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Abstract 
As the Semantic Web gains attention as the next generation 
of the Web, the issue of reconciling different views of 
independently developed and exposed data sources becomes 
increasingly important. Ontology integration serves as a 
basis for solving this problem. In this paper, we describe an 
approach to construct a consensus ontology from numerous, 
independently designed ontologies. Our method has the 
following features: i) the matching is carried out at the 
schema level; ii) the alignment of the ontologies is 
performed without previous agreement on the semantics of 
the terminology used by each ontology; iii) both the 
linguistic and the contextual features of an ontology concept 
are considered; iv) WordNet is incorporated into the 
linguistic analysis phase; v) heuristic knowledge is 
integrated into the contextual analysis phase; and vi) 
reasoning rules based on the domain-independent 
relationships subclass, superclass, equivalentclass, sibling, 
and each ontology concept’s property list are used to infer 
new relationships among concepts. We describe a set of 
experiments and provide an evaluation of the results that 
shows the accuracy of our system.  

1. Introduction  
A major goal of the envisioned Semantic Web is to 
provide an environment where data can be shared and 
processed by automated tools as well as by people 
(Berners-Lee, Hendler, and Lassila 2001). Suppose a user 
wants to compare information, e.g., price, rating, and 
location, of nearby daycare facilities. Such information 
may be on the Web, but it is not in a machine-readable 
form. The user would need to review and process all the 
data exposed in each provider’s website in order to get the 
information needed. On the Semantic Web agents can 
carry out this task automatically. 

The idea of intelligent software agents that freely surf 
the Web and make sense of the information they find and 
the fact that such information is organized, represented, 
and expressed in different ways, have created the need for 
developing tools and techniques in order for the agents to 
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make use of that information. Common ontologies provide 
the infrastructure needed to add semantics to the data on 
the Web so that it can be understood by agents.  

It is impractical to have a unique and global ontology 
that includes every concept that is or might be included as 
part of the Web. However, it is reasonable that there might 
be ontologies for specific domains and sub-domains of the 
Web, and even for individual Web pages. It is clear, then, 
that the challenge is to be able to align and use different 
ontologies.  

In this paper, we describe PUZZLE, a system that 
constructs a consensus ontology from numerous, 
independently designed ontologies. Our work is an 
extension of (Stephens, Gangam, and Huhns 2004) where 
the main idea is that any pair of ontologies can be related 
indirectly through a semantic bridge, consisting of many 
other previously unrelated ontologies, even when there is 
no direct relationship between the pair.  

In (Stephens, Gangam, and Huhns 2004) the main 
technique for semantic mapping between two ontology 
concepts relies on simple string and substring matching. 
We extend this work to incorporate: further linguistic 
analysis; contextual analysis based on the properties of the 
concepts in the ontology; extended use of WordNet (Miller 
1995) to include the search of not only synonyms but also 
antonyms, plurals, hypernyms, and hyponyms; use of the 
Java WordNet Library API (JWNL 2003) for performing 
run time access to the dictionary, instead of having to 
initialize the synsets a priori; integration of heuristic 
knowledge into the contextual analysis phase; and 
reasoning rules based on the domain-independent 
relationships subclass, superclass, equivalentclass, sibling, 
and each ontology concept’s property list to infer new 
relationships among concepts.  

Existing research efforts incorporate some of these 
features, but none has investigated them in combination. 
The combination addresses the major challenges described 
in (Stephens, Gangam, and Huhns 2004): different 
terminology for similar concepts and inconsistent 
relationships among concepts.  

Our methodology is appropriate when there are a large 
number of small ontologies. Furthermore, in the case 
where the information is available through the Web, we 
assume that sites have been annotated with ontologies 



(Pierre 2000), which is consistent with several visions for 
the Web (Berners-Lee, Hendler, and Lassila 2001). 

The rest of the paper is organized as follows. Section 2 
briefly discusses related work in ontology matching. 
Section 3 gives an overview of the PUZZLE system, 
whose details are described in Section 4. Section 5 reports 
the experiments we conducted and analyzes the results. 
Section 6 concludes. 

2. Related Work 
A lot of research work has been carried out in ontology 
matching. There are two approaches to ontology matching 
(Rahm and Bernstein 2001): instance-based and schema-
based. All of the systems mentioned below belong to the 
latter, except for GLUE. 

GLUE (Doan et al. 2003) introduces well-founded 
notions of semantic similarity, applies multiple machine 
learning strategies, and can find not only one-to-one 
mappings, but also complex mappings. However, it 
depends heavily on the availability of instance data. 
Therefore, it is not practical for cases where there is not a 
significant number of instances or no instance at all. 

For HELIOS (Castano et al. 2004), WordNet is used as 
a thesaurus for synonyms, hyponyms, hypernyms, and 
meronyms. However the thesaurus has to be initialized for 
each domain for which it is used. If additional knowledge 
or a different domain is needed then the user has to input 
the respective terminology interactively. 

PROMPT (Noy and Musen 2000) is a tool making use 
of linguistic similarity matches between concepts for 
initiating the merging or alignment process, and then use 
the underlying ontological structures of the Protege-2000 
environment to inform a set of heuristics for identifying 
further matches between the ontologies. PROMPT has a 
good performance in terms of precision and recall. 
However, user intervention is required, which is not 
always available in real world application. 

Cupid (Madhavan, Bernstein, and Rahm 2001) 
combines linguistic and structural schema matching 
techniques, as well as the help of a precompiled dictionary. 
But it can only work with a tree-structured ontology 
instead of a more general graph-structured one, which 
introduces many limitations to its application, because a 
tree cannot represent multiple-inheritance, an important 
characteristic in ontologies.  

COMA (Do and Rahm 2002) provides an extensible 
library of matching algorithms, a framework for combining 
results, and an evaluation platform. According to their 
evaluation, COMA performs well in terms of precision, 
recall, and overall measures. Although it is a composite 
schema matching tool, COMA does not integrate reasoning 
and machine learning techniques. 

Similarity Flooding (Melnik et al. 2002) utilizes a 
hybrid matching technique based on the idea that similarity 
spreading from similar nodes to the adjacent neighbors. 
Before a fix-point is reached, alignments between nodes 
are refined iteratively. This algorithm only considers the 

simple linguistic similarity between node names, leaving 
behind the node property and inter-node relationship. 

S-Match (Giunchiglia, Shvaiko, and Yatskevich 2004) is 
a modular system into which individual components can be 
plugged and unplugged. The core of the system is the 
computation of relations. Five possible relations are 
defined between nodes: equivalence, more general, less 
general, mismatch, and overlapping. Giunchiglia et al. 
claim that S-Match outperforms Cupid, COMA, and SF in 
measurements of precision, recall, overall, and F-measure. 
However, as Cupid does, S-Match uses a tree-structured 
ontology. 

In (Williams, Padmanabhan, and Blake 2003), a method 
is investigated for agents to develop local consensus 
ontologies to help in communications within a multiagent 
system of B2B agents. They show the potential brought by 
local consensus ontologies in improving how agents 
conduct B2B Web service discovery and composition. 
They also explore the influence of a lexical database in 
ontology merging. 

3. Overview of Our Solution 
The most important differences between PUZZLE and the 
systems mentioned in Section 2 are that PUZZLE:  
- Requires no user intervention and is automated; 
- Represents an ontology as a graph instead of a tree; 
- Integrates WordNet by using the JWNL API; 
- Applies heuristic knowledge during linguistic matching; 
- Reasons with additional relations during context 

matching. 
The goal of our work is to construct a consensus 

ontology from numerous independently designed 
ontologies. The main idea of our approach is that any pair 
of ontologies, G1 and G2, can be related indirectly through 
a semantic bridge consisting of other previously unrelated 
ontologies, even when there is no direct relationship 
between G1 and G2. The metaphor is that a small ontology 
is like a piece of jigsaw puzzle. It is difficult to relate two 
random pieces of a jigsaw puzzle until they are constrained 
by other puzzle pieces. Furthermore, for the semantic 
bridge between a given pair of ontologies G1 and G2, the 
more ontologies the semantic bridge comprises, the better 
the semantic match between G1 and G2. 

In order to construct a consensus ontology from a 
number of ontologies, we take two ontologies and merge 
them into a new one, then we iteratively merge the 
resultant ontology with each additional one. We will 
explain next our method for merging two ontologies. 

Suppose that original ontologies are built according to 
OWL Full specification (W3C 2004). Internally, our 
system represents an ontology using a directed acyclic 
graph G (V, E), where V is a set of ontology concepts 
(nodes), and E is a set of edges between two concepts, i.e., 
E = {(u, v) | u and v belong to V and u is a superclass of v}. 
In addition, we assume that all ontologies share “#Thing” 
as a common “built-in” root. In order to merge two 
ontologies, G1 and G2, we try to relocate each concept from 



PUZZLE Algorithm – merge(G1, G2) 
Input: Ontology G1 and G2 
Output: Merged ontology G2 
Begin 
 new location of G1 ’s root = G2 ’s root 
 for each node C (except for the root) in G1 
  Parent(C) = C’s parent set in G1 

  for each member pi in Parent(C) 
   pj = new location of pi in G2 
   relocate(C, pj) 
  end for 
 end for 
end 
 

Figure 1. PUZZLE Algorithm 

relocate(N1, N2) 
Input: nodes N1 and N2 
Output: the modified structure of N2 according to information from N1 
begin 
 if there exists any equivalentclass of N1 in the child(ren) of N2 
  merge N1 with it 
 else if there exists any subclass of N1 in the child(ren) of N2 
  Children(N1) = set of such subclass(es) 
  for each member ci in Children(N1) 
   add links from N2 to N1 and from N1 to ci 
   remove the link from N2 to ci  
  end for 
 else if there exists any superclass of N1 in the child(ren) of N2 
  Parent(N1) = set of such superclass(es) 
  for each member pi in Parent (N1) 
   recursively call relocate(N1, pi) 
  end for 
 else 
  add a link from N2 to N1  
 end if 
end 
 

Figure 2. relocate Function 

one ontology into the other. We adopt a width-first order 
to traverse G1 and pick up a concept C as the target to be 
relocated into G2. Consequently, C’s parent set Parent(C) 
in the original graph G1 has already been put into the 
suitable place(s) in the destination graph G2 before the 
relocation of C itself. The pseudocode in figure 1 describes 
the top level procedure of our algorithm. 

The relocate function in the above algorithm is used to 
relocate C into a subgraph rooted by pj. To obtain the 
correct relocation, we need to consider both the linguistic 
feature and the contextual feature of these two concepts 
(described in sections 4.1. and 4.2. respectively). The 
pseudocode for the relocate function is shown in figure 2. 
Notice that there is a recursive call to itself within relocate. 

This recursive procedure is guaranteed to terminate 
because the number of the nodes within a graph is finite, 
and the worst case is to call relocate repetitively until we 
hit a node without child. 

4. Details of the PUZZLE System 
When trying to match concepts, we consider both the 
linguistic and the contextual features. The meaning of an 
ontology concept is determined by its name and its 
relationship with other concept(s). In this paper, we 
assume that the linguistic factors contribute 70 percent and 
the contextual factors contribute 30 percent in concept 
matching. The former is greater than the latter, because in 
our experiments, the input ontologies have less contextual 
information. Therefore, we do not want the contextual 
factors to dominate in the matching process. Notice that 
these weight values can always be customized according to 
different application requirements. For example, when 
merging diverse ontologies, i.e., ones with rich linguistic 
but poor contextual information versus ones with poor 
linguistic but rich contextual information, appropriate 
weight values can be applied accordingly. 

4.1. Linguistic Matching 
The linguistic factor reflects how the ontology designer 
wants to encode the meaning of the concept by choosing a 
preferable name for it. Our PUZZLE system uses both 
string and substring matching techniques when performing 
linguistic feature matching. Furthermore, we integrate 
WordNet by using JWNL API in our software. In this way, 
we are able to obtain the synonyms, antonyms, hyponyms, 
and hypernyms of an English word, which is shown to 
increase the accuracy of the linguistic matching 
dramatically. In addition, WordNet performs some 
preprocessing, e.g., the transformation of a noun from 
plural form to single form. 

We claim that for any pair of ontology concepts C and 
C’, their names NC and NC’ have the following mutually 
exclusive relationships, in terms of their linguistic features. 

- anti-match: NC is a antonym of NC’, with the matching 
value vname = 0; 

- exact-match: either NC and NC’ have an exact string 
matching, or they are the synonyms of each other, 
with the matching value vname = 1; 

- sub-match: NC is either a postfix or a hypernym of NC’, 
with the matching value vname = 1; 

- super-match: NC’ is either a postfix or a hyponym of 
NC, with the matching value vname = 1; 

- leading-match: the leading substrings from NC and NC’ 
match with each other, with the matching value vname = 
length of the common leading substring/length of the 
longer string. For example, “active” and “actor” have 
a common leading substring “act”, resulting in a 
leading-match value of 3/6; 

- other. 

When relocating C, we perform the linguistic matching 
between C and all the candidate concepts. For each 
candidate concept C’, if an exact-match or a leading-match 
is found, we put C’ into C’s candidate equivalentclass list; 
if a sub-match is found, we put C’ into C’s candidate 



subclass list; and if a super-match is found, we put C’ into 
C’s candidate superclass list. Then we continue the 
contextual matching between C and each concept in the 
three candidate lists to make the final decision. 

Notice that using a synonym as the candidate of 
equivalentclass is an approximate approach, because each 
word could have multiple senses. We are making an 
assumption that different ontologies deal with similar 
domain (otherwise it is of little significance to align them). 
Therefore, in most cases, it is suitable to regard one 
concept’s synonym(s) as a possible equivalentclass 
concept. Also, the approach to put a sub-match concept 
into another’s candidate subclass list is approximate. In 
some cases it is not correct, e.g., “firstname” is not a 
subclass of “name”.  However, this approach does provide 
a lot of useful information and possible correct 
relationships in many cases. Similarly, leading-match 
sometimes does not offer accurate help as we expect. 
Because we are not considering linguistic matching alone, 
this kind of bias brought by leading-match is tolerable and 
under control. 

4.2. Contextual Matching 
The context of an ontology concept C consists of two parts, 
its property list and its relationship(s) with other concept(s). 
We discuss this next in detail. 
4.2.1. Property List Matching 
Considering the property lists, P(C) and P(C’), of a pair of 
concepts C and C’ being matched, our goal is to calculate 
the similarity value vProperty between them. 

vProperty = wrequired * vrequired + wnon-required * vnon-required 

vrequired and vnon-required are the similarity values calculated 
for the required property list and non-required property 
list respectively. wrequired and wnon-required are the weights 
assigned to each list. In this paper, we choose 0.7 and 0.3 
for wrequired and wnon-required. vrequired and vnon-required are 
calculated by the same procedure. We will explain next in 
detail how to obtain vrequired, and from this point on, 
“property” means “required property” for concision 
purpose. 

Suppose the number of properties in two property lists, 
P1 and P2, is n1 and n2 respectively. Without loss of 
generality, we assume that n1≤ n2. There are three different 
matching models between two properties. 

1. total-match 

- The linguistic matching of the property names 
results in either an exact-match, or a leading-
match with vname ≥ 0.9; and 

- The data types match exactly. 

Let v1 = number of properties with a total-match, and 
f1 = v1/n1. Here f1 is a correcting factor embodying the 
integration of heuristic knowledge. We claim that 
between two property lists, the more pairs of 

properties being regarded as total-match, the more 
likely that the remaining pairs of properties will also 
hit a match as long as the linguistic match between 
their names is above a certain threshold value. For 
example, assume that both P1 and P2 have ten 
properties. If there are already nine pairs with a total-
match, and furthermore, if we find out that the names 
in the remaining pair of properties are very similar, 
then it is much more likely that this pair will also have 
a match, as opposed to the case where only one or two 
out of ten pairs have a total-match. 

2. name-match 

- The linguistic matching of the property names 
results in either an exact-match, or a leading-
match with vname ≥ 0.9; but 

- The data types do not match. 

Let v2 = number of properties with a name-match, and 
f2 = (v1 + v2)/n1. Similarly to f1, f2 also serves as a 
correcting factor. 

3. datatype-match 

Only the data types match. Let v3 = number of 
properties with a datatype-match. 

According to the above definition, first, we try to find 
out all pairs of total-match and filter them out of the 
original properties, then in the remaining properties find 
out all pairs of name-match and filter them too, and finally 
in the rest of original properties find out all pairs of 
datatype-match. Now we can calculate the similarity value 
vrequired between the two property lists. 

vrequired = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ * 
f2))/n1 

where: 

- the value range of vrequired is from 0 to 1; 

- wi (i from 1 to 3) is the weight assigned to each 
matching model. We use 1.0 for total-match, 0.8 for 
name-match, and 0.2 for datatype-match; 

- wi’(i from 2 to 3) is the correcting weight assigned to 
the matching models of name-match and datatype-
match. We use 0.2 and 0.1 respectively; 

Notice that all the thresholds and arguments in the 
formulas mentioned in this section are based on trial-and-
error. 

4.2.2. Relationships among Concepts 
Given any two ontology concepts, we can have the 
following five mutually exclusive relationships between 
them: 

 subclass, denoted by ⊆  
 superclass, denoted by ⊇  
 equivalentclass, denoted by ≡  



 sibling, denoted by ≈  and 
 other, denoted by ≠  
OWL Full provides eleven axioms (W3C 2004): 

subClassOf, equivalentClass, disjointWith, 
sameIndividualAs, differentFrom, subPropertyOf, 
equivalentProperty, inverseOf, transitiveProperty, 
functionalProperty, and inverseFunctionalProperty. The 
first two axioms will be used to represent the subclass-
superclass and equivalentclass relationships respectively. 

4.3. Reasoning Rules 
Based on the linguistic and contextual features, PUZZLE 
uses three domain-independent rules, each regarding the 
relationship among ontology concepts, to incorporate the 
reasoning into our system. These rules are applied to 
concepts from different ontologies. Therefore, we refer to 
them as inter-ontology reasoning. 

Suppose we have three ontologies A, B, and C, each of 
which is designed according to the OWL Full specification. 
Furthermore, let n(A), n(B), and n(C) be the sets of 
concepts in A, B, and C respectively, with ni(A), nj(B), and 
nk(C) be the individual concept for each set (i from 1 to 
|n(A)|, j from 1 to |n(B)| , and k from 1 to |n(C)|), and 
P(ni(A)), P(nj(B)), and P(nk(C)) be the property list for each 
individual concept. 

Consider the property lists P(ni(A)) and P(nj(B)), let si 
and sj be the set size of these two lists. There are four 
mutually exclusive possibilities for the relationship 
between P(ni(A)) and P(nj(B)): 

 P(ni(A)) and P(nj(B)) are consistent with each other if 
and only if 

i. Either si = sj or |si – sj|/(si + sj)≤ 0.1, and 
ii. vProperty ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B) 
by ni(A) ⎯→← p nj(B); 

 P(ni(A)) is a subset of P(nj(B)) if and only if 

i. si ≤  sj, and 
ii. vPoperty ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B)  
by ni(A) ⎯→⎯p  nj(B); 

 P(ni(A)) is a superset of P(nj(B)) if and only if 

i. si ≥  sj, and 
ii. vProperty ≥ 0.9 

We denote the corresponding concepts ni(A) and nj(B)  
by ni(A) ⎯⎯← p nj(B); 

 P(ni(A)) and P(nj(B)) have other relationship which will 
not be considered in our system. 

 
Rule 1 and 2 consider two ontologies, A and B. 

[Rule 1] This rule is straightforward, claiming that the 
superclass/subclass relationship of a class is transferable to 
its equivalent class(es). 

- Preconditions: 
ni(A) ≡  nk(B) and (ni(A) ⊆  nj(A) or ni(A) ⊇  nj(A)) 

- Conclusion: 
nk(B) ⊆  nj(A) or nk(B) ⊇  nj(A) 

[Rule 2] If two classes share the same parent(s), then 
their relationship is one of: equivalentclass, superclass, 
subclass, and sibling. For example, if we know that two 
classes have similar names and similar property lists, we 
still cannot conclude that they must be equivalent to each 
other, because of the possibility of badly designed 
ontologies. However, if we also know that these two 
classes have the same parent(s), then the probability of 
them being equivalent will increase substantially. 

- Preconditions: 
 ni1(A) ⊇  ni2(A) and nk1(B) ⊇  nk2(B) and 
 ni1(A) ≡  nk1(B) and 

1. ni2(A) ⎯→← p nk2(B) and (the names of ni2(A) and 
nk2(B) have either an exact-match, or a leading-
match with vname ≥ 0.8) 

2. ni2(A) ⎯→⎯p nk2(B) and the name of nk2(B) is a 
sub-match of the name of ni2(A) 

3. ni2(A) ⎯⎯← p nk2(B) and the name of nk2(B) is a 
super-match of the name of ni2(A) 

4. None of above three holds 

- Conclusion: 
1. ni2(A) ≡  nk2(B) 
2. ni2(A) ⊇  nk2(B) 
3. ni2(A) ⊆  nk2(B) 
4. ni2(A) ≈  nk2(B) 
 

Rule 3  considers three ontologies, A, B, and C. 
[Rule 3] If two classes have no direct relationship 

between them, we will refer to a third one, in order to find 
out the semantic bridge between the original two. In theory, 
the more ontologies the semantic bridge comprises, the 
more likely we can succeed in discovering the hidden 
relationships that are not obvious originally. 

- Preconditions: 
ni1(A) ≡  nj1(C) and nj2(C) ≡  nk2(B) and 
nk1(B) ⊆  nk2(B) and nj1(C) ⊆  nj2(C) and 

1. ni1(A) ⎯→← p  nk1(B) and (the names of ni1(A) and 
nk1(B) have either an exact-match, or a leading-
match with vname ≥ 0.8) 

2. ni1(A) ⎯→⎯p  nk1(B) and the name of nk1(B) is a 
sub-match of the name of ni1(A) 



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Ontologies Merged

Pr
e
c
is

i
o
n 

a
n
d 

R
e
ca

l
l

Precision of Equivalent Concepts Recall of Equivalent Concepts

3. ni1(A) ⎯⎯← p  nk1(B) and the name of nk1(B) is a 
super-match of the name of ni1(A) 

4. None of above three holds 

- Conclusion: 
1. ni1(A) ≡  nk1(B) 
2. ni1(A) ⊇  nk1(B) 
3. ni1(A) ⊆  nk1(B) 
4. ni1(A) ≈  nk1(B) 

5. Evaluation and Discussion of Our Results  
Using a set of local ontologies designed by students, we 
evaluated our system in terms of precision, recall, and 
merging convergence. The purpose of the evaluation was 
to determine whether or not PUZZLE generates a 
consensus ontology. 

Figure 3. Characteristics of the Test Ontologies 

5.1. Experimental Setup 
 Configuration of the experimental platform 

Pentium 4 1.8GHz processor/512 MB RAM/40 GB 
hard disk/Windows XP Professional 2002 with SP2 

 Programming environment 
 JBuilder 9.0 with J2SE 1.5.0 

 Test ontologies 
Sixteen ontologies for the domain of “Building” were 
constructed by graduate students in computer science 
and engineering at our university and used for 
evaluating the performance of the PUZZLE system. 
The characteristics of these ontology schemas can be 
found in figure 3.  They had between 10 and 15 
concepts with 6 to 26 properties. 

5.2. Experimental Results and Analysis  
Our experiments simulate having sixteen agents, each of 
which has a local ontology and is willing to communicate 

with the other agents. They try to reconcile their local 
ontologies to form a consensus one. 
5.2.1. Evaluation of the Resultant Ontology 
To decide whether a consensus ontology is obtained, we 
asked two ontology experts to carry out a manual mapping 
and we compared their results with ours. A random order 
was chosen during the process of merging ontologies one 
at a time, and both human and our system carried out the 
merging according to that same order, then both precision 
and recall measurements were applied in the evaluation. 
These two measurements refer to the total number of 
concepts with relationship of subclass, superclass,  
equivalentclass, and sibling up to the point at the end of 
each round of merging. The evaluation result is shown in 
figure 4. Notice that this result is not statistically valid but 
indicative. Both measurements reflect a promising result, 
except when we merged the third and the ninth ontologies. 
We checked the original ontologies and found out that a 
reason for the unsatisfactory result is due to unreasonably 
designed ontologies. For example, in one of the ontologies, 
“HumanBeing” and “InsectSpecie” are the only properties 
of the concept “LivingThing”. 

Figure 4. Precision and Recall Measurements of Resultant 
Ontology 
 
5.2.2. Analysis of Merging Convergence 
One hypothesis is that as each additional ontology is 
merged into a consensus one, there should be fewer new 
items (concept, relationship, or property) added to the 
consensus. To test this hypothesis, the following 
experiment has been conducted. We calculated the number 
of newly discovered information when the first, second, 
fifth, tenth, twelfth, thirteenth, and fifteenth ontologies 
were merged. Figure 5 shows the results of this 
experiment, which verifies the hypothesis. 

Out of the 16 ontologies we had available for our 
experiments, we considered all possible combinations of 
the order by which they could be merged, in order to 
remove any bias that might be introduced by the presence 
of unusual ontology samples.  This is a huge number; for 
example, there are 1680 combinations when the second 
ontology is to be merged, and 25000 for the fifth one. It is 
impossible to try all these orders. Our solution is that if the 
population size is less than or equal to 30 we try all 
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possible orders, otherwise we randomly choose a sample 
space of size 30. 

A monotonically decreasing pattern is shown in figure 5. 
As the number of ontologies already merged increases, the 
number of concepts, relationships, and properties learned 
from additional ontologies decreases. We believe that the 
number of new items will eventually converge to zero, 
although the sixteen ontologies we have available for this 
experiment are not enough to verify this belief. 

Figure 5. Merging Convergence Experiment 

 
5.2.3. Other Features of PUZZLE 

- PUZZLE removes redundant is-a links that are 
already specified by the transitivity of the superclass-
subclass relationship. 

- Our use of WordNet increases the accuracy. For 
instance, none of the original ontologies mentioned 
the relationship between the concepts “Monument” 
and “Structure”. However, PUZZLE found out that 
the concept “Monument” is a subclass of the concept 
“Structure”, which is quite reasonable and is an 
additional piece of information added to the merged 
ontology. 

6. Conclusion and Future Work 
Ontology matching is a critical operation in the Semantic 
Web. In this paper, we presented the PUZZLE system, a 
schema-based approach combined with inter-ontology 
reasoning, which reconciles ontologies for applications 
within a single domain. This completely automated 
matching is carried out at the schema level, without a 
previous agreement over the different terminology 
semantics. PUZZLE considers both linguistic and 
contextual features of an ontology concept, integrates 
heuristic knowledge with several matching techniques, and 
incorporates the reasoning among ontologies. A set of 
experiments showed a promising result from this system. 
Note that the resultant ontology represents a consensus 

model of a domain, but not necessarily a correct model. 
The possible incorrectness comes from the unreasonable 
(wrong) design of original ontologies. 

Several remaining tasks are envisioned. We plan to 
adopt machine learning techniques to obtain more accurate 
results; take into consideration other relationships such as 
partOf, hasPart, causeOf, and hasCause; integrate the 
OWL Validator into our system; analyze the time 
complexity of the algorithm; and test our system against 
other well-known ones in ontology matching, by using 
more general ontology libraries. 
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