Towards Combining Ontology Matchers
via Anomaly Detection

Alexander C. Miiller and Heiko Paulheim

University of Mannheim, Germany
Research Group Data and Web Science
heiko@informatik.uni-mannheim.de,alexanda@mail.uni-mannheim.de

Abstract. In ontology alignment, there is no single best performing
matching algorithm for every matching problem. Thus, most modern
matching systems combine several base matchers and aggregate their
results into a final alignment. This combination is often based on simple
voting or averaging, or uses existing matching problems for learning a
combination policy in a supervised setting. In this paper, we present the
COMMAND matching system, an unsupervised method for combining
base matchers, which uses anomaly detection to produce an alignment
from the results delivered by several base matchers. The basic idea of our
approach is that in a large set of potential mapping candidates, the scarce
actual mappings should be visible as anomalies against the majority of
non-mappings. The approach is evaluated on different OAEI datasets
and shows a competitive performance with state-of-the-art systems.

Keywords: Ontology Alignment, Anomaly Detection, Outlier Detection, Matcher
Aggregation, Matcher Selection

1 Introduction

In ontology matching, there is only rarely a one size fits all solution. Ontology
matching problems differ along many dimensions, so that a matching system
that performs well on one dataset does not necessarily deliver good results on
another one. To overcome this problem, many ontology matching tools combine
the results of various base matchers, i.e., individual matching strategies. How-
ever, this approach gives way to a new problem, i.e., how to combine the results
of the base matchers in a way that the combination suits the problem at hand [7].
Solutions proposed in the past range from simple voting to supervised learning.

In this paper, we propose to use anomaly or outlier detection for the prob-
lem of matcher combination. Anomaly detection is the task of finding those data
points in a data set that deviate from the majority of the data [1]. The under-
lying assumption is that given a large set of mapping candidates (e.g., the cross
product of ontology elements from the ontologies at hand), the actual mappings
(which are just a few) should stand out in one way or the other. Thus, it should
be possible to discover them using anomaly detection methods. We show that
it is possible to build a competitive matching system combining the results of
more than 25 base matchers using anomaly detection.



2 Approach

COMMAND is a novel approach for dynamically selecting and combining on-
tology matchers via anomaly detection. The overall architecture is depicted in
Fig. 1. The platform was implemented in Scala, the code is available on github
under an open-source license.!

2.1 Base Matching and Matcher Selection

First, all base matchers that are based on local information of each ontology
entity are executed. The entities of the target and source ontology are matched
in a pair-wise fashion. This step matches Classes, DataProperties and Object-
Properties pairwise and independently.

After this the first feature vector is analyzed and an uncorrelated feature
subset is extracted. The results of those uncorrelated matchers are used as the
input similarities for the structural matchers.

The result of the structural matchers is joined with the element level matcher
result to create a feature vector. Since some of the features might be redundant
or not vary in their values and thus do not contribute to the final matching, we
remove results with little variation, correlated results, and also support PCA for
computing meaningful linear combinations of base matcher results.

The current version of COMMAND implements a large variety of element
and structure level techniques. Those encompass 16 string similarity metrics, five
external metrics based on WordNet and corpus linguistics, and five structural
matching techniques, such as similarity flooding.

2.2 Aggregation by Anomaly Detection

The next step is the aggregation of the base matcher results into a final match-
ing score for all correspondences. We perform this step by detecting outlying
datapoints in the feature vector space, and using this score as a measure of sim-
ilarity. The anomaly analysis and score normalization are performed separately
for classes, data properties, and object properties.

To compute outlier scores, we apply anomaly analysis techniques on the fea-
ture vector representations. In this paper, we use three different techniques: A
k-nearest-neighbor based method (KNN) that computes the anomaly score of a
data point based on the average euclidean distances? to its nearest neighbors, a
cluster-based method that calculates the unweighted cluster-based local anomaly
factor (CBLOF) based on a given clustering scheme produced by an arbitrary
clustering algorithm [5], and the Replicator Neural Networks (RNN) method,
which trains a neural network capturing the patterns in the data, and identifies
those data points not adhering to those patterns [4].

! https://github.com/dwslab/ COMMAND
2 Note that since we expect all base matcher scores to fall in a [0; 1] interval, using
geometrical distance measures in that space is feasible.



Target
Ontology
Ontology EILeeT;n t Ci?:gl(; \tI: d Structural Vector
Loader Matching Matchers Matcher Creation
Source
Ontology I_r| I_‘_|
— ¥
Matcher

Selection

Matcher
Registry
N~

" Matching Matching .
Alignment Selection Aggregation

Fig. 1. Overview of the COMMAND pipeline

2.3 Matching Selection and Repair

The result of the previous step is a set of candidates, which does not necessarily
form a semantically coherent mapping. After applying a threshold to the re-
sults of classes, data and object properties, the mapping may be refined by the
Hungarian method, a greedy selection, or a fuzzy greedy selection [2]. Further-
more, logical consistency may be ensured by running the ALCOMO mapping
post-processing system [6].

3 Evaluation

To evaluate the COMMAND approach, we use the benchmark, conference, and
anatomy of the Ontology Alignment Evaluation Initiative (OAEI) 2014 [3].

We compare the results of COMMAND to three baselines. Single best global
refers to the single base matcher that performs best on the given test case (i.e.,
conference, benchmark, and anatomy), using the optimal global threshold. Ma-
jority vote performs a voting across all base matchers, again using the best global
threshold. Single best local selects the best base matcher for each problem.?

Furthermore, we compare COMMAND to the contestants of the OAEI 2014
initiative. To make that comparison fair, we use one global parameter set for
each variant across all three OAFEI datasets, instead of per dataset settings.

Tables 1, 2, and 3 depict the results of COMMAND on the OEAI datasets,
once with and once without the use of ALCOMO. For anatomy, we restrict
ourselves to the CBLOF variant and a subset of eight element-level matchers
due to reasons of runtime. Except for the Single best local baseline (which is
informative and not a baseline that can actually be implemented), COMMAND
outperforms all baselines. When comparing COMMAND to the results of OAEI

3 Note that in practice, it would not be possible to implement a matcher like Single
best local. We only report it for informative purposes.



Table 1. Results on the OAEI biblio benchmark dataset. The table reports macro
average recall, precision, and F-measure, with micro average values in parantheses.

A h without ALCOMO with ALCOMO
pproac Precision Recall F1 Precision Recall F1

Single best global||.754 (.733)|.557 (.521)| .641 (.609)||.779 (.761)|.548 (.521)| .644 (.619)
Majority vote .510 (.472)|.570 (.544)| .538 (.505)|[.524 (.487)|.463 (.443)| .491 (.464)
Single best local ||.788 (.718)|.632 (.616)| .702 (.663)||.835 (.798)|.610 (.584)| .705 (.674)
CBLOF + PCA ||.833 (.983)|.444 (.470)| .579 (.636)|.832 (.981)|.432 (.457)| .568 (.624)
CBLOF + RC .844 (.982)|.466 (.461)| .600 (.627)||.844 (.982)|.457 (.449)| .593 (.617)
k-NN + PCA .868 (.977)|.547 (.550)|.672 (.704)|.871 (.975)|.480 (.459)|.619 (.624)
k-NN + RC .847 (.967)|.549 (.556)|.666 (.706)|.835 (.984)(.463 (.442)| .596 (.610)
RNN + PCA .881 (.991).466 (.443)| .610 (.612)|.859 (.965)|.324 (.253)| .470 (.401)
RNN + RC .877 (.988)(.470 (.448)| .612 (.616)||.877 (.987)|.471 (.450)| .613 (.618)

Table 2. Results on the OAEI conference dataset. The table reports macro average
recall, precision, and F-measure, with micro average values in parantheses.

A h without ALCOMO with ALCOMO
pproac Precision Recall F1 Precision Recall F1

Single best global||.641 (.784)|.591 (.611)| .615 (.687)|.640 (.783)|.591 (.611)| .615 (.686)
Majority vote .874 (.949)(.537 (.552)| .665 (.698)|.874 (.949)|.537 (.552)| .665 (.698)
Single best local ||.651 (.795)|.602 (.625)| .626 (.700)||.650 (.793)|.602 (.625)| .625 (.699)
CBLOF + PCA ||.693 (.678)|.636 (.613)|.663 (.644)||.737 (.715)|.625 (.600)|.676 (.652)
CBLOF + RC .702 (.693)|.607 (.577)|.651 (.630)||.761 (.752)|.588 (.557)| .663 (.640)
k-NN + PCA 718 (.712)|.572 (.534)| .636 (.610)||.797 (.782)|.557 (.518)| .656 (.623)
k-NN + RC .710 (.702)|.574 (.541)| .635 (.611)|.781 (.769)|.530 (.492)| .631 (.600)
RNN + PCA .829 (.815)(.528 (.492)| .645 (.613)||.748 (.699)|.617 (.587)| .676 (.638)
RNN + RC .820 (.805)|.527 (.489)| .641 (.608)|.819 (.804)|.524 (.485)| .639 (.605)

2014, we can find that the system, using CBLOF and PCA, and alignment repair
with ALCOMO, would score on rank on a shared fifth rank (with XMap2) for
the benchmark track, on rank four for the conference track (between LogMap-
C and XMap), and on rank six (between LogMap-C and MaasMatch) for the
anatomy track.

The runtime of COMMAND is assessed by measuring the time of a complete
end-to-end pipeline execution. The general time complexity of COMMAND is
quadratic to the size of the input ontologies. Additionally, the time consumption
of the individual steps is measured. The results are depicted in table 4.

4 Conclusion and Outlook

In this paper, we have introduced a novel approach using anomaly detection
for combining the results of different ontology matchers into a final aggregated
matching score.

Overall, COMMAND performs an efficient matcher selection that only con-
siders matchers that contribute to the final result, and uses anomaly detection
as an unsupervised method for aggregating base matcher results. It is superior




Table 3. Results on the OAEI anatomy dataset.

Approach without ALCOMO with ALCOMO
Precision|Recall| F1 ||Precision|Recall| F1
Single best local/global 920 .773| .840 .918| .740(.820
Majority vote .932| .606|.735 931 .597| .727
CBLOF + PCA .892| .728/(.801 911 .741| .817
CBLOF + RC .839| .664|.742 .832| .725|.775

Table 4. Average runtime in seconds of COMMAND

lDataset [ O total [@ t vector creation[@ t aggregation[@ t extraction
Conference 69.267 53.580 15.683 0.004
Benchmarks| 52.880 44.026 8.850 0.004
Anatomy 18,746.510 11,595.601 5,922.478 1,228.431

to a simple majority vote baseline and performs in the range of state of the art
matching tools. Furthermore, the possibility to use principal component analy-
sis for feature space transformation also allows for implicitly computing relevant
linear combinations of matcher scores.

The evaluation has been carried out on three OAEI datasets. For conference
and benchmarks, the system achieved competitive performances in comparison
to other OAEI participants. The results on the anatomy track showed that,
since only a reduced configuration could be used with sub-optimal results, that
more memory-efficient implementations are still required for fully exploiting the
capabilities of COMMAND.

Furthermore future work will include the inclusion of other anomaly detec-
tion approaches, like angle-based methods, as well as other score normalization
methods.

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
puting Surveys (CSUR) 41(3) (2009)

2. Do, H.H., Rahm, E.: Coma: A system for flexible combination of schema matching
approaches. In: Proceedings of the 28th International Conference on Very Large
Data Bases. pp. 610-621. VLDB 02, VLDB Endowment (2002)

3. Dragisic, Z.e.a.: Results of theontology alignment evaluation initiative 2014. In:
International Workshop on Ontology Matching. pp. 61-104 (2014)

4. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neu-
ral networks. In: Data warehousing and knowledge discovery, pp. 170-180. Springer
(2002)

5. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogni-
tion Letters 24(9), 1641-1650 (2003)

6. Meilicke, C.: Alignment incoherence in ontology matching. Ph.D. thesis (2011)

7. Shvaiko, P.; Euzenat, J.: Ontology matching: State of the art and future challenges.
Knowledge and Data Engineering, IEEE Transactions on 25(1), 158-176 (Jan 2013)



