-
tion is added to the final alignment. A high-level view of the matching system
is provided in Figure 1.

3 see http://commoncrawl.org/
4 see http://webisa.webdatacommons.org/concept/european_union_
5 see http://webisa.webdatacommons.org/
6 For a good overview of the RDF2Vec approach and its applications, refer to
http://www.rdf2vec.org/

7 see http://kgvec2go.org/api.html

http://commoncrawl.org/
http://webisa.webdatacommons.org/concept/european_union_
http://webisa.webdatacommons.org/
http://www.rdf2vec.org/
http://kgvec2go.org/api.html
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Fig. 1. High-level view of the ALOD2Vec matching process. KG1 and KG2 represent
the input ontologies and optionally instances. The final alignment is referred to as A.

The first step is to link the obtained labels from the ontology to concepts in
the WebIsALOD dataset. Therefore, string operations are performed on the label
and it is checked whether the label is available in WebIsALOD. If it cannot be
found, a token-lookup is performed. Given two entities e1 and e2, the matcher
uses their textual labels to link them to concepts e′1 and e′2 in the external
dataset. Afterwards, the embedding vectors ve′1 and ve′2 of the linked concepts
(e′1 and e′2) are retrieved via a Web request and the cosine similarity between
those is calculated. Hence: sim(e1, e2) = simcosine(ve′1 , ve′2). If sim(e1, e2) > t
where t is a threshold in the range of 0 and 1, a correspondence is added to a
temporary alignment. In a last step, a one-to-one arity is enforced by applying
a Maximum Weight Bipartite [2] filter on the temporary alignment.

In order to consume the vectors in Java, a client has been implemented and
contributed to the MELT-ML module. The KGvec2go REST API can now be
accessed though class KGvec2goClient. Even though this matcher only uses the
WebIsALOD dataset, the implementation supports all datasets accessible on
KGvec2go. The extension is available by default in MELT 2.6.

Instance Matching For the 2020 version of the matching system, an in-
stance matching module has been added. After classes and properties have been
matched, instances are matched using a string index. The confidence score as-
signed to instances belonging to matched classes is higher than that of matches
between instances belonging to non-matched classes.

Explainability ALOD2Vec Matcher provices an explanation for every corre-
spondence that is added to the final alignment. Therefore, the extension capa-
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bilities of the alignment format [3] are used. Two concrete examples from the
Anatomy track for explanations of the matching system are: “Label ’aqueous
humour’ of ontology 1 and label ’Aqueous Humor’ of ontology 2 have a very
similar writing.” or “The following two label sets have a cosine above the given
threshold: |lens|anterior|epithelium| and |anterior|surface|lens|”. In order to ex-
plain a correspondence, the description property8 of the Dublin Core Metadata
Initiative is used.

1.3 Extensions to the Matching System for the 2020 Campaign

The 2020 system has been completely rewritten. Among the significant changes
are an improved handling of string matches, an instance matching module for
the knowledge graph track [7], explanations on the level of correspondences, a
simplified linking process as well as the usage of a Web endpoint compared to a
local key value database that has been used before. It is important to note that
the 2020 system uses the KGvec2go model for ALOD2Vec which is not equal to
the model trained in 2018. Due to the usage of the KGvec2go API, the SEALS
package is now several magnitudes smaller than before in terms of required disk
space.9 The smaller package cost comes at the price of a slower system runtime
due to API calls. However, this matcher still scored at the exact median of all
matching systems in terms of runtime on the anatomy track this year. The 2020
implementation is publicly available on GitHub.10

2 Results

2.1 Anatomy Track

On the anatomy dataset, the recall could be significantly improved in 2020 com-
pared to the 2018 version of the matching system. Despite a drop in precision,
the new ALOD2Vec Matcher achieves an overall higher F1 score. Due to multi-
ple API calls to KGvec2go, the runtime performance decreased compared to the
2018 version of the matcher.

2.2 Conference Track

On the conference track, the new matcher configuration achieved a better result
than the 2018 one in terms of F1.

8 see http://purl.org/dc/terms/description
9 The 2018 version of the matching system had to be submitted via a download link

due to its large size. The 2020 version was submitted using the default process.
10 see https://github.com/janothan/ALOD2VecMatcher

http://purl.org/dc/terms/description
https://github.com/janothan/ALOD2VecMatcher
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2.3 Knowledge Graph Track

This is the first year that ALOD2Vec Matcher participates in the knowledge
graph track. Due to the new instance matching module, this matcher obtains the
second best results achieving almost the same score as the Wiktionary Matcher
2020 [15].

3 Conclusion

In this paper, we presented the newest version of the ALOD2Vec Matcher, a
matcher utilizing an RDF2Vec vector representation of the WebIsALOD dataset,
as well as its results in the 2020 OAEI. Overall, the results of the matching system
could be significantly improved compared to its last OAEI participation.
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