
Context-aware Policy Matching in Event-driven Architecture

Shao-you Cheng Wan-rong Jih Jane Yung-jen Hsu
r93070@csie.ntu.edu.tw jih@agents.csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw

Computer Science and Information Engineering,
National Taiwan University, Taiwan

Motivation
Applications for supporting pervasive computing and agility
are the current trend in software development. The service-
oriented architecture (SOA) enables connection between
consumers and service providers in a loosely-coupled way
to improve flexibility and extensibility. This architecture is
static, which utilizes predefined sequences of actions and
fixed policies. Ongoing processes cannot adapt to dynamic
changes in the environmental conditions or context.

Imagine the situation where a real estate broker shows her
client a house for sale, matching the preference profile pro-
vided by the potential buyer. While the buyer likes the gen-
eral location of the house, he considers it unacceptable due
to the unexpected traffic noise from a nearby street. Instead
of proceeding with the original plan to show another house
on the same street, an experienced broker should adjust the
plan in light of this additional constraint. The broker con-
nects to the multiple listing service with her mobile device
and downloads a newly listed house within minutes of the
current location that better satisfies the client’s requirements.

Such a scenario can facilitate the introduction of events
into SOA (He 2003). Real-time changes are modeled as
events, which in turn trigger changes of states for the work-
flow to meet the business needs. In this scenario, events can
be ”shows client a house”, ”add client’s requirements”, etc.

Introduction
This research explores the role of context-aware policy
matching in an event-driven architecture (EDA). In partic-
ular, a context-aware rule engine is adopted to derive con-
clusions based on the current contexts and business policies.
Figure 1 shows the functional modules of the prototype de-
signed to demonstrate the advantages of the proposed ap-
proach. In the Underlying Architecture layer, standard SOA
is combined with EDA. The Context-Aware Rule Engine
layer consists of three distinct agents for collecting prefer-
ence profiles, ambient or context information, and dynamic
events. All information collected will be forwarded to the
Rule Engine, augmented with the Rule Repository and Con-
text Ontology. Results from the Rule Engine will be given
to the Action Agent that performs the desired sequence of

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

actions. The following sections contain detailed description
of each module.

Action Agent

Rule Repository Rule Engine Context Ontology

Profile Agent Context Agent Event Agent

SOA EDA

Context-Aware

Rule Engine

Underlying

Architecture

Figure 1: Context-aware policy matching framework

Event-driven Architecture
The SOA use a simple and clear interface to bind all par-
ticipating software components and provides service reuse.
However, it lacks proactive ability. Event notification is the
core of EDA, it can tightly bind services, events, and con-
sumers in a dynamic environment. Events are more likely
to complement, not replace, services in SOA. Since EDA
has been touted as the “the next big thing” on the horizon
of software development methodology (Schulte 2004). It
is generally believed that event-driven services under SOA
gain benefits from the features of both architectures (Hanson
2005).

Conventional event-driven design is also referred to as
message-based systems, where a message here is a form of
an event. Specifications of WS-Notification family and WS-
Eventing define the standard Web services approaches for
event handling. When events occur, as shown in Figure 2,
service producers publish the messages which will be deliv-
ered, e.g. via publish-and-subscribe, to the event consumers.

Context-Aware Rule Engine
The proposed framework utilizes the Jess rule en-
gine (Friedman-Hill 2005) to provide inference results. Jess
processes the rules and facts using the Rete algorithm (Forgy
1982). User preferences are represented as policy rules that
are matched in the reasoning process.

Contexts refer to the various dynamic aspects of the en-
vironment, for example, location, time, and people (Dey



Providers

Consumers

User
Profiles

Sink Sink Sink Sink…

Service

Message Channel
and

Content Matching

Publish

Subscribe

Content
Matching

Content
Matching

… …

Send

Receive Receive

PublishSend

Subscribe

Service Service Service
Service
Policies

Sink Sink

…

Events
Product announcement Top news

New arrival Special offer Season discount

Stock price

… …

Figure 2: Message-based event-driven architecture

2001). Static rules cannot react to the dynamically chang-
ing contexts. As a result, context-aware rules are defined to
use dynamic facts in the knowledge base, which may result
in different conclusions depending on the current context.
In our previous work, we successfully implemented context-
aware rule-based reasoning on Java-enabled mobile devices,
such as the iPAQ, to perform access control of sensitive in-
formation (Jih, Cheng, & Hsu 2005).

A context agent monitors and perceives any environmen-
tal changes. Figure 3 shows that context information may
be captured by various multi-modal sensors, such as GPS or
RFID. The context agent filters the contexts that have been
detected, passing the selected contexts to the rule engine.
Similarly, the event agent perceives and filters the relevant
events of its surrounding area, and the profile agent keeps
track of the user’s preferences.

Context-Aware

Policy Matching

Context-Aware Rule Engine

Rules

Policies
Rule Engine

Fact KB

Context KB

Context Agent

Contexts
location people

time
target activity

Contexts
place person

time target action

Inference

Services

Processes
Events

Plans

…

… Context

Ontology

Figure 3: Context-aware rule engine

Now, let’s examine the scenario of the real estate broker
again. The buyer’s rejection of the current house generates
two events. First, the buyer is not satisfied with the choice,
so he needs additional recommendations. Second, the buyer

preference profile is incomplete, and should be modified to
reflect his preference for a quiet location. The former event
triggers the broker’s mobile device to request for additional
listing from the server, subject to successful matching be-
tween the updated preference profile and updated new list-
ing.

When contexts are encoded in the rule sets, inconsistency
in the terminology is not only confusing, but also leads to
incorrect reasoning outcomes. Given that most useful con-
texts are tightly related to the problem domain (e.g. real
estate), ontology can be used to bridge the semantic gap
among different vocabularies. For example, while location
is a common component of context defined in many appli-
cations, sometimes it is referred to as place, space, or area,
and so on. A context ontology helps generate a complete
model of the different contexts (H.Wang et al. 2004) for a
given domain. A specific context might directly derive from
a more generic one, aggregate to a complex context, or up
to an abstract context. Moreover, the context ontology will
support hierarchical views of contexts (Gu et al. 2004) to
improve the reasoning power of the rule engine.

Conclusion
This paper describes the design of a proposed framework for
deploying a context-aware rule engine to the event-driven
services platform in order to provide agile and real-time ser-
vices. The design uses an agent architecture and a rule en-
gine for flexibility and scalability in software development.
A context ontology is utilized to resolve inconsistent vocab-
ularies in knowledge sharing and rule merging.

References
Dey, A. K. 2001. Understanding and using context. Per-
sonal Ubiquitous Computing 5(1):4–7.
Forgy, C. 1982. Rete: A fast algorithm for the many pat-
terns/many objects match problem. Artificial Intelligence
19(1):17–37.
Friedman-Hill, E. 2005. Jess, the rule engine for the java
platform. Sandia National Laboratories.
Gu, T.; Wang, X. H.; Pung, H. K.; and Zhang, D. Q. 2004.
An ontology-based context model in intelligent environ-
ments. In Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference,
270–275.
Hanson, J. 2005. Event-driven services in soa. JavaWorld.
He, H. 2003. What is service-oriented architecture?
O’Reilly Web services.XML.com.
H.Wang, X.; Gu, T.; Zhang, D. Q.; and Pung, H. K. 2004.
Ontology based context modeling and reasoning using owl.
In Proceedings of Workshop on Context Modeling and Rea-
soning(CoMoRea’04), 18–22.
Jih, W. R.; Cheng, S. Y.; and Hsu, J. Y. J. 2005. Context-
aware access control on pervasive healthcare. In EEE’05
Workshop: Mobility, Agents, and Mobile Services (MAM).
Schulte, R. 2004. Event-driven architecture: The next big
thing. Application Integration and Web Services Summit.
Gartner, Inc.


