
An Application-Oriented Context Pre-fetch Method for Improving
Inference Performance in Ontology-based Context Management

Jaeho Lee, Insuk Park, Dongman Lee, and Soon J. Hyun

School of Engineering
 Information and Communications University

103-6 Munji, Yuseong, Daejeon, Korea
{leejaeho, ispark, dlee, shyun}@icu.ac.kr

Abstract
Ontology-based context models are widely used in a
ubiquitous computing environment. Among many benefits
such as acquisition of conceptual context through inference,
context sharing, and context reusing, the ontology-based
context model enables context-aware applications to use
conceptual contexts which cannot be acquired by sensors.
However, inferencing causes processing delay and it
becomes a major obstacle to context-aware applications. The
delay becomes longer as the size of the contexts managed by
the context management system increases. In this paper, we
propose a method for reducing the size of context database
to speed up the inferencing. We extend the query-tree
method to determine relevant contexts required to answer
specific queries from applications in static time. By
introducing context types into a query-tree, the proposed
scheme filters more relevant contexts out of a query-tree and
inference is performed faster without loss of the benefits of
ontology.

1. Introduction
An application is considered context-aware if it adapts to a
user’s or its own context such as location, state, and so on.
There are several examples of context-aware applications.
Among them is Teleport System (Dey et al. 2001) in which
a user's desktop environment follows the user as he or she
moves from one workstation to another. Another example is
the Navigation system (Baus et al. 2002) which
dynamically displays the navigation information according
to the speed of traveling in order to help a user’s attention.
To facilitate the development of context-aware applications,
a context model is required to manage such functions as
storing, searching, and sharing contexts that change
dynamically.

There have been many research efforts on context
modeling such as application-oriented model (Dey et al.
2001; Kindberg et al. 2000), graphical model (Henricksen
et al. 2002), and ontology-based model (Gu et al. 2004;
Chen et al. 2004). The ontology-based context model is

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

widely used because of its advantages of sharing and
reusing knowledge, and especially, of inferring a
conceptual context which cannot be acquired by the data
gathered from sensors.

Several context management systems have proposed
ontology-based context models for the rapid and reliable
development of context-aware applications (Wang et al.
2004; Lee et al. 2004; Ranganathan and Campbell 2003;
Khedr and Karmouch 2004). The main roles of a context
management system are to collect contexts from sensors, to
infer conceptual contexts, and to deliver an appropriate
context to applications. Inference, however, is time- and
resource- consuming. The processing time for inference
increases proportionally to the size of contexts as well as
the number of applied rules. As a ubiquitous computing
environment becomes more intelligent, the size of contexts
grows accordingly. This makes it difficult to achieve the
inference result in a timely manner. Although most context
management systems with the ontology-based context
model recognize the problem, none of them provides
solutions to it.

In this paper, we propose a context pre-fetch method to
reduce the size of context database to be loaded in a
working memory１ to speed up inference. Our experiences
in developing context-aware applications show that only a
subset of the whole contexts is used in inferencing, e.g.,
less than 40 contexts out of 2,000 contexts. Therefore, we
argue that irrelevant contexts can be filtered out from the
whole contexts in a working memory. We extend the query-
tree method (Levy et al. 1997) to identify the contexts
required to answer specific queries of applications in static
time. We adopt constraint predicates of the query-tree
method to restrict the contexts and pre-fetch the contexts
relevant to applications’ queries. We classify contexts into
three type categories; sensed, deduced, and defined context.
With constraint predicates, the context types are also used
as irrelevance claims to determine whether a certain context
is required for them or not. Experimental results show that
the proposed scheme allows the size of contexts in a
working memory and the processing time for inference to
be maintained smaller without loss of the benefits of

１ Working memory is a memory space used for inference.

reasoning than the query-tree method. It certainly helps
ontology-based context management to be scalable in a
resource-limited ubiquitous computing environment.

The rest of this paper is organized as follows. In chapter
2, we show related work. In chapter 3, our approach is
explained in detail. In chapter 4, we describe an
implementation, followed by the evaluation in chapter 5.
Finally in chapter 6, conclusion is provided and future work
is discussed.

2. Related Work

2.1. Ontology-Based Context Model
The Context Broker Architecture (CoBrA) has developed
an ontology-oriented context model to make easy
knowledge-sharing across distributed systems (Chen et al.
2004). They have used the F-OWL inference engine to get
a conceptual context from raw contexts (Zou et al. 2004).
The F-OWL inference engine has features to enhance
reasoning performance. The engine introduces the Tabling
method to reduce the processing delay required for rule-
based inference. The Tabling is used in various inference
engines such as the Jena2 (A Semantic Web Framework for
Java) (Carroll et al. 2004). According to it, once it is proved
that a subject-property-object triple is in the target ontology
model, the triple is added to an appropriate table. Even
though a few queries at first may take time to get results,
the next queries get quick responses. However, when
update of the model such as data assertion or retraction
takes place, the table gets invalidated. Therefore, it is
impossible for the context models to take advantage of
Tabling as context changes frequently at runtime.

The Semantic Space has also developed an ontology-
based formal context model to address critical issues
including formal context representation, knowledge sharing,
and logic-based context reasoning (Wang et al. 2004). The
system uses Jena2 (Carroll et al. 2004) to inference the
ontology-based contexts. However, similar to CoBrA,
performance degrading is a problem when the size of the
context increases. They suggest three solutions. First, the
time-critical context-aware applications execute without
reasoning process. Second, context reasoning is
independently performed by resource-rich devices such as
the residential gateway. Among them, most active solution
is two-level structure, i.e., high-level and domain-specific.
By dividing the context into two levels, the size of context
used in inference can be reduced because each domain-
specific context is managed separately and loaded
dynamically when context-aware applications move into the
domain. However, in this case, not the entire context is
used by context-aware applications in a domain, and the
aforementioned performance degrading problem of the
logic-based reasoning still remains when the size of a
domain becomes large. We also take the two-level structure
to design our context ontology. Furthermore, the proposed
method in this paper focuses on reducing the domain-

specific contexts since all domain-specific contexts are not
relevant to a specific query, or a context-aware application.
In this way, our method makes the system scales well even
though the size of a domain becomes large.

2.2. Methods to Speed up Inference
We have examined efforts to speed up reasoning inside
inference engines. Some of the ontology inference engines
nowadays are Jena2 (Carroll et al. 2004), Racer (Racer),
FaCT (FaCT), Hoolet (Hoolet), and Triple (Triple). Jena2 is
a Java framework for writing Semantic Web applications.
Jena2 provides inference for both the RDF and OWL
semantics. However, the response time of reasoning
increases along with the number of triples because Jena2's
memory-based Graph model simply has been implemented
as the triple pattern (S, P, O) matches by iterating over the
Graph. Although the reasoning engines such as Racer,
FaCT, Hoolet, and Triple are well-developed, none of them
scales well when dealing with the OWL test case wine
ontology (http://www.w3.org/TR/owl-guide/wine.owl)
(Zou et al. 2004).

Alon Y. Levy, et al. proposed a method for search space
pruning to speed up inference using the query-tree is shown
(Levy et al. 1997). The query-tree is a powerful static-
analyzing tool for determining knowledge base containing
rules and finite structure that encodes all derivations of a
given set of queries. Using the method, we can select rules
and ground facts used in deriving answers to the queries.
We adopt and extend the query-tree method to determine
relevant contexts required to answer specific queries given
from applications at the time of initializing the application.

3. Context Pre-fetch Method

3.1. Design Considerations
In the ontology-based context model, the speed of inference
can be improved by reducing two factors; (a) the number of
rules and (b) the size of context database (Gu et al. 2004).
Rules are divided into two types. One is rules for ontology
reasoning such as subClassOf, Symmetric, and
Transitive semantics as shown in Figure 1. Ontology
reasoning is responsible for checking logical requirements
which include class consistency, class subsumption, and
instance checking (Gu et al. 2004). Since it does not make
sense losing any semantics of ontology for speeding up the
inference, the rules for ontology reasoning are kept in a
working memory at runtime. The other is user-defined rules
for generating conceptual contexts. These rules are needed
only when context-aware applications ask for those
conceptual contexts. We assume that user-defined rules
required for an application’s operation are given by the
application. Thus, we cannot reduce the number of both
ontology and user-defined rules in order for an application
to work correctly even though the small number of rules
makes the inference time shorter. Therefore, we focus on

reducing the size of context database for speeding up
inference.

Reducing the size of context database is a process in
which the system reasons only relevant contexts to an
application’s query and fetches and places them in a
separate context database in a working memory. This
process is the same as Irrelevance reasoning in AI. The
relevant contexts are what the context-aware application’s
queries need to access to get their results at runtime. We
can guess relevant contexts from the context-aware
application’s queries by decomposing them into primitive
contexts, or ground facts. One of techniques to guess
relevant contexts is the query-tree method (Levy et al.
1997).

In the query-tree method, a query-tree built from a given
query is traversed and irrelevant facts are pruned using
constraint predicates. Constraint predicates are used to
specify restrictions on ground facts. For example, suppose
that a query, AgeOf(x, y), is restricted by a constraint
predicate, y<=150. It means that the ground facts larger
than 150 are irrelevant to the query. They are found
statically using constraint predicates before the query is
requested and excluded when evaluating the query at
runtime. In other words, only the ground facts satisfied with
y<=150 are placed in a working memory for the query at
runtime. However, in the case of a context-aware
application’s queries, there are many queries about contexts
acquired from sensors. The contexts acquired from sensors
do not need to be placed in a working memory until the
value of context comes in from sensor since they are
meaningless before real values are sensed. It motivates us
to devise a method for filtering further contexts which are
relevant but useless to applications out of the query-tree. It
helps to scale up the ontology-based context management
in such a resource-limited ubiquitous computing
environment. We introduce context types, which indicate
when and how context can get a meaningful value, for
further filtering besides constraints predicates. They are
described in the next section.

Transitive-
Property

(?P rdf:type owl:TransitiveProperty)
(?A ?P ?B) (?B ?P ?C) -> (?A ?P ?C)

Symmetric
Property

(?P rdf:type owl:SymmetricProperty)
(?X ?P ?Y) -> (?Y ?P ?X)

inverseOf
Property

(?P owl:inverseOf ?Q) (?X ?P ?Y)
-> (?Y ?Q ?X)

Equivalent
Property

(?P owl:equivalentClass ?Q) ->
(?P rdfs:subClassOf ?Q),
(?Q rdfs:subClassOf ?P)

subClassOf (?A rdfs:subClassOf ?B)
(?B rdfs:subClassOf ?C)
-> (?A rdfs:subClassOf ?C)

Figure 1. Part of OWL Property Rules

3.2. Context Representation and Categorization
We design context ontology for a home environment using
Web Ontology Language (OWL). Context ontology is
divided into upper-level and lower-level context ontology

similar to the CONON (Gu et al. 2004). An upper-level
context defines each class and property, and expresses the
relationships and constraints between properties using
ontology semantic rules. A lower-level context defines
instantiations of domain-specific facts using general
concepts and properties of an upper-level one. For example,
lower-level contexts both 'Bedroom' for a home domain
and 'Office' for a business domain are described by
an upper-level context, 'Room' as shown in Figure 2.

A context is encoded as a triple which has a form of
(subject, predicate, object) in OWL. While the subject and
object are merely physical and logical entities or sensed
values, the predicate makes a semantic relation between
two entities. For example, the ‘hasDevice’ property of
‘Bedroom’ in Figure 2 is represented as a form of
‘<Bedroom, hasDevice, Bed>’. In addition, the
context of a triple form can be extended to represent a
complex context by combining the predicate.

We classify a context into a sensed context, a deduced
context, and a defined context like (Gu et al. 2004;
Henricksen et al. 2002). Every predicate of a context has a
property, ’owl:classifiedAs’ to specify its type.
(referred to as the‘Room’ ontology in Figure 2). We use
the types of contexts to determine whether a query should
be used to build a query-tree for selecting relevant contexts.
Other researchers also proposed context categorization but
they used it for other purposes, i.e., expressing the quality
of a given context, compensating for context imperfection
(Gu et al. 2004; Henricksen et al. 2002).

First, a sensed context such as ‘person;locatedAt’ is
acquired from a sensor at runtime. A sensed context is
dependent on a sensor running in an environment.
Therefore, a sensed context is meaningless until a sensor
corresponding to a given context actually works at runtime.
Accordingly, a context query for a sensed context such as
‘<?p person;locatedAt Bedroom>’ cannot get an answer
before runtime. Second, a deduced context such as
‘person;hasStatus’ is acquired only by inference after
the sensed context, ‘person;locatedAt’ is sensed. To get a
deduced context, we define user-defined rules which
consist of context queries relevant to other types of contexts.
For example, a deduced context such as ‘a user’s current
status is sleeping’ is obtained only when the current
contexts satisfy the sleep-rule２. It contains context queries
for the current state of a bed, and a person’s current
location. Among these queries, ‘<?p person;locatedAt
Bedroom>’ and ‘<?d device;hasState ON>’ are the queries
for a sensed context obtained at runtime. Accordingly, the
sleep-rule cannot generate in static time the deduced
context such that a person’s current status is ‘sleeping’.
Finally, a defined context such as ‘<TV
device;locatedIn Bedroom>’ is defined by a user and

2 sleep-rule : (?p rdf:type person:Person) (?d rdf:type device:Device)
(?p person:locatedAt room:Bedroom) (?d device:locatedIn room:Bedroom)
(?d device:hasState ON) -> (?p person:hasStatus status:sleeping).
The rule consists of five queries. Each query has a literal as variable.
Among them, (?d device;hasState ON) means what is devices whose
hasState value is ON>.

is rarely updated over its lifetime once after it is determined.
Therefore, the result of a context query for defined context
is always the same whenever the query is evaluated.
Consequently, a defined context is only a context that can
be acquired before runtime. Thus, we consider context
queries for a defined context in a pre-fetch process.

<owl:Class rdf:ID="Room">
<rdfs:subClassOf>

<owl:Restriction>
 <owl:onProperty rdf:resource="#doorState"/>…
<owl:ObjectProperty rdf:about="&room;Brightness">
 <rdfs:domain rdf:resource="#Room"/>
 <rdfs:range rdf:resource="&state;Brightness"/>
 <owl:classifiedAs rdf:resource="&icu;Sensed"/>

</owl:ObjectProperty> ……
(a) Upper-level Context Ontology
<Room rdf:ID="Bedroom">

<hasDevice rdf:resource="&device;Bed"/> ……
<Brightness rdf:resource="&state;BedroomBrightness"/>
 </Room>
(b) Home Domain Context Ontology
<Room rdf:ID="Office">

 <hasDevice rdf:resource="&device;Desk"/> ……
 <hasDevice rdf:resource="&device;Fax"/>
</Room>
(c) Business Domain Context Ontology

Figure 2. ‘Room’ Upper-level Context Ontology and
‘Bedroom’ and ‘Office’ Lower-level Context Ontology

3.3. Context Pre-fetch
The proposed method uses a pair of memory spaces; (a) a
working memory and (b) a pre-processing memory. The
working memory is used to perform inference over the
contexts that support a context-aware application’s
operation at runtime. The pre-processing memory is used
for the selection of relevant contexts in static time before
use. We define ‘pre-fetch’ as a series of processes for
building a query-tree, selecting relevant context in the pre-
processing memory, and delivering the selected context into
the working memory.
 Before the pre-fetch process, we load the upper-level
context ontology into the working memory at the
initialization time to use for ontology reasoning.
Relationships and constraints defined in the upper-level
ontology are used to check the consistency of asserted
contexts or infer contexts at runtime. For examples, the
'locatedAt' property of the'Person' upper-level context
ontology and the 'hasPerson' property of the 'Room'
upper-level context ontology are in the 'owl:inverseOf'
relationship to each other. In such a case, an assertion of a
sensed context in a working memory such as '<Mr. Lee
locatedAt Bedroom>' makes the value of the 'hasPerson'
property of the 'Bedroom' context ontology 'Mr. Lee'.
Thus, the upper-level context ontology has to remain in the
working memory during runtime. All context ontology is
loaded into the pre-processing memory to examine a query
over the whole contexts set.

 We prune the contexts irrelevant to an application’s
operation from the whole contexts in the pre-fetch process.
Pruning is done in two steps; (a) pruning by a constraint
predicates adopted from the query-tree method (Levy et al.
1997), (b) pruning by predicate types implied by the
context category.

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>

<?p person;locatedAt Bedroom>

Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Person who locates in bedroom
{ Mr.Lee, Mr.Kim,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

<?d device;hasState ON>

sleepRule

Devices of which state is true.
{ LampInBedroom, TVInBedroom,… }

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>

<?p person;locatedAt Bedroom>

Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Person who locates in bedroom
{ Mr.Lee, Mr.Kim,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

<?d device;hasState ON>

sleepRule

Devices of which state is true.
{ LampInBedroom, TVInBedroom,… }

(a) Query-tree based on Lighting application’s query before
filter out queries for sensed context

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>
Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

sleepRule

<?p person;hasStatus Sleeping -> turnOffLight>

<?d rdf;type Device>

<?d device;locatedIn Bedroom>
Devices of which location is bedroom
{LampInBedroom, Bed, TVInBedroom,
AudioInBedroom, AirCleaner,…}

Person
{ Mr.Lee, Miss Lee, Mr.Park,…}

Devices
{ LampInBedroom, Bed,
TVInLivingRoom, …}

<?p rdf;type Person>

sleepRule

 (b) Final state of query-tree based on Lighting application’s
query

Figure 3. An Example of Query-Tree

 First, we use a constraint predicate to prune the contexts
irrelevant to an application’s operation. Context queries in a
context-aware application are described by the notation of
triple match which is one of ontology query languages. It
returns all statements that match with a template in a form
of (subject, predicate, object), where each term is either a
constant or a don't-care (Wilkinson et al. 2003). Our
context ontology described by using OWL is also encoded
in a triple form and allows a property to specify the
restrictions of its domain and range. Thus, for a given
context query, we can limit the search space of the query
from the restrictions described in the context ontology. For
example, in a context query, ‘<?p, locatedAt, ?r>’, only a
‘Person’ type of a context is allowed to be ‘?p’ and
only a ‘Room’ type of a context is ‘?r’ by the
‘Person’ ontology. We define constraints specified by
the restrictions of a predicate described in the upper-level
ontology as constraint predicates. We build a query-tree
based on the context queries of context-aware applications.
Figure 3 (a) shows a query-tree based on a lighting
application’s query. In Figure 3 (a), ‘<?p person;hasStatus
Sleeping>’ query is for deduced context. A query for
deduced context can be derived into sub-queries for other

types of a context. Therefore, a given query is divided into
sub-queries which are ‘<?p rdf;type Person>’,‘<?d
rdf;type Device>’,‘<?p person;locatedAt Bedroom>’,‘<?d
device;locatedIn Bedroom>’, and ‘<?d device;hasState
ON>’. The label of each node in Figure 3 (a) represents the
constraints specified by the predicate of each triple. Context
queries for a context-aware application’s operation are
derived from building a query-tree. And then, the query-
tree helps generate the relevant contexts satisfying the
constraint predicates of each node on it. In the query of a
lighting application, the number of relevant contexts pruned
by the constraint predicates is about 3,000 out of almost
6,000 contexts.
 After the first step, we use predicate types to filter out
context queries for sensed contexts in a query-tree. As
explained in the previous section 3.2, the queries for a
sensed context cannot be any answered at the query-tree
build time, so they can be filtered out from the query-tree.
By filtering out the queries in advance, the number of
queries needed to be pre-fetched is further decreased.
Accordingly, the pre-fetch processing time is reduced and
irrelevant contexts are pruned. Figure 3 (b) shows a query-
tree after the first and second steps.
 Finally, remaining context queries in a query-tree are
evaluated at the pre-processing memory and then, the result
of evaluating contexts are delivered into the working
memory for further inference.
 Figure 4 shows whole procedures of context pre-fetch.

1. Initialize the pre-processing memory and the working
memory.

1.1. Load upper-level and lower-level context ontology into
the pre-processing memory.

1.2. Load upper-level context ontology into the working
memory.

2. Build query-trees based on queries of a context-aware
application at the time of initializing it.

3. Resolve queries for deduced context into queries for other
types of context.

4. Filter out queries for sensed context in the query-tree.
5. Evaluate the remaining queries in the query-tree on the pre-

processing memory loaded upper-level and lower-level
context ontology.

6. Assert the results into the working memory for the inference
engine.

Figure 4. Procedures of Context pre-fetch

4. Implementation
We have implemented the proposed method as part of our
ubiquitous computing middleware, Active Surroundings
(Lee et al. 2004). We designed a context ontology for a
home environment in OWL and used the Jena2 Semantic
Web Toolkit for evaluating rules and queries over the
context ontology. First, we show a running process of a
lighting application in the Active Surroundings without pre-
fetch. Describing how a context-aware application runs
using the middleware is to provide better understanding on

how the pre-fetch method works for the middleware using
the ontology-based context model.

A lighting application is depicted conceptually in Figure
5. The operation of the lighting application is very simple
such that a light turns off when the user's status is 'sleeping'.
In Figure 5, for the lighting application to be performed, it
needs to be subscribed to the context management system
in advance. The Context Wrapper, of which a concept is
introduced in (Dey et al. 2001), transforms a signal from
sensors into a form of a context and updates it to the
working memory. The Context Aggregator possesses a rule
to produce a conceptual context and generates it when the
present values of a context satisfy the conditions of the rule.
Sleep Aggregator checks whether a user is 'sleeping' or not.
Therefore, the aggregator is automatically registered also.
Likewise, required by the Sleep Aggregator, the Location
Wrapper and the Bed Wrapper are registered automatically
as well. Each of the registered aggregators and wrappers
keeps a list of the applications and aggregators that use its
context. When context changes occur to an aggregator or a
wrapper, it notifies to the applications or aggregators in the
list. At runtime, the Location Wrapper and the Bed
Wrapper obtain contexts about current user location and
bed status from the sensors and reflect them to the working
memory. Then, the Sleep Aggregator examines the value of
location and bed context. It concludes the current status of
the user to be 'sleeping' and reflects it to the working
memory. Finally, the lighting application examines whether
the user's current status is 'sleeping', and turns off the light
if conditions are satisfied.

: Register application to Context Manager
and request Context Aggregators/ wrappers

: Register Context Aggregator to Context Manager and
request Context Wrappers

: Register Context Wrappers to Context Manager
: Notify context change from wrapper to aggregator /
 reflect the change into a working memory
: Notify context change from aggregator to application /
 reflect the change into a working memory
: Query to check the condition context to run application
Figure 5. Operation of Context-aware Application without

pre-fetch method

 As shown in Figure 6, the context management system
delivers queries in the registered Context Aggregators and

Context Manager

Inference
engine

working memory

Bed
Wrapper

Sleep
Aggregator

Context
Consumer

Context
Interpreter

Light Application

Location
Wrapper

Context Manager

Inference
engine

working memory

Bed
Wrapper

Sleep
Aggregator

Context
Consumer

Context
Interpreter

Light Application

Context
Consumer

Context
Interpreter

Light Application

Context
Consumer

Context
Interpreter

Light Application

Location
Wrapper

Context Wrappers to the pre-fetch component at that time.
We use two hash-tables to keep the consistency of a context
ontology in the working memory. One of the hash-table
stores context facts and a Context Aggregator as the hash
keys to check whether the Context Aggregator is pre-
fetched already. Context facts mean the results after pre-
fetching about the Context Aggregator. The other hash-
table stores pairs of a set of Context Aggregators and a
context fact as the keys to check whether the context fact
can be retracted from the working memory at runtime or
not. The set of Context Aggregators means a set which
consists of Context Aggregators of which pre-fetch result is
the context fact. Through the hash-tables, the result set of
pre-fetch for a Context Aggregator is stored and managed
to support dynamic assertion to and retraction from the
working memory. For instance, when a new application is
registered at runtime, Context Aggregators needed by the
application are checked in the first hash-table if they were
pre-fetched already. If they exist in the hash-table, the pre-
fetch process is skipped. On the other hand, when a Context
Aggregator is unregistered to the context management
component, the context facts corresponding to the Context
Aggregator are checked using the first hash-table. Then,
whether the context facts are still used by other Context
Aggregators is checked using the second hash-table. If none
of Context Aggregators uses context facts, then they can be
retracted safely from the working memory. Figure 6 shows
operation process of the lighting application on top of
Active Surroundings with the proposed method.

: Register application to Context Manager and request Context
Aggregators/ Wrappers.

: Register Context Aggregator to Context Manager and request
Context Wrappers.

: Register Context Wrappers to Context Manager
: Check whether the requested Context Aggregator is pre-

fetched already.
: If the Aggregator is not in the hashtable [aggregator-facts],

build a query-tree of the query in the ContextAggregator.
: Pre-fetch relevant context using the query-tree.
: Add the result facts to [aggregator-facts] and to [fact-set of

aggregator] hashtable, and insert the facts into working
memory.

Figure 6. Operation of Context-aware Application with pre-
fetch method

5. Evaluation

5.1. Proof of Completeness
We show Theorem 1 that the results of a context-aware
application’s query both on contexts pruned by the pre-
fetch method and on the whole contexts are the same
through a proof by contradiction.
 Theorem 1: The result of a context-aware application’s
query on contexts pruned by the pre-fetch method is the
same as the one on the whole contexts.
 Proof : Let q be a context-aware application’s query,
and Spre-fetch be contexts pruned by pre-fetching about q,
and Snonpre-fetch be the whole contexts set, and Csensed, Cdeduced,
Cdefined be the set of sensed contexts, the set of deduced
context, and the set of defined context in Snonpre-fetch
respectively, and Csensed´, Cdeduced´, Cdefined´ be the set of
sensed context, the set of deduced context, and the set of
defined context in Spre-fetch respectively.
 Suppose that the result of an application’s query on
pruned contexts by the pre-fetch method is different from
the one on the whole contexts set. Since the types of
context are only three, i.e., sensed context, defined context,
and deduced context (referred to as Context categorization
in section 3.2.), the types of a context query are also three.
Thus, the proof is shown in each case separately.
Case 1: Assume that q is a query for the sensed context,

 Results of q on Spre-fetch ∈ Csensed´ and
Results of q on Snonpre-fetch ∈ Csensed

 Csensed´ = Csensed , because both Csensed´ and Csensed
are given from sensors at runtime.

Thus, the results of q both on Spre-fetch and on Snonpre-fetch
are the same, when q is a query for the sensed context.

Case 2: Assume that q is a query for the defined context,
 Results of q on Spre-fetch = Cdefined´ and

Results of q on Snonpre-fetch= Cdefined´⊂Cdefined, because
the results of q are Cdefined´ that is the result
evaluated about q in the pre-fetch time.

 Thus, the results of q both on Spre-fetch and on Snonpre-fetch
 are the same, when q is a query for the defined context.
Case 3: Assume that q is a query for the deduced context,

 q is divided into sub-queries for the sensed context
and defined context in the pre-fetch time,

 Results of q on Spre-fetch ∈ Csensed´ ∪ Cdefined´
 Csensed´ and Cdefined´ are proved by Case 1, Case 2.

Thus, the results of q both on Spre-fetch and on Snonpre-fetch are
the same, when q is a query for the deduced context. In
case that q is a query for the deduced context which
consists of another deduced context, we can prove it in the
same way of the case 3 by decomposing deduced sub-
queries recursively until all sub-queries are decomposed
into sensed and defined context queries. From the cases 1, 2,
and 3, we have a contradiction, which means that the
assumption is false. Therefore, it must be true that the result
of a context-aware application’s query on contexts pruned

Context
ontology Storage

preprocessing memory

Ontology
semantic

rules

Inference engine

Inference engine

Context Manager

Inference
engine

working memory

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

④④
⑤⑥

⑦

⑦

Bed
Wrapper

Sleep
Aggregator

Location
Wrapper

Context
Consumer

Context
Interpreter

Light Application

Context
ontology Storage

preprocessing memory

Ontology
semantic

rules

Inference engine

Inference engine

Context Manager

Inference
engine

working memory

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

Aggregator Facts

Fact Set of
Aggregator

[HashTable]

·
·
·

·
·
·

·
·

·
·

④④④
⑤⑤⑥

⑦

⑦

Bed
Wrapper

Sleep
Aggregator

Location
Wrapper

Context
Consumer

Context
Interpreter

Light Application

by the pre-fetch method is the same as the one on the whole
contexts.

5.2. Experimental Result
Experiments were run on a 3.0GHz PC with 1GB of RAM
running Windows XP. Our context model in use consists of
about 2000 RDF Triples. It can be seen as a small size of
context. To show the improvement of the time taken for
inference on a large scale context, we extend our context
model by defining several domain areas. We also prepare
the different type of queries from a simple query to a
complex one and practical queries in use on a running
system as shown in Figure 7.

Query Description

Q1
(Simple query)

<?p rdf:type Person> ∧
<?p locatedAt Bedroom>

Q2
(Complex query)

<?p rdf:type Person>∧<?p gender ?pg>∧
<?p birthDate ?pbr>∧<?p name ?pn>∧
<?p locatedAt ?pr>∧<?p hasStatus ?ps>∧
<?u rdf:type UserPreference>∧
<?u onPerson ?p>∧<?u hasWeight ?uw>∧
<?u hasService ?us>∧<?d rdf:type Device>∧
<?d used ?du>∧<?d hasService ?ds>∧
<?d hasState ?dst>∧<?d hasDimLevel ?ddl>∧
<?d locatedIn ?r>∧<?r rdf:type Room>∧
<?r hasPerson ?p>∧<?r hasDevice ?d>∧
<?r SoundLevel ?rs>∧<?r DoorState ?rd>∧
<?r Brightness ?rb>

Q3
(WatchTV rule)

<?p rdf:type Person>∧<?d rdf:type Device>∧
<?p locatedAt ?d>∧<?d hasState xsd:true>

Q4
(Sleep rule)

<?p rdf:type Person>∧<?d rdf:type Device>
<?p locatedAt Bedroom>∧
<?d locatedIn Bedroom>∧
<?d hasState xsd:true>∧
<?l hasDimLevel xsd:0>

Q5 (EnterBedroom
rule)

<?p rdf:type Person>∧
<?p locatedAt BedroomDoor>

Figure 7. Sample query for evaluation

640

1094

2031

3453

562
578 563 582

55510
0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

Without pre-fetch

With pre-fetch

pre-fetch time

Figure 8. Query response time in simple query

 Figure 8 shows the result of the experiment for Q1
(simple query) on context database in the working memory.
As described in Figure 7, Q1 query is very plain. Thus, the
response time of query is affected strongly by number of
context facts in a working memory. Therefore, the query

response time also increase as a consequence when the
number of facts increases in the case without applying pre-
fetch method. While, the graph of the result using the pre-
fetch method shows the fixed response time for a query
regardless of the increase of the number of facts. The
processing time for pre-fetching the relevant context facts is
negligible.
 Figure 9 shows the result of the experiment for Q2
(complex query) on context database in the working
memory. Q2 is a complex query that needs most of context
facts stored in the working memory. For the complex query,
the response time of the case applying the pre-fetch method
increases according to the number of context facts. It is
because there are many relevant context facts pre-fetched
for the Q2 query. In the case of a very complicated query,
many context facts are pre-fetched. However, even the
worst case, the response time becomes no longer than the
case without pre-fetch because the size of pre-fetched
results is not bigger than that of the whole context set in
any case.

2275.4

3502

2502

1425

766
1459

1020.7
772.4

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s) Without pre-fetch

With pre-fetch

Figure 9. Query response time in complex query

 Finally, we test an environment where several realistic
applications supporting people’s daily life run actually. As
shown in Figure 7, three queries, Q3, Q4, and Q5, are used
to activate our sample applications. In Figure 10, each
graph shows the increase of the response time according to
the number of context facts at runtime.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

WatchTVAggregator

SleepAggregator

EnterBedroomAggregator

Figure 10. Query response time in Active Surroundings which

doesn’t apply the pre-fetch method

 The results of the experiment with applying the pre-fetch
method are shown in Figure 11. The value depicted in

graph is the time which adds the processing time for pre-
fetch and the response time of the three queries. As shown
in Figure 11, the response time remains constant.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 1000 2000 3000 4000 5000 6000 7000

Number of facts

Q
ue

ry
 re

sp
on

se
 ti

m
e(

m
s)

WatchTVAggregator

SleepAggregator

EnterBedroomAggregator

Figure 11. Query response time in Active Surroundings which

apply the pre-fetch method

We conclude from the experiments described above that

when the number of context facts is less than about 2000,
both the result with pre-fetch method and one without pre-
fetch method show similar performance. However, if the
number of facts is over 2000, the method with the pre-fetch
method significantly outperforms the method without the
pre-fetch method.

6. Conclusion and Future works
Nowadays, there are number of infrastructures for

enabling context-awareness on the basis of ontology-based
context model. We consider it will be needed that the
module or method which makes an inference process faster
over ontology-based context model.

In this paper, we proposed a method to reduce the size of
the contexts in working memory by pre-fetching relevant
context based on context-aware application's queries. And
we apply the method to the existing context management
system which uses ontology-based context model, Active
Surroundings. By pre-fetching and maintaining relevant
context to support context-aware applications into working
memory, the inference time on ontology-based context
model can be faster than existing method which maintains
the whole contexts into working memory. As the result the
context-aware applications which use the context generated
through inference process can be run quickly comparing
with existing method. We currently investigate how to use
query optimization techniques together at the pre-fetch time
in order to reduce the processing time for pre-fetch.

References
Wang, X.; Dong, J.S.; Chin, C.Y.; Hettiarachchi, S.R.; and
Zhang, D. 2004. Semantic Space: an infrastructure for
smart spaces. Pervasive Computing, IEEE. 3(3): 32– 39.

Levy, A.Y. et al. 1997. Speeding up inferences using
relevance reasoning: a formalism and algorithms. Artificial
Intelligence. 97(1-2): 83-136.
Dey, A.K. et al. 2001. A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. Human-Computer Interaction Journal.
16(2-4):97-166.
Gu, T.; Wang, X.H.; Pung, H.K.; and Zhang,D.Q. 2004. An
Ontology-based Context Model in Intelligent Environments.
In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference.
Henricksen, K. et al. 2002. Modeling Context Information
in Pervasive Computing System. Pervasive 2002, LNCS
2414, 167-180.
Kindberg, T. et al. 2000. People, places, things: Web
presence for the real world. In Proceedings of IEEE
Workshop on Mobile Computing Systems and Applications.
Chen, H.; Finin, T.; and Joshi, A. 2004. An Ontology for
Context-Aware Pervasive Computing Environments.
Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review.
Lee, D. et al. 2004. A Group-Aware Middleware for
Ubiquitous Computing Environments. In Proceedings of
the 14th International Conference on Artificial Reality and
Telexis-tence (ICAT).
Carroll, J.J. et al. 2004. Jena: Implementing the Semantic
Web Recommendations. WWW2004.
Racer. Available online at http://www.racer-systems.com/.
FaCT. Description Logic (DL) classifier. Available online
at http://www.cs.man.ac.uk/~horrocks/FaCT/.
Hoolet. OWL-DL Reasoner. http://owl.man.ac.uk/hoolet
Triple, http://triple.semanticweb.org/
Zou, Y. et al. 2004. F-OWL: an Inference Engine for the
Semantic Web. In Proceedings of the 3rd International
Workshop on Formal Approaches to Agent-Based Systems.
Baus, J. et al. 2002. A resource-adaptive mobile navigation
system. In Proceedings of Intl. Conf. on Intelligent User
Interfaces, San Francisco.
Fensel, D. et al. 2000. Lessons learned from applying AI to
the web. International Journal of Cooperative Information
Systems. 9(4):361-382.
Freeman-Hargis, J. 2003. Rule-based systems and
Identification Trees. Available online at http://ai-
depot.com/Tutorial/RuleBased.html.
Ranganathan, A. and Campbell, R.H. 2003. An
Infrastructure for Context-Awareness based on First Order
Logic. Journal of Personal and Ubiquitous Computing.
7(6) :353-364.
Khedr, M. and Karmouch, A. 2004. ACAI: Agent-Based
Context-aware Infrastructure for Spontaneous Applications.
Journal of Network & Computer Application.
Wilkinson, K.; Sayers, C.; Kuno, H.A.; Reynolds, D.; and
Ding ,L. 2003. Supporting Scalable, Persistent Semantic
Web Applications. IEEE Data Eng. Bull. 26(4): 33-39.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

