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Abstract. Simple ontology alignments, largely studied in the literature, link a single entity of a source ontology to a single entity
of a target ontology. One of the limitations of these alignments is, however, their lack of expressiveness which can be overcome
by complex alignments. While diverse state-of-the-art surveys mainly review the matching approaches in general, to the best
of our knowledge, there is no study taking the specificities of the complex matching problem. In this paper, an overview of the
different complex matching approaches is provided. This survey proposes a classification of the complex matching approaches
based on their specificities (i.e. type of correspondences, guiding structure). The evaluation aspects and the limitations of these
approaches are also discussed. Insights for future work in the field are provided.
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1. Introduction

Ontology matching is an essential task for the man-
agement of the semantic heterogeneity in open en-
vironments. This task is often associated with the
schema matching problem [1] as they share the same
goal: interoperability. Largely speaking, the match-
ing process aims at generating a set of correspon-
dences (i.e., an alignment) between the entities of dif-
ferent knowledge representation models (e.g., ontolo-
gies, schemata, etc.). Two ‘paradigms’ organise the
field. While approaches generating simple correspon-
dences are limited to matching single entities (i.e.,
linking a single entity from a source ontology to a sin-
gle entity of a target ontology), complex matching ap-
proaches are able to generate correspondences which
express the relationships between entities from differ-
ent ontologies better.

With the increasing amount of knowledge sources
made available on the Linked Open Data (LOD) and
their variety of modelling choices, the relationships be-
tween entities of these sources are required to be more
expressive. Simple correspondences (binary links) are
not expressive enough to fully overcome ontology con-
ceptual heterogeneity. Earlier works have introduced
the need for complex alignments and solutions for it,
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not only in terms of automatism, but as of represen-
tation and management [2]. However, currently, very
few complex alignments are available and published
on the LOD. One of the reason is the difficulty of pro-
ducing and evaluate such alignments. This is corrobo-
rated in [3], where a survey on ontology matching re-
searchers and future challenges in the field have been
discussed. They agree on the fact that there is a need to
“automatically discover complex relations, instead of
1:1”.

Despite this fact, different complex approaches
have emerged in the literature, adopting a diversity of
matching strategies and dealing with different knowl-
edge representation models (from database schemata,
taxonomies to heavy ontologies). Applications con-
suming such complex alignments have been proposed
for different tasks [4], data translation [5], ontology
merging [6], ontology evolution [7].

Diverse surveys in the literature have been focused
on the different aspects of the schema and ontol-
ogy matching [1, 3, 8–13] without paying attention to
the specificities of complex matching (i.e., underlying
strategy, structure of complex correspondences, etc.).
The aim of this survey is to provide an overview of
the complex matching approaches dealing with differ-
ent kinds of knowledge representation models such as
ontologies, XML schemata, database schemata, etc. A
classification of the approaches based on the specifici-
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(a) o1

(b) o2

(c) o3

Fig. 1. Example ontologies. The format used to represent the ontolo-
gies is described in [14]

ties of complex alignments is proposed. The evaluation
aspects of these approaches are also overviewed. Lim-
itations of both approaches and evaluations are dis-
cussed and insights for future work in the field are pro-
vided, in particular to foster the generation of complex
alignments on the LOD.

This paper is organised as follows. After back-
ground definitions (§2), a classification of complex
matching approaches is proposed (§3), followed by
a description of state-of-the-art approaches (§4) and
their evaluation (§5). The example presented in the
next section gives an intuition on how complex align-
ments can be used, and why they are necessary.

A motivating example

Consider three toy ontologies o1, o2 and o3 illus-
trated in Figure 1, each ontology being used for de-

scribing the data of a given conference. Imagine that
the three conferences merge into one event and that
the three knowledge bases need to be queried by a
unique software. To make the knowledge available for
this software, different solutions are possible: translate
the data of two knowledge bases according to the third
ontology, merge the three ontologies and the knowl-
edge bases, rewrite each query asked by the software
against a dataset into queries adapted to the two others,
etc. Each solution has its pros and cons, but in all cases
correspondences between entities of each ontology can
help automatising the task.

Links between single entities of the different ontolo-
gies can be expressed. The class o2:Paper corresponds
to the class o1:Paper or the class o3:Paper. The same
kind of simple correspondence can be established be-
tween the class o2:Person and o1:Person (the notion of
Person is not considered in o3). However, to express
the links between the price of a paper in Dollars and the
price of a paper in Euro (1.), accepted papers in each
dataset (2.)(3.) and the relations expressed between a
paper and its author (4.), complex correspondences are
needed :

1. ∀x,y, o1:priceInDollars(x,y) ≡
o2:priceInEuro(x,conversionFunction(y))

2. ∀x, o1:AcceptedPaper(x) ≡ o2:accepted(x,true)
3. ∀x, o3:hasDecision(x,y) ∧ o3:Acceptance(y) ≡

o1:AcceptedPaper(x)
4. ∀x,y, o1:writtenBy(x,y) ≡ o2:authorOf(y,x)

With the established simple and complex correspon-
dences all the available knowledge in the different
bases can be accessed. For example, in the case of the
query rewriting solution, considering only simple cor-
respondences such as done in [5] will lead to a loss
in information when searching for all the authors of
an accepted paper. Approaches such as [4, 15, 16] will
retrieve information by processing the complex corre-
spondence (2). Such approaches are able to automati-
cally transform query Q1 written for o1 into query Q2
written for o2.

Q1:
SELECT ?author WHERE {
?paper rdf:type o1:AcceptedPaper.
?paper o1:writtenBy ?author.

}

Q2:
SELECT ?author WHERE {
?paper rdf:type o1:AcceptedPaper.
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Fig. 2. Various kinds of knowledge representation models sorted by
expressiveness (adapted from [17]).

?paper o1:writtenBy ?author.
}

2. Background

In this section the scope of this study is specified and
the definitions related to alignments are given.

2.1. Knowledge representation models

"An ontology can be viewed as a set of assertions
that are meant to model some particular domain. Usu-
ally, they define a vocabulary used by a particular ap-
plication. In various areas of computer science, there
are different data and conceptual models that can be
thought of as ontologies." [13]. As quoted, the need for
knowledge representation has led to different kinds of
knowledge representation models.

Figure 2 presents the different kinds of models
sorted by expressiveness and found in the literature
dealing with complex matching and which are con-
sidered in this survey. The different levels of expres-
siveness in these knowledge representation models
will influence the matching techniques. An approach
can match two models of the same kind (e.g., XML
schema to XML schema) or of different kinds (e.g.,
DB schema to DL ontology).

Complex alignments can also occur between repre-
sentation of other objects such as business processes
[18]. As focus of this survey is knowledge representa-
tion, therefore, these approaches are out of the scope
of this study.

2.2. Expressions

Before the definition of alignments, the definition of
expressions, which will serve to define the notion of
correspondences, is given.

A simple expression is composed of a single entity
represented by its unique identifier (e.g. an IRI for on-
tologies). For example, the IRI o1:Paper is a simple
expression of o1.

A complex expression is composed of at least one
entity on which a constructor or a transformation func-
tion is applied. For example, ∀x, o2:accepted(x,true)
is a complex expression which represents all the pa-
pers having the value true for the o2:accepted prop-
erty . The constructor used here is a value restric-
tion constructor. A constructor is a logic construc-
tor (union, intersection, inverse, transitivity, etc.) or a
restriction constructor (cardinality restriction, type re-
striction, value restriction, etc.).

A transformation function is a function that mod-
ifies the values of a literal field. It can be an aggrega-
tion function (e.g. string concatenation, sum of inte-
gers, etc.), a conversion function (e.g. metric conver-
sion, etc.), etc.

In domains such as ontology evolution [7, 19], other
constructors and transformation functions exist. How-
ever, those are out of the scope of this survey.

2.3. Alignment and correspondence

As defined in [13], ontology matching is the pro-
cess of generating an ontology alignment A between
two ontologies: a source ontology o1 and a target on-
tology o21.

Definition 1. An ontology alignment A is directional,
denoted Ao1→o2 . Ao1→o2 is a set of correspondences
Ao1→o2 = {c1, c2, ..., cn}.

Definition 2. A correspondence ci is a triple 〈eo1 , eo2 , r〉
which can be written eo1 r eo2 . eo1 and eo2 are the
members of the correspondence: they can be simple or
complex expressions with entities from respectively o1
and o2:

– if the correspondence ci is simple, both eo1 and
eo2 are simple expressions;

– if the correspondence is complex, at least one of
eo1 or eo2 is a complex expression;

– r is a relation, e.g., equivalence (≡), more gen-
eral (w), more specific (v), disjointedness (⊥),
holding between eo1 and eo2 ;

– additionally, a value n (typically in [0,1]) can be
assigned to ci indicating the degree of confidence
that the relation r holds between eo1 and eo2 .

1The focus here is pairwise ontology matching and compound on-
tology matching [20] is out of the scope of this paper.
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One can indicate if each member of the correspon-
dence is a simple expression, noted s, or a complex ex-
pression, noted c.

A simple correspondence is always (s:s) whereas a
complex correspondence can be (s:c), (c:s) or (c:c).
The (1:1), (1:n), (m:1), (m:n) notations have been used
for the same purpose in the literature [11] (1 for s and
m or n for c). However they can be misinterpreted as
the alignment arity or multiplicity [21].

In the following, are provided some examples of
complex correspondences based on the definitions
above and the motivating example ontologies (Figure
1).

1. c1 = ∀x, o1:Person(x) ≡ o2:Person(x) is a (s:s)
simple correspondence.

2. c2 = ∀x,y, o1:priceInDollars(x,y) ≡
o2:priceInEuro(x,conversionFunction(y)) is a (s:c)
complex correspondence with a transformation
function (here presented in the conversionFunc-
tion(y) that states that conversionFunction(y) =
changeRate× y).

3. c3 = ∀x, o3:hasDecision(x,y) ∧ o3:Acceptance(y)
≡ o1:AcceptedPaper(x) is a (c:s) complex corre-
spondence with constructors. Note that o3:Paper(x)
is not specified in the left member of the corre-
spondence because o3:Paper is the domain of the
o3:hasDecision property (c.f. figure 1c). There-
fore, o3:Paper(x) is implied in the left member.

4. c4 = ∀x,y, o1:writtenBy(x,y) ≡ o2:authorOf(y,x)
is a (s:c) complex correspondence with the inver-
sion constructor.

5. c5 = ∀x, o2:accepted(x,true) ≡
∃y, o3:hasDecision(x,y) ∧ o3:Acceptance(y) is a
(c:c) complex correspondence with constructors.

In opposition to a simple alignment, a complex
alignment contains at least one complex correspon-
dence. Complex ontology matching is the process of
generating a complex alignment between ontologies.
The approaches for generating such kind of alignment
are discussed in the next section.

3. Classification of complex matchers

Ontology matching approaches have been classified
in various surveys [1, 3, 8–13]. These classifications
however do not address the specificities of the com-
plex approaches. After giving an overview of the main
ontology matching approaches classifications (§3.1),
axis for complex matching approaches classification
are presented (§3.2).

3.1. Classifications of ontology matching approaches

Euzenat and Shvaiko [1, 13] define three matching
dimensions: input, process and output which will be
the guiding thread to present the classifications. Most
of the classifications so far focus on the input and pro-
cess dimensions [1, 9, 11–13].

Regarding the input dimension, the instance vs on-
tology classification (called instance vs schema in [11])
divides the matchers into those which deal with in-
formation from the T Box and those which deal with
the ABox. Rahm et al. [11] also consider as input the
type of auxiliary information used by the approaches
(thesaurii, etc.). For the process dimension, Rahm et
al. [11] propose classification axis such as element vs
structure, linguistic vs constraint-based. All of these
classification axis are put together into a taxonomy.

The classification of Rahm et al. [11] has been
developed and extended by Euzenat and Shvaiko in
[1, 13]. For instance, they distinguish whether an in-
put is considered syntactically or semantically by the
approach. The two-ways taxonomy ends in basic ap-
proach strategies (e.g. string-based, model-based, for-
mal resource-based, etc.).

The classification of schema matching techniques
of Doan et al. [12] separates rule-based techniques
from learning-based techniques. Considering both in-
put and process dimensions, rule-based techniques
only exploit schema-level information in specific rules
while learning-based techniques may exploit data in-
stance information with machine-learning or statistical
analysis.

Noy [9] proposes two main categories of ontology
matching approaches: the first one includes the match-
ing process is guided by a top-level ontology from
which the source and target ontologies derive; the sec-
ond one includes the heuristic-based and machine-
learning techniques.

Regarding the output dimension of the matching ap-
proaches, Rahm et al. [11] considers the output align-
ment arity as a characteristic of the approaches which
could be integrated into its taxonomy.

In summary, among the ontology matching classifi-
cations so far, the one from Euzenat and Shvaiko [13]
is the most extensive (all the others can be represented
in this classification). However, even if considered, the
output dimension of the matching approaches is hardly
a basis for classification, whereas it becomes of inter-
est when considering complex correspondences.

More generally, the classifications of ontology match-
ing cited above do not address the specificities of the
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complex matching problem. The characteristics of the
processes leading to the generation of complex corre-
spondences need to be studied, in particular the kind
of structure guiding the discovery of correspondences.
The next section presents classification axis for com-
plex ontology matching approaches.

3.2. Classification for complex matching approaches

The specificities of the complex matching approaches
rely on their output and their process. These are the
two axis of the proposed classification. In this sec-
tion, the different types of output (types of correspon-
dences) and the structures used in the process to guide
the correspondence detection are presented (guiding
structure).

Type of correspondence. The correspondences (out-
put of the matching approaches) are divided into three
main categories according to their type: logical rela-
tions, transformation functions and blocks (Figure 4).
The logical relations category stands for correspon-
dences whose complex members are expressed with
logical constructors only. In contrast, the transforma-
tion functions category includes the approaches that
generate correspondences with transformation func-
tions in its members. The blocks correspondences
gather entities using a grouping constructor in their
members (clusters of entities), not specifying a seman-
tic relation between them. Note that in theory, a corre-
spondence could have members expressed with trans-
formation functions combined with logical construc-
tors but no approach able to generate such kind of cor-
respondences was found. However, some approaches
are able to generated both types independent of each
other, as depicted in Figure 4.

Guiding structures. These categories aim at classi-
fying the (complex) matching approaches based on
their process dimension. In particular, it focuses on the
structure on which the process generating the corre-
spondences relies:

– Atomic patterns The approaches in this category
consider the correspondence as an instanciation
of an atomic pattern, such as the ones defined
by Scharffe [22]. An atomic pattern is a template
of a correspondence. A template can represent
logical relation or transformation function corre-
spondences. For example, an approach looking
for correspondences following this exact pattern:
∀x, o1:A(x) ≡ ∃y o2:b(x,y) ∧ o2:C(y) falls into

this category and in the logical relation type of
correspondence. An approach searching for ∀x,y,
o1:a(x,y) v ∃ y1,y2o2:b(x,y1) ∧ o2:c(x,y2) ∧ (y =
y1+ y2) falls into this category and in the trans-
formation function type of correspondence.

– Composite patterns The approaches in this cat-
egory aim at finding repetitive compositions of
an atomic pattern. As for the atomic patterns, the
composite patterns can represent both logical re-
lations and transformation functions correspon-
dence patterns. For example, an approach look-
ing for correspondences of the form ∀x, o1:A(x)
≡ o2:B(x) ∨ o2:C(x) ∨ o2:D(x)..., where o1:A,
o2:B, o2:C, o2:D, etc. are classes and the num-
ber of unions in the right member of correspon-
dences is not a-priori defined by the approach,
falls into this category. Correspondences repre-
senting string concatenation of unlimited number
of properties also fall into this category and in the
transformation function type of correspondence.

– Path The approaches in this category detect the
correspondences using path-finding algorithms.
The resulting correspondence is a property path in
o1 put in relation with a path in o2. For example,
an approach looking for a path between two pairs
of aligned instances described by o1 resp. o2 falls
into this category.

– Tree The approaches in this category rely on tree
structures for correspondence detection. The tree
structure can either be a help to the process or
the tree structure of a schema. For example, in
genetic programming based approaches, a tree
structure is used for the construction of the cor-
respondences. In other approaches, a schema is
considered as a tree and the approach consists in
finding the smallest equivalent tree in an ontol-
ogy.

– No structure As opposite to the other approaches,
the approaches of this category do not rely on
a structure to guide the correspondence genera-
tion. Instead, they discover correspondences more
freely.

The process of complex ontology matching also has
a dimension of members expressions pre-definition.
Three categories are proposed regarding if one, both
or none members of the correspondences follows an
expression template defined by the approach :

– The fixed to fixed category includes the match-
ing approaches that always produce correspon-
dences with fixed members expressions. Atomic
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patterns-based approaches generate fixed to fixed
correspondences as both members’ expressions
are defined by the pattern.

– The fixed to unfixed members expression cate-
gory covers the matching approaches for which
one of the members of the correspondence will al-
ways follow the same expression template, while
the expression of the other member may vary. For
example, an approach aiming at traducing each
property of an ontology into a path falls into this
category: one of the member will always be one
property while the other will be a path of a-priori
undefined length.

– The unfixed to unfixed members expression cat-
egory includes the approaches that output cor-
respondences whose members have an unde-
fined expression before-hand. For example, an
approach aiming at finding similar paths in two
ontologies falls into this category: both members
have a-priori undefined length.

A matching approach can exploit many different
matching strategy to find complex correspondences.
In the following, the matching strategies of the ap-
proaches are classified on their guiding structure.
Therefore, the same approach can appear in multiple
sections.

4. Complex alignment approaches

The following sections present the approaches ac-
cording to our classification. Although these sections
are organised according to the guiding structure (Fig-
ure 3), a reference to the kind of output and members
expression pre-definition is made in the text. The ap-
proaches are detailed in paragraphs whose title follows
a template : Name [ref] Type of knowledge representa-
tion models, [(s:c), (c:s), (c:c)].

4.1. Atomic patterns

Atomic patterns are used in approaches to detect
logical relations as well as transformation functions
relations. Table 1 shows the atomic patterns of the
correspondences which guide the state-of-the-art ap-
proaches of this category.

The atomic pattern based approaches have different
strategies for the definition of their patterns. For in-
stance, some rely on the patterns defined by one of the
ontologies to align [36], others approaches have their

Table 1
Atomic patterns per approach

Work Patterns

Ritze2009 [23]
Class by Attribute Type, Class by Inverse
Attribute Type, Class by Attribute Value,
Property Chain

Ritze2010 [24]
Inverse property, Class by Attribute Type,
Class by Inverse Attribute Type, Class by
Attribute Value

Svab2009 [31] N-ary relation

Rouces2016 [36] Linguistic patterns of FrameBase

Walshe2016
(Bayes-ReCCE)
[25]

Class by Attribute Value

Jiang2016
(KAOM) [43]

Linear Regression

Dhamankar2004
(iMAP) [45]

Conversion functions predefined, basic
arithmetic properties

Jimenez2015
(BootOX) [40]

RDB schema properties to OWL axioms

own pattern library [23, 25, 31, 40, 43, 45]. Two main
detection techniques appear: structuro-linguistic con-
ditions (called matching patterns defined in [55]) [23,
24, 31, 36, 40], and statistical measures [25, 43, 45].
These approaches are detailed in the following.

Ritze et al. [23, 24] Ontology to Ontology, (s:c), In
[23, 24], Ritze et al. propose a set of matching condi-
tions to detect correspondence patterns: Class by At-
tribute Value, Class by Attribute Type, Class by In-
verse Attribute Type, Inverse Properties and Property
Chain defined by Scharffe [22]. The conditions are
based on the labels of the ontologies entities, the struc-
tures of these ontologies and the compatibility of the
data-types of data-properties. The matching conditions
to detect these patterns are an input to the matching al-
gorithm. The user can add new matching conditions to
detect other patterns.

The first approach [23] detects the modifier and
head-noun of a label. In the matching conditions, string
similarity (Levenshtein distance) is used to detect a po-
tential relation between two entities (e.g. Acceptance
is similar to Accepted). The improved version of the
matching conditions [24] refines the syntactic part of
the previous work by introducing linguistic analysis
such as detection of antonymy, active form, etc. Vari-
ous linguistic analysis features are studied and incor-
porated in the matching conditions. In Example 1, the
simplified matching conditions to detect inverse prop-
erty states that if the verb phrase of the label of a prop-
erty p1 is the active voice of the verb phrase of a la-
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Correspondence
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Output
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Path
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Composite
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Atomic
patterns
(§4.1)

Tree
(§4.4)

No structure
(§4.5)

Process

Members expression

Fixed to unfixed Unfixed to unfixedFixed to fixed

Fig. 3. Two axis to characterise the complex matching approaches: output and process

bel of an other property p2, then ∀x,y, o1:p1(y,x) v
o2:p2(x,y) is a probable correspondence.

Example 1. Conditions: ∀x,y o1:p1(y,x) v o2:p2(x,y)
iff verb(p1) = active-voice (verb(p2))
Correspondence:
∀x,y o1:writePaper(y,x) v o2:writtenBy(x,y)
because write = active-form(written)

The structural matching conditions are the same for
both approaches. Example 1 is extended with struc-
tural constraints on the range and domain of p1 and p2
: dom(p1) w range(p2) and range(p1) v dom(p2).
The subsumption between range and domains of the
two properties can be detected by inference on the on-
tologies structure linked by the simple reference align-
ment or by an hypernymy relation between the labels.

Šváb-Zamazal and Svátek [31] Ontology to ontol-
ogy, (s:c) This approach is based on structural and
naming conditions to detect N-ary relations as de-
fined by the Semantic Web Best Practice (SWBP)2 in
the source ontology. Then other conditions, similar to
those of [23] (e.g. similarity between two concept’s la-
bels), are used to match the detected N-ary relations
to an object property in the target ontology. This ap-
proach is similar to Ritze et al.’s [23, 24].

2https://www.w3.org/TR/swbp-n-aryRelations/

Rouces et al. [36] Ontology to FrameBase ontology,
(s:c) (c:s) Rouces et al. use FrameBase as a mediator
ontology for complex alignment discovery. FrameBase
is an ontology based on linguistic frames, seen as lin-
guistic patterns in this approach. The approach identi-
fies complex patterns in FrameBase from the linguistic
patterns it describes. For each complex pattern iden-
tified, a corresponding candidate property is created
(see Example 2). The names of the properties of the
source ontology (the one to be aligned to FrameBase)
are pre-processed, for example o1:birthDate becomes
o1:hasBirthDate. The properties of the source ontol-
ogy are then aligned with simple alignments to the can-
didate properties created in FrameBase. The similar-
ity of two properties is calculated based on a bag of
words cosine from the tokenised property names. Once
a source ontology property has been aligned to a cre-
ated property of FrameBase, it is aligned to its corre-
sponding pattern. The originality of this approach, is
that the correspondence patterns on which it relies are
encoded in one of the aligned ontologies (FrameBase).

Example 2. Created property: frame:hasBirthDate(s,o)
Pattern: frame:BirthEvent(e) ∧ frame:hasSubject(e,s)
∧ frame:hasDate(e,o)
Source property: o1:birthDate→ o1:hasBirthDate
Simple correspondence: ∀x,y, o1:hasBirthDate(x,y) ≡
frame:hasBirthDate(x,y)
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Logical relations Transformation functions

Blocks

Ritze et al. [23, 24]

Bayes-ReCCE [25]

Parundekar et al. [26, 27]

Clio [28, 29]CGLUE [30]

Šváb-Zamazal and Svátek [31]

An and Song [32] Hu et al. [33]

MapOnto [34, 35]Rouces et al. [36]

An et al. [37] OntoGrate [6, 38]

ARCMA [39]

BootOX [40]

Xu and Em-
bley [41, 42]

KAOM [43]

Boukottaya and
Vanoirbeek [44] iMAP [45]

Warren and Tompa [46]

COMA++ [47]

Nunes et al. [48]

de Carvalho et al. [49]

DCM [50]

PORSCHE [51]

HSM [52] Wu et al. [53]

BMO [54]

Fig. 4. Classification of the complex matching techniques according to the type of correspondence they output

Correspondence:
∀x,y, o1:birthDate(x,y) ≡ ∃z, frame:BirthEvent(z) ∧
frame:hasSubject(z,x) ∧ frame:hasDate(z,y)

Bayes-ReCCE [25] Ontology to ontology, (s:c) This
approach detects Class Attribute Value Restrictions,
Class Attribute Type (and by extension Class Attribute
Existence) correspondences. Bayes-ReCCE uses the
properties of matched instances of two classes o1:A
and o2:B, with ∀x, o1:A(x) w o2:B(x) in a reference
alignment. The matching problem is transformed into
the feature-selection problem. The common instances
are represented as binary vectors, each feature of the
vector represents the presence of an attribute-value
pair for a given instance. Feature-selection is the pro-
cess of reducing the search space of features (here
attribute-value pairs) to keep only relevant features for

a model (here a classification). A score is given to
each feature. Two metrics are used in the scoring pro-
cess: information gain (with a closed-world assump-
tion) and beta-binomial class prediction metric based
on Bayesian probabilities (compliant with the open-
world assumption). For each class, the top-k best fea-
tures are returned to the user to choose from.

iMAP, Dhamankar et al. [45] Relational database
schema to relational database schema, (c:s) The iMAP
system [45] uses a combination of searchers to dis-
cover simple and complex correspondences between
database schemata. The validity of each correspon-
dence is then checked by a similarity estimator based
on the attributes’ name similarity and a Naive-Bayes
classifier trained on the target data. The correspon-
dences are finally presented to a user who validates or
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invalidates them. Each searcher implements a specific
strategy. Some of the searchers use atomic patterns for
correspondence detection. For instance, the numeric,
category and schema mismatch searchers look for
correspondences fitting given atomic patterns. These
searchers base their confidence in a correspondence on
the data value distribution using the Kullback-Leibler
divergence measure. The unit conversion searcher is
based on string recognition rules in the attributes’
names and data (such as "$", "hour", "kg", etc.). The
searcher finds the best match function from a prede-
fined set of conversion functions.

KAOM, Jiang et al. [43] Ontology to ontology, (s:c)
(c:s) (c:c) KAOM generates transformation function
correspondences and logical relation correspondences.
As the iMap’s system [45], KAOM implements differ-
ent matching strategies: one for detecting transforma-
tion function correspondences, the other for logical re-
lation correspondences. Here is presented its transfor-
mation function correspondence detection approach,
as it uses an atomic pattern. The logical relation corre-
spondence approach is presented in §4.5. The atomic
pattern used is a positive linear transformation func-
tion between numerical data properties p1 and p2 of re-
spectively o1 and o2. As for some of iMAP’s searchers,
a Kullback-Leibler divergence measure on the data
values is used to define the coefficient a of the linear
transformation: p1 = a× p2.

BootOX, Jimenez-Ruiz et al. [40] Database schema
to ontology, (c:s) The BootOX approach [40] produces
correspondences between a relational database schema
and a target ontology via the creation of a "boot-
strapped" ontology. There are two phases to the ap-
proach. In the first phase, an ontology is bootstrapped
from a relational database schema based on a set of
patterns. For example, a non-binary relation table in
the source schema produces a class in the bootstrapped
ontology. The patterns used in this approach lead to
the creation of axioms involving class restrictions in
the bootstrapped ontology. R2RML correspondences
between the relational database and its bootstrapped
ontology are the result of this phase. This boot-
strapped ontology is then aligned with the LogMap
[56] matcher to the target ontology. LogMap relies
on linguistic and structural information to perform the
matching. The juxtaposition of the two alignments pro-
duce a complex alignment between the source database
schema and the target ontology.

Other systems can bootstrap ontologies from rela-
tional database schemata [57, 58] but their aim is not

to align the schema to an ontology. Therefore, they are
out of the scope of this study. In this survey, BootOX
is considered in its LogMap extension form.

4.2. Composite patterns

Composite pattern-based approaches often focus on
one or two types of patterns. Table 2 presents the
different composite pattern types detected by the ap-
proaches.

Some approaches iteratively construct the mem-
ber(s) of the correspondence [27, 30, 39, 45, 46] (text
searcher of iMap). Others first discover atomic pat-
tern correspondences and merge them in a final (non-
iterative) step [26, 47]. Approaches use graph-pattern
matching either as detection conditions [44, 51, 53] or
over the properties of a mediating ontology [41, 42, 45]
(iMap’s date searcher). Finally, [50, 52] start by group-
ing schema attributes before matching the groups.
Even though the holistic approaches [50, 52] produce
block correspondences (of properties only), it has been
decided that these two approaches are composite pat-
tern driven as the grouping phase follows a repetitive
pattern. Some approaches search for composite pat-
terns inside a tree structure [41, 42, 44, 51]. These
approaches could also be classified into tree-guiding
structure. However, as their matching process relies on
the identification of a composite pattern in those trees,
they were classified in this category.

CGLUE, Doan et al. [30] Taxonomy to taxonomy,
(s:c) The GLUE system [30] is specialised in detect-
ing (s:s) correspondences between taxonomies using
machine learning techniques such as joint probability
distribution. CGLUE, also presented in [30] is an ex-
tension of the GLUE system. It can detect (s:c) class
unions in taxonomies such as ∀x, o1:A(x) ≡ o2:B(x) ∨
o2:C(x) ∨ .... To detect these unions, the authors make
a few assumptions such as: the children of any taxo-
nomic node are mutually exclusive and exhaustive. To
find a match to a class o1:A, each class-union of o2 is
considered a potential candidate. The first candidates
are the set of single classes of o2. An adapted beam
search finds the k best candidates according to a simi-
larity score given by the GLUE system. The k best can-
didates are then expanded as unions with the classes
of o2 until no improvement is done on the similarity
score.

Parundekar et al. [27] Ontology to ontology, (s:c)
(c:s) In this approach proposed by Parundekar et
al. [27], the type of correspondences sought is an



10 É. Thiéblin et al. / Survey on complex ontology matching

Table 2
Composite patterns per approach

Work Composite pattern Pattern form

Doan2003 (CGLUE) [30] Class unions ∀x, A(x) ≡ B(x) ∨ C(x) . . .

Parundekar2012 [27] Disjunction of attribute-value pairs ∀x, p(x,v) ≡ p2(x,v2) ∨ p2(x,v3) ∨ . . .

Kaabi2012 (ARCMA) [39] Class intersection ∀x, A(x) ≡ B(x) ∧ C(x) . . .

Parundekar2010 [26] Conjunction of attribute-value pairs ∀x, p(x,v) ∧ p1(x,v1) ∧ . . .≡ p2(x,v2) ∧ p3(x,v3) ∧
. . .

Boukottaya2005 [44] string concatenation, subset merging p1 = concat(p2, p3, . . .) ; p1 = union(p2, p3, . . .)

Xu2003 [41] string concatenation, subset merging p1 = concat(p2, p3, . . .); p1 = union(p2, p3, . . .)

Xu2006 [42] string concatenation, subset merging p1 = concat(p2, p3, . . .); p1 = union(p2, p3, . . .)

Dhamankar2004 (iMAP) [45] string concatenation p1 = concat(p2, p3, . . .)

Warren2006 [46] string concatenation of attribute substrings p1 = concat(substr(p2), substr(p3), . . .)

Arnold2013 (COMA++) [47] string concatenation p1 = concat(p2, p3, . . .)

Wu2004 [53] aggregate or is-a {p1} = is− a{p2, p3, . . .} ;
{p1} = aggregate{p2, p3, . . .}

Saleem2008 (PORSCHE) [51] Bag of properties/blocks {p1} = {p2, p3, . . .}
He2004 (DCM) [50] Bag of properties/blocks {p1, . . .} = {p2, p3, . . .}
Su2006 (HSM) [52] Bag of properties/blocks {p1, . . .} = {p2, p3, . . .}

attribute-value pair matched with an attribute and a
disjunction of its acceptable values. In a first step,
the approach finds correspondences between attribute-
value pairs from the linked instances of the two on-
tologies (instances linked with owl:sameAs predicate).
The number of instances sharing both attribute-value
pairs defines if the correspondence has a subsumption
or equivalence relation. A resulting correspondence is
for instance: ∀x, o1:p1(x,v1) w o2:p2(x,v2). The sec-
ond step of the approach is, for each subsumption cor-
respondence of the previous step, to merge in a union
all the attribute-pairs with a common attribute. The re-
lation of the new correspondence is then re-evaluated
according to the number of instances for each mem-
ber. The final correspondence has the form ∀x, p(x,v)
≡ p2(x,v2) ∨ p2(x,v3) ∨ . . . .

Example 3. First step output:

– ∀x, rdf:type(x,o1:AcceptedPaper)w o2:hasStatus(x,
“accepted”)

– ∀x, rdf:type(x,o1:AcceptedPaper)w o2:hasStatus(x,
“camera-ready”)

Second step output: ∀x, rdf:type(x,o1:AcceptedPaper)
w o2:hasStatus(x, “accepted”)∨ o2:hasStatus(x, “camera-
ready”)

ARCMA, Kaabi et Gargouri [39] Ontology to on-
tology, (s:c) Kaabi et Gargouri [39] propose ARCMA
(Association Rules Complex Matching Approach)
to find correspondences of the form ∀x, o1:A(x) v

o2:B(x) ∧ o2:C(x) ∧ .... A set of terms is associated
with each class: the terms are extracted from the anno-
tations, labels, instance values, instance labels of this
class and its subclasses. The detection of the corre-
spondences rely on existing simple correspondences:
each class of the right member (o2:B(x), o2:C(x), ...)
must be equivalent to a parent of o1:A. The correspon-
dences are then filtered based on a value measuring
how the sets of terms of each member overlap.

Parundekar et al. [26] Ontology to ontology, (s:c)
(c:s) (c:c) Parundekar et al. [26] look for conjunc-
tions of attribute-value pairs, for instance correspon-
dences of the form ∀x, o1:p1(x,v1) ∧ o1:p2(x,v2) ∧
... ≡ o2:p3(x,v3) ∧ o2:p4(x,v4) ∧ ... The approach
starts with pre-processing the two knowledge-bases
described by o1 and o2. Only the common instances
are kept. Properties that cannot contribute to the align-
ment are removed. A set of first correspondences
(the seed hypotheses) are created between attribute-
value pairs. An example of a seed hypothesis is ∀x,
o1:p1(x,v1) ≡ o2:p2(x,v2). Starting from these seed
hypotheses, the approach implements a heuristic in
depth-first exploration of the search space (all the
attribute-value pairs conjunctions). The search space
is considered as a tree, the root being a seed hypoth-
esis. Each node is an extended version of its parent:
an attribute-value pair is added to one member of the
parent. The search-tree is pruned following rules based
on the variation of instances described by each mem-
ber. For example if the attribute-value added in a node
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is too restrictive or if the support of the ancestor node
is the same as the current node, the children of the
current node are not explored. The final set of corre-
spondences is filtered to avoid redundancy. The num-
ber of instances of each member will determine the
correspondence’s relation.

Boukottaya and Vanoirbeek [44] XML schema to
XML schema, (s:c) (c:s) (c:c) Boukottaya et Vanoir-
beek [44] propose an XML schema matching approach
based on the schema tree and linguistic layer of the
schema. This approach finds simple correspondences
as well as complex ones. The complex ones follow a
few patterns such as merge/split, union/selection and
join. The first step calculates a similarity between
nodes of the source and target schemata. A linguis-
tic similarity is calculated. A datatype similarity is
then computed for the linguistically similar nodes. The
union/selection and merge/split correspondences are
detected based on graph-mapping. If a node s:address
of the source schema with children leaf nodes (s:street,
s:city) matches a leaf node t:address of the target
schema, then a concatenation of the children nodes can
be matched to the target node. The correspondences
are filtered based on their structural context: ancestors
and children nodes. The access path of each node is
written in the final correspondences.

iMAP, Dhamankar et al. [45] Relational database
schema to relational database schema, (c:s) As seen
in the previous section, the iMAP system [45] uses
a combination of searchers to discover simple and
complex correspondences between database schemata.
Some of the searchers, use composite patterns for cor-
respondence detection. For instance, the text searcher
looks for correspondences between an attribute from
the target schema and concatenation of string attributes
from the source schema. This searcher starts from
ranking all possible simple correspondences between
attributes. For that, a Naive-Bayes classifier is trained
on the target data values to classify whether a given
value can be from the target attribute, the average score
given by this classifier to a correspondence is used for
the ranking. Once the k best simple correspondences
are picked, the process is reiterated but with concate-
nations of each picked source attribute and each other
source attribute as base correspondences. These new
correspondences are scored, picked, and so on.

Another searcher implements a composite pattern
search: the date searcher. It uses a date ontology as
mediating schema containing date concepts (e.g. date,
month, year, etc.) and the relations between them (e.g.

concatenation, subset, etc.). The attributes of each
schema are matched to the date ontologies’ entities and
the relations between them are reported as transfor-
mation functions in the resulting correspondence. The
date ontology contains the composite patterns which
are discovered by simple graph matching.

COMA++, Arnold [47] Ontology to ontology, (s:c)
As an improvement of the COMA system [59], Arnold
[47] discusses a solution based on a lexical strategy
on the ontologies’ labels: n (s:s) data-property corre-
spondences with the same entity as target (or source),
could be merged into a complex one. The initial ap-
proach generates simple correspondences with expres-
sive relations such as meronymy part-of or holonymy
has-a besides usual relations (w, v, ≡). The exten-
sion for transforming the simple correspondences into
a complex one can take into account the type of data-
property (e.g. concatenation for string properties or
sum for numeric properties). The following example
shows a complex correspondence inferred from simple
correspondences.

Example 4. Correspondences with same member:

– o1:firstName part-of o2:fullName
– o1:lastName part-of o2:fullName

Aggregation in a new correspondence:
concat(o1:firstName, o1:lastName) = o2:fullName

Xu and Embley [41, 42] Schema to schema, (s:c)
(c:s) Xu and Embley [41] propose a similar approach
to iMap’s date matcher. It uses a user-specified do-
main ontology as mediator between the two schemata
to align. This ontology contains relations between con-
cepts such as composition, subsumption, etc. It is pop-
ulated thanks to regular expressions applied on source
and target data. Simple correspondences (equivalence
or subsumption) are first detected using recognition of
expected values techniques between the source schema
(resp. target) attributes and the ontology’s concepts.
These simple correspondences are kept for the next
phase if the number of common values between the
schema attribute and the ontology concept are above a
threshold.

The relation between the ontology concepts in sim-
ple schema-ontology correspondences will become the
transformation functions between the attributes they
are linked to. For example, s:street s:city are two at-
tributes from the source schema and t:address is an at-
tribute from the target, schema. In the first matching
phase, simple correspondences are drawn with con-
cepts from the mediating ontology o:
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– o:Address = t:address
– o:Street = s:street
– o:City = s:city

In o, the concept o:Address has a composition relation
with the concepts o:Street, o:City. Therefore, the out-
put complex correspondence will state that t:address is
a string concatenation of s:street and s:city.

The later version of Xu and Embley’s approach [42]
completes this work with two new confidence calcula-
tions for simple attribute matching. The two new cal-
culations do not consider a mediating ontology.

Warren and Tompa [46] Database schema to database
schema, (c:s) Warren and Tompa [46] focus on finding
correspondences between string columns of databases.
They deal with correspondences that translate a con-
catenation of column sub-strings. The approach starts
by ranking the columns according to the q-grams (se-
quence of q characters) of its values found in target
column. Then it looks for matched instances (rows)
according to a tf-idf formula on co-occurring q-grams.
The column that has the smallest editing distance from
the target column is put in an initial translation rule.
This translation rule is then iteratively refined with ad-
dition of sub-strings from other columns.

Wu et al. [53] Database schema to database schema,
(s:c) (c:s) Wu et al. [53] propose a clustering ap-
proach to find synonym alignments between database
schemata based on web query interfaces. It considers
the hierarchical structure of an HTML form. It also
considers the values taken in the database rows as the
domain of an attribute.

The first step consists in finding complex corre-
spondences of the form (s:c) or (c:s) in which the
attribute in the simple member is called the single-
ton attribute and the attributes in the complex mem-
ber, the grouped attributes. Two types of correspon-
dences are sought: aggregate and is-a. An aggre-
gate correspondence shows a value concatenation:
{date}=aggregate{day,month,year}. A is-a correspon-
dence shows a union, sum, etc. of these values:
{passengers}={adults,children,seniors}. The detection
conditions of these correspondences are based on the
taxonomy: the label of the parent node of the grouped
attributes must be similar to the one of the singleton at-
tribute. For is-a, the grouped attributes’ domains must
be similar to the singleton’s one, whereas for aggre-
gate, the domain of each grouped attribute must be
similar to a subset of the singleton attribute’s domain.

Then a clustering technique computes simple cor-
respondences in a holistic manner between the inter-
faces. Simple correspondences and preliminary com-
plex correspondences are merged. Other complex
correspondences may be inferred from this merging
phase. Even if the simple matching process is holis-
tic, the detection of the complex correspondences is
made one interface to one interface. Thus, the output
correspondences are one schema to one schema.

The final step of the approach is user refinement.
The system asks the user questions to refine the align-
ment and tune the parameters of the clustering algo-
rithm and similarity calculation.

PORSCHE, Saleem et al. [51] XML schema to XML
schema, (s:c) (c:s) PORSCHE (Performance ORiented
SCHEma Matching) [51] matches a set of schema trees
(schemata with a single root) at once. It is a holistic
approach. This approach outputs a mediating schema
(all the schema merged) as well as correspondences
from each source schema to the mediating schema. An
initial mediating schema is chosen among the source
schema trees. It is then extended by the approach. For
each node of each schema, the approach tries to find
a corresponding node in the mediating schema. The
tokenised labels of the nodes are compared with help
of an abbreviation table. The context of a node is also
taken into account for the merging, where the ances-
tors of the nodes must match. The pattern used for the
detection of the complex correspondences is: if a non-
leaf node vn is similar to a leaf node vl, a (c:s) corre-
spondence is created between vl and the leaf nodes de-
scending from vn. The produced correspondences are
coherent (leaves with leaves) but approximate. Indeed,
the context of a node is not checked in the case of a
(s:c) leaf-non-leaf correspondence. No transformation
function is specified in the correspondence. They come
as bags of properties.

The two following approaches are also holistic: they
match many schemata at once. They rely on web query
interfaces for their matching.

DCM, He et al. [50] Database schema to database
schema, (s:c) (c:s) (c:c) DCM (Dual Correlation Min-
ing) [50] is a holistic schema matching system. It
alignes database schemata attributes through the web
query interfaces of these databases. It uses data-mining
techniques (positive and negative correlation mining)
on a corpus of web query interfaces to discover com-
plex correspondences. The approach uses attribute co-
occurrence frequency as a feature for the correlation
algorithm. The first step of the algorithm is to mine
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frequently co-occurring attributes from the web query
interfaces. These attributes are put together as groups
(e.g. {firstName, lastName}). In the second step, each
set of co-occurring attributes (e.g. {firstName, last-
Name}) is put in correspondence with sets of attributes
which do not often co-occur with them (e.g. {author}).
The correspondences are then filtered based on their
confidence (negative co-occurrence) value, or aggre-
gated if they have a common attribute: if {firstName,
lastName} = {author} and {author} = {writer}, then
{firstName, lastName} = {author} = {writer}. As this
approach is holistic, the correspondences are not lim-
ited to two members.

A holistic approach reduces the bias of one-to-one
schema matching as errors can be overcome by the
number of right correlations mined. However, only the
attributes present on the web query interfaces can be
involved in the correspondences.

HSM, Su et al. [52] Database schema to database
schema, (s:c) (c:s) (c:c) HSM (Holistic Schema Match-
ing) [52] is very similar to DCM [50] as it consid-
ers schema matching as a whole. It finds synonyms
and grouping attributes based on their co-occurrence
frequency and proximity in the web query interfaces.
Two scores are computed between attributes : syn-
onym scores (the confidence that two fields may re-
fer to the same concept or thing) and grouping scores
(confidence that two concepts are complementary to
one-another). The algorithm then goes through the
synonym scores in decreasing order and adds new cor-
respondences to the alignment. If an attribute is a syn-
onym of an attribute that was already involved in a cor-
respondence, it may be grouped with other attributes
according to its grouping score with them.

4.3. Path

A specificity of the path-based approaches is that
they all rely on simple correspondences (at instance
or schemata/ontology level). Some of them discover
these simple correspondences themselves as a prelim-
inary step [6, 38], others take them as input [28, 29,
32, 37]. Most approaches perform the path search on
the graph-like or tree-like structure of the schemata/on-
tologies directly whereas [32] creates a mapping graph
on which the search will be performed.

Most approaches of this survey look for path of un-
defined length in both ontologies/schema. An excep-
tion is [37].

An et al. [37] Database schema to ontology, (s:c)
An et al. [37] use web query interfaces (web forms)
to map a deep web database to an ontology. The web
query interface must be transformed into a form tree
(derived from HTML), similar to a schema tree. The
algorithm takes the form tree, the ontology and simple
correspondences between the form tree and the ontol-
ogy as input. The first step of the algorithm is to find
for each edge e between nodes u and v of the form tree,
all sub-graphs Gi (as minimum spanning Steiner trees)
in the ontology. The sub-graphs are property chains in
the target ontology between two nodes (classes) s and
t such that u u s and v u t are two simple corre-
spondences given in the input. The goal of the algo-
rithm is to output the most (or k-most) probable sub-
graphs for the given form tree. To compute the prob-
ability of a sub-graph given a form tree, a model is
trained with machine learning techniques. The train-
ing corpus is composed of web query interfaces anno-
tated with the target ontology. The model is based on a
Naive Bayesian approach and m-estimate probabilities
to approximate the sub-graph probability given a form
tree.

Clio, Miller et al. [28], Yan et al. [29] Relational
database schema to relational database schema, (s:c)
(c:s) (c:c) Based on structural information of relational
databases schemata, the Clio system [28, 29] is one
of the first system to consider the creation of complex
correspondences between schemata. The user must in-
put value correspondences: functions linking one or
many attributes (e.g. Parent1.Salary + Parent2.Salary
→ Student.FamilyIncome with Parent1 and Parent2 in
the source schema and Student in the target schema).
Used for populating target schemata with source data,
it provides the user with a framework for alignment
creation. Clio discovers formal queries from these
value correspondences. The formal queries are defined
step-by-step with the user by presenting her poten-
tial query graphs between attributes: trees from the
data source schema structure. Clio helps the user find
simple, path relations and value transformations cor-
respondences with data visualisation, data walk and
data chase. The alignments are automatically trans-
formed into SQL queries. The SQL queries transform
the source data into target schema. The user can refine
and extend the alignments (queries) with filters and
joins.

Ontograte, Qin et al. [38], Dou et al. [6] Ontology
to ontology, (c:c) OntoGrate [38] is a framework that
mines frequent queries and outputs them as conjunc-
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tive first-order logic formulas. The system can deal
with ontology matching [38] and was adapted to rela-
tional database schema matching in [6] by transform-
ing the database schema into a database ontology. In
OntoGrate, the first step of the matching algorithm is to
generate simple correspondences at ontology level. An
object reconciliation phase then aligns instances from
source and target knowledge bases. The instance corre-
spondences from the object reconciliation fuel the sim-
ple correspondences generation. The algorithm iter-
ates on both steps (simple correspondences generation
and object reconciliation) until no new instance match-
ing or simple correspondence is discovered. Once the
simple correspondences are found, a group genera-
tor process generates groups of entities so that the
groups have the same semantics. The group genera-
tion is done by exploring the ontology graph and find-
ing a path between entities (e.g. classes) linked by a
simple property/property correspondence (the proper-
ty/property correspondence can be data-property/data-
property or object-property/object-property). The path
finding algorithm is an exploration algorithm of the
two ontology graphs where classes are the nodes and
properties (object properties, data properties, subclass
relations and super-class relations) are the edges. The
ontology graphs are explored until two nodes, one in
the source path and one in the target path, are found
and were matched in the first steps of the matching pro-
cess. The final steps of the matching process is Multi-
Relational Data Mining (MRDM) to retrieve frequent
queries among the matched instances for the given en-
tity groups. If the support of a query is above a thresh-
old, the query is considered frequent and kept. The fre-
quent queries are then refined and formalised into first-
order logic formulae.

An and Song [32] Conceptual model to conceptual
model, (c:c) An and Song [32] introduce the concept of
mapping graph between two conceptual models. The
nodes of a mapping graph represent pairs of concepts
from the two conceptual models. For example (x1, x2)
and (y1, y2) are two nodes of the mapping graph, x1
and y1 being classes (concepts) of a source ontology
and x2 and y2 two classes of a target ontology. The
weighted edges of the mapping graph are defined ac-
cording to the presence and nature of the relations be-
tween the concerned concepts in the conceptual mod-
els. Once the mapping graph is generated, a Dijkstra
algorithm is used to find the smallest path (with max-
imum weights) between nodes that appear in an input
simple alignment. For example if x1 ≡ x2 and y1 ≡ y2

are two correspondences in an input alignment, a path
between the nodes (x1, x2) and (y1, y2) of the mapping
graph will be sought.

4.4. Tree

While some approaches [34, 35] rely on a semantic
tree derived from the schema, others [48, 49] use trees
as base for constructing functions. The approaches fo-
cusing on structural transformations between two trees
(addition of a node, deletion of an attribute, etc.) such
as [7, 19] often rely on tree-structure. However, they
are out of the scope of this study as they are part of the
ontology evolution field.

MapOnto, An et al. [34, 35] Relational database
schema to ontology [34], XML schema to ontology
[35], (c:c) MapOnto [34, 35], a work of An et al. is
inspired from Clio in terms of path finding and tree
construction. The approaches focuses on aligning a
source schema to a target ontology. Two approaches
were proposed: a relational database schema to ontol-
ogy [34] and a XML schema to ontology [35]. Both
approaches take simple correspondences between the
schema’s attributes and the ontology’s data-properties
as input. These matching techniques construct a con-
junctive first-order formula composed of target ontol-
ogy entities to match a table (relational database) or el-
ement trees (XML) from the source schema. The pro-
duction of the logical formula (presented as a seman-
tic tree in [34]) differs between the two approaches be-
cause of the different nature of the schemata. However,
both approaches look for the smallest tree represent-
ing the attribute of the schema. A set of the most “rea-
sonable” alignments are output for the user to choose
among. These techniques output (c:c) correspondences
as a whole table (or element tree) is transformed in
each correspondence.

Nunes et al. [48] Ontology to ontology, (c:s) Ge-
netic programming is a way of finding complex cor-
respondences between data properties. It can combine
and transform the data-properties of an ontology to
match a property of an other ontology. Nunes et al.
[48] propose a genetic programming approach for nu-
merical and literal data properties matching. The cor-
respondences generated are (c:s) as n data-properties
from the source ontology are combined to match a tar-
get data-property. The source data-properties are cho-
sen from a calculated estimated mutual information
(EMI) matrix. Each "individual" of the genetic algo-
rithm is a tree representing the combination operations
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over data properties. The elementary operations used
for combination are concatenation or split for literal
data-properties and basic arithmetic operations for nu-
merical data-properties (sum, multiplication, etc.). The
fitness of a solution is evaluated on the values given
by this solution and the values expected (based on
matched instances) using a Levenshtein distance.

De Carvalho et al. [49] Schema to schema (rela-
tional database or XML), (s:c) (c:s) (c:c) De Carvalho
et al. [49] apply the genetic algorithm to alignments
as its "individuals". Each "individual" is a set of cor-
respondences. Each correspondence is a pair of tree
functions made of elementary operations (as for Nunes
et al. [48]) and having source (resp. target) attributes
as leaves. Constraints over the correspondences have
been defined: a schema attribute cannot appear more
than once in a correspondence, crossover and mutation
can only be applied to attributes of the same data type,
the number of correspondences in an alignment is fixed
a priori. Mutation and cross-over operations occur at
the correspondence’s tree-level when parts of two tree
functions are swapped, or changed. The fitness evalu-
ation function of the schema alignments (individuals)
is the sum of the fitness score of its correspondences.
The fitness score of a correspondence can be calculated
in two ways: entity-oriented with the average simi-
larity of matched instances’ attributes transformation
(matched instances of overlapping data are needed) or
value-oriented with the similarity of all transformed
source instances and target instances. The similarity
for each correspondence is chosen by an expert. Com-
pared to the approach of Nunes et al. [48] it can detect
(c:c) correspondences thanks to its modelling. How-
ever the process may require more iterations than [48].

4.5. No structure

The approaches described in this section do not fol-
low any of the above structures. While [33] is based
on Inductive Logic Programming and builds its cor-
respondences in a ad. hoc manner, [43] uses Markov
Logic Networks for combinatorial exploration, [54]
uses classifying techniques to generate block corre-
spondences, and finally [45] overlaps numeric searcher
using context-free grammar for equation discovery.

Hu et al. [33] Ontology to ontology, (s:c) The ap-
proach proposed by Hu et al. [33] uses Inductive Logic
Programming (ILP) techniques to discover complex
alignments. This technique is inspired by Stucken-
schmidt et al. [60]. The approach is based on the com-

mon instances of a source and a target ontology. It out-
puts Horn-rules of the form A ∧ B ∧ C ∧ ... → D
with A, B,C... source entities represented as first-order
predicates and D a target entity as a first-order predi-
cate. The Horn-rule contains two parts: the body on the
left side of the implication and the head on the right
side. Three phases compose the approach. In the first
one, the instances of the two ontologies are matched.
In the second one called data-tailoring, instances and
attributes from their context (relations, data-properties,
other linked instances, etc.) are chosen for each tar-
get entity. The purpose of this phase is to eliminate ir-
relevant data. The last phase is the mapping learning
phase. For each target entity, a new Horn-rule is cre-
ated with this target entity as head predicate. Then it-
eratively, the predicate having the highest FOIL gain
score is added to the body of the Horn-rule. During
this process, the variables of the Horn-rule are bound
according to the instances and their context. The FOIL
gain uses the positive and negative binding of vari-
ables.

BMO, Hu et al. [54] Ontology to ontology, (s:c) (c:s)
(c:c) BMO (Block Matching for Ontologies) focuses
on matching sets of entities (classes, relations or in-
stances) called blocks. This approach is articulated into
four steps. The first step is the construction of virtual
documents for each entity of both ontologies: the an-
notations and all triples in which an entity occurs are
gathered into a "document". The second one computes
a relatedness matrix by calculating the similarity be-
tween each vectorized virtual document. In the third
step, the relatedness matrix is used to apply a partition-
ning algorithm: this algorithm is recursively applied to
the set of ontology entities. At the end of this algo-
rithm, the similar entities are together in a same block
while dissimilar entities are in distinct blocks. The fi-
nal step consists in finding the optimal alignment given
a number of blocks. Ontology entities which are in the
same block can be separated into o1 and o2 to get a
correspondence. As the blocks can contain any type of
entity, it is not considered as a composite pattern.

KAOM, Jiang et al. [43] Ontology to ontology,
(s:c) (c:s) (c:c) KAOM (Knowledge Aware Ontology
Matching) is a system proposed by Jiang et al. [43]. It
uses Markov Logic Network as a probabilistic frame-
work for ontology matching. The Markov Logic for-
mulae presented in this approach use the entities of the
two ontologies (source and target) as constants, the re-
lations between entities and the input knowledge rules
as evidence. The knowledge rules can be axioms of an
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ontology or they can be specified by the user. They
can be interpreted as block matching patterns [55].
To handle numerical data-properties, KAOM proposes
two methods to find positive linear transformations be-
tween rules. These methods are based on the values
that the data-properties take in a given knowledge base
(the distribution of the values or a way to discretise
them). The correspondence patterns and conditions
presented by Ritze et al. [23, 24] can be translated into
knowledge rules and therefore used into Markov Logic
formulae. The knowledge rules can be obtained in var-
ious ways as was shown in the experiments where de-
cision trees, association rules obtained from an Apriori
algorithm or manually written rules were translated as
knowledge rules for three different test cases.

iMAP, Dhamankar et al. [45] Relational database
schema to relational database schema, (c:s) As seen
previously, the iMAP system [45] uses a combina-
tion of searchers to discover simple and complex cor-
respondences between database schemata. The over-
lap numeric searcher uses the Lagramge algorithm for
equation discovery based on overlapping data. This
algorithm uses a contex-free grammar to define the
search space of the arithmetic equations and executes
a beam-search to find a suitable correspondence. The
output of this search space is then stored as a pattern
for the numeric searcher.

4.6. Summary

The proposed classification is based on two main
axis, the output (type of correspondence) and process
(guiding structure) dimensions of the approaches. The
following tables are organised as the categories of Fig-
ure 4: logic relations, transformation functions and
blocks.

Table 3 summarises the type of knowledge repre-
sentation models to be aligned, the needed input and
the kind of generated correspondences. Most of the ap-
proaches generate (s:c) or (c:s) correspondences and
require inputs (simple alignments, matched instances,
etc.). This table shows the variety of knowledge rep-
resentation models for which complex matching ap-
proaches have been proposed. This points out that
complex matching is not dedicated only to Semantic
Web.

Table 4 presents the process of the approaches ac-
cording to our classification. Most approaches are
pattern-based (atomic or composite). Only a few ap-
proaches have no guiding structure. There is no direct

correlation between the members expression (fixed to
fixed, unfixed to unfixed, etc.) and the (s:c), (c:s) kinds
of correspondence. Very few approaches are available
online.

With respect to the basic techniques defined in
[13], presented in Table 5, the majority of approaches
combine different matching strategies. By definition,
approaches which output logical relation correspon-
dences and which rely on a guiding structures have a
graph-based or taxonomy-based component. Few ap-
proaches are model-based (no semantic interpretation
of the alignment). However, it is important to note
that identifying the strategies based on Euzenat and
Shvaiko’s classification was not always straightfor-
ward.

Another way of classifying the approaches is with
respect the kind of input they exploit (ontology-level or
instance-level), as done in different surveys in the field.
Figure 5 presents a classification of the approaches on
their input. Only a few approaches rely on both types
of information.

5. Evaluation of complex matchers

Some surveys [65] have focused the comparison
of ontology matching systems evaluation not address-
ing the complex matching perspective. This section
discuss the evaluation of complex alignments regard-
ing both the metrics and datasets. Table 6 provides
an overview of the type of evaluation, metrics and
datasets used to evaluate the approaches described in
the previous section.

5.1. Complex alignment datasets

The diverse approaches discussed in this paper ex-
ploit a variety of knowledge representation models
and resources (XML, ontologies, linked instances, web
forms, etc.) and generates different types of correspon-
dences. This results in a variety of evaluation datasets
used for evaluating these approaches and their outputs.
In the domain of schema matching (database or XML
schema), dedicated complex alignment datasets have
been constructed for evaluating the approaches dealing
with these schemes. In general, these datasets contains
mostly transformation functions. For instance, the Illi-
nois semantic integration archive [62] is a dataset
of complex correspondences on value transformations
(e.g. string concatenation) in the inventory and real
estate domain. This dataset only contains correspon-
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Work Type of schemata Input Kind of
correspondence

L
og

ic
al

re
la

tio
ns

Ritze2009 [23] Onto to Onto simple alignment (s:c)

Ritze2010 [24] Onto to Onto simple alignment (opt.) (s:c)

Svab2009 [31] Onto to onto simple alignment (opt.) (s:c)

Rouces2016 [36] Onto to Onto (s:c), (c:s)
Walshe2014 (Bayes-ReCCE)
[25]

Onto to Onto matched instances (s:c), (c:s)

Jimenez2015 (BootOX) [40] DB to Onto (c:s)

Doan2003 (CGLUE) [30] Taxo to Taxo (s:c)

Parundekar2012 [27] Onto to Onto matched instances (s:c), (c:s)

Kaabi2012 (ARCMA) [39] Onto to Onto (s:c)

Parundekar2010 [26] Onto to Onto matched instances (s:c), (c:s), (c:c)

Yan2001 (Clio) [28, 29] DB to DB matched instances (s:c), (c:s),(c:c)

Qin2007 (OntoGrate) [6, 38] Onto to Onto matched instances (c:c)

An2008 [32] CM to CM (c:c)

An2012 [37] DB to Onto
web query interfaces,
simple correspondences
web form-onto

(s:c)

An2005 (MapOnto) [34] DB to Onto
attribute-data properties
correspondences

(c:c)

An2005b (MapOnto) [35] XML to Onto
attribute-data properties
correspondences

(c:c)

Hu2011 [33] Onto to Onto (c:s)

L
og

ic
/T

ra
ns

fo

Jiang2016 (KAOM) [43] Onto to Onto knowledge rules (s:c), (c:s), (c:c)

Boukottaya2005 [44] XML to XML (s:c), (c:s), (c:c)

Xu2003 [41]
Schema to
Schema

domain ontology (c:s), (s:c)

Xu2006 [42]
Schema to
Schema

domain ontology (c:s), (s:c), (c:c)

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMAP) [45] DB to DB

domain constraints and
value distribution

(c:s)

Arnold2013 (COMA++) [47] Onto to Onto (s:c)

Warren2006 [46] DB to DB (c:s)

Nunes2011 [48] Onto to Onto (c:s)

deCarvalho2013 [49]
Schema to
Schema

(c:s), (s:c), (c:c)

B
lo

ck
s

Saleem2008 (PORSCHE) [51] XML to XML abbreviation table (c:s), (s:c)

He2004 (DCM) [50] DB to DB web query interfaces (s:c), (c:s), (c:c)

Su2006 (HSM) [52] DB to DB web query interfaces (s:c), (c:s), (c:c)

Wu2004 [53] DB to DB web query interfaces (s:c), (c:s)

Hu2006 (BMO) [54] Onto to Onto (s:c), (c:s), (c:c)
Table 3

Input (type of aligned schemata and type of input information) and output (correspondences members form) of the approaches.
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Article Guiding structure fixe
d to

fixe
d

fixe
d to

un
fixe

d

un
fixe

d to
un

fixe
d

Online

L
og

ic
al

re
la

tio
ns

Ritze2009 [23] Atomic patterns • yes3

Ritze2010 [24] Atomic patterns • yes4

Svab2009 [31] Atomic patterns •
Rouces2016 [36] Atomic patterns •
Walshe2016 (Bayes-ReCCE)
[25]

Atomic patterns •

Jimenez2015 (BootOX) [40] Atomic patterns •
Doan2003 (CGLUE) [30] Composite patterns •
Parundekar2012 [27] Composite patterns •
Kaabi2012 (ARCMA) [39] Composite patterns •
Parundekar2010 [26] Composite patterns •
Yan2001 (Clio) [28, 29] Path to Path •
Qin2007 (OntoGrate) [6, 38] Path to Path • yes5

An2008 [32] Path to Path •
An2012 [37] Path to Path •
An2005 (MapOnto) [34] Tree to tree • yes6

An2005b (MapOnto) [35] Tree to tree • yes7

Hu2011 [33] No structure •

L
og

ic
/T

ra
ns

fo

Jiang2016 (KAOM) [43]
Atomic patterns, No
structure

• •

Boukottaya2005 [44] Composite patterns •
Xu2003 [41] Composite patterns • •

Xu2006 [42]
Composite patterns, Path
to path

• • •

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMAP) [45]

Atomic patterns,
Composite patterns, No
structure

• •

Arnold2013 (COMA++) [47] Composite patterns •
Warren2006 [46] Composite patterns •
Nunes2011 [48] Tree to tree •
deCarvalho2013 [49] Tree to tree •

B
lo

ck
s

Saleem2008 (PORSCHE) [51] Composite patterns •
He2004 (DCM) [50] Composite patterns •
Su2006 (HSM) [52] Composite patterns •
Wu2004 [53] Composite patterns •
Hu2006 (BMO) [54] No structure •

Table 4
Process characteristics of the approaches based on the proposed classification
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Ontology-based systems Instance-based systems

Ritze et al. [23, 24]

COMA++ [47] Clio [28, 29]

Boukottaya and Vanoirbeek [44]

Šváb-Zamazal and Svátek [31]

An and Song [32] Hu et al. [33]

MapOnto [34, 35]Rouces et al. [36]

An et al. [37]

BMO [54]

BootOX [40]

DCM [50]

PORSCHE [51]

HSM [52]

Wu et al. [53]

Xu and Em-
bley [41, 42]

KAOM [43]

OntoGrate [6, 38]

ARCMA [39]

Parundekar et al. [26, 27]

Warren and Tompa [46]

Bayes-ReCCE [25]

Nunes et al. [48]

CGLUE [30]

iMAP [45]

de Carvalho et al. [49]

Fig. 5. The complex matching techniques according to the instance vs ontology (schema)-level classification

dences between schemata with transformation func-
tions. The UIUC Web integration Repository [64] has
also been reused by various schema matching ap-
proaches for their evaluation. It is a schemata and
query form repository. Other repositories has been
adapted for the purpose of evaluating schema match-
ing approaches. In [61], a data set dedicated to evaluat-
ing machine-learning matching-based approaches has
been proposed.

For the purpose of evaluating matching hybrid struc-
tures, the RODI Benchmark [63] proposes an evalua-
tion over given scenarii, R2RML correspondences be-
tween a database schema and an ontology. The bench-
mark relies on ontologies from the OAEI Conference
dataset.

Despite the fact that many approaches have been au-
tomatically evaluated, supposing the existence of a ref-
erence alignment, with respect to ontology matching,
few reference alignment sets are publicly available.

5.2. Evaluation metrics

Evaluating complex alignments is usually done
manually. However, it is a time-consuming task requir-
ing experts in the ontology domain. Systems can also
be evaluated automatically by considering a reference
dataset usually composed of schemata or ontologies
and reference alignments between them. The difficulty

here is to produce such reference alignments. The clas-
sical metrics, adapted from information retrieval, used
for evaluating the quality of alignments with respect a
reference one are precision and recall, combined into
F-measure. These metrics in their usual form are used
in many evaluations, as shown in Table 6. In particular,
the calculation of the recall and F-measure require a
reference dataset.

The metrics of accuracy or top-x accuracy have
been used in various evaluations (c.f. Table 6) when
the number of correspondences is predefined, e.g.,
one correspondence for each entity of the target
schema/ontology. The accuracy is then the percent-
age of correct answers on a defined number of ques-
tions. Some approaches output various answers for
each questions, e.g., a ranked list of correspondences
for each target entity. In this case the top-x accuracy is
the percentage of questions whose correct answer is in
the top-x answers to the question. For example, top-3
accuracy is the fraction of target entities for which the
correct correspondence is in the three best correspon-
dences output by the system.

A few systems define their own metrics, more
closely related to the type of correspondence they
deal with. For example, the approaches dealing with
synsets [50, 52] have adapted precision and recall to
incorporate the synset similarity. The approach BMO
[54] evaluates characteristics of the correspondences
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Approach Form
al

res
ou

rce
-ba

sed

Inf
orm

al
res
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rce

-ba
sed

Stri
ng

-ba
sed

Lan
gu
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e-b

ase
d

Con
str

ain
t-b
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d
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ase
d

Grap
h-b

ase
d

Ins
tan

ce
-ba

sed

M
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el-
ba

sed
L

og
ic

al
re

la
tio

ns

Ritze2009 [23] • • • • •
Ritze2010 [24] • • • • •
Svab2009 [31] • •
Rouces2016 [36] • • • •
Walshe2016 (Bayes-ReCCE) [25] • • •
Jimenez2015 (BootOX) [40] • • •
Doan2003 (CGLUE) [30] • • •
Parundekar2012 [27] • • •
Kaabi2012 (ARCMA) [39] • • •
Parundekar2010 [26] • • •
Yan2001 (Clio) [28, 29] • • •
Qin (OntoGrate) [6, 38] • •
An2008 [32] • • •
An2012 [37] • •
An2005 (MapOnto) [34] • •
An2005b (MapOnto) [35] • •
Hu2011 [33] •

L
og

ic
/T

ra
ns

fo Jiang2016 (KAOM) [43] • • • • •
Boukottaya2005 [44] • • • •
Xu2003 [41] • • • •
Xu2006 [42] • • • • •

Tr
an

sf
o.

fu
nc

tio
ns Dhamankar2004 (iMap) [45] • • • • •

Arnold2013 (COMA++) [47] • •
Warren2006 [46] •
Nunes2011 [48] •
deCarvalho [49] •

B
lo

ck
s

Saleem2008 (PORSCHE) [51] • •
He2004 (DCM) [50] •
Su2006 (HSM) [52] •
Wu2004 [53] • • • • • •
Hu2006 (BMO) [54] • •

Table 5
Classification of the complex matchers on [13]’s basic techniques

as blocks such as the entropy and correctness of the
blocks.

Some approaches have been evaluated as a compar-
ison with other approaches or on their execution time.

5.3. Summary

The different approaches discussed in this survey
have been evaluated on a variety of datasets. For many
of them, the datasets have been constructed to the spe-

cific purpose of evaluating the given approaches. Fur-
thermore, most of these datasets result from exten-
sions of original datasets in order to fit the complex
matching. There still is no benchmark on which com-
plex ontology matching approaches can be system-
atically evaluated and compared. In fact, the evalua-
tion of complex matching approaches has not yet been
studied as a whole problem. The usual metrics ap-
pear insufficient to capture for example, that the same
complex correspondence can be expressed in differ-
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Table 6
Evaluation of the complex matching approaches

Work
Type of
Evalua-
tion

Metrics Dataset

Walshe2016
(Bayes-ReCCE) [25]

Automatic
Precision, Recall, F-measure
(on synthetic dataset)

Complex correspondences between Dbpedia and Yago2 /
geonames + synthetic dataset made from dbpedia (on CAV)

Jiang2016 (KAOM) [43] Automatic Precision, Recall, F-measure
NBA, Census [61], extended OAEI conference dataset with
complex correspondences

Xu2003 [41] Automatic Precision, Recall, F-measure
Schemas transformed into Conceptual model graphs: Real estate
dataset [62]

Xu2006 [42] Automatic Precision, Recall, F-measure
Real Estate, Course schedule and Faculty datasets transformed
into CMs [62]

Wu2004 [53] Automatic
Precision, Recall, F-measure
(s:c correspondences counted
as many s:s correspondences)

20 web query interfaces from invisibleweb.com and yahoo.com
transformed into schema trees

Hu2006 (BMO) [54] Automatic
Precision, Recall, F-measure,
Entropy, Correctness

2 datasets: russia, tourism with reference block alignments

Jimenez2015 (BootOX)
[40]

Automatic Accuracy RODI Benchmark [63]

He2004 (DCM) [50],
Su2006 (HSM) [52]

Automatic
Target precision, Target recall,
Target accuracy

TEL-8 and BAMM [64]

Parundekar2012 [27]
Manual /
Automatic

1. Precision on a subset of
correspondences 2. Precision,
Recall, F-measure on subset of
ontologies

See 8

Ritze2009, Ritze2010
[23, 24]

Manual Precision OAEI Conference and OAEI benchmark

Rouces2016 [36] Manual Precision Dbpedia-Framebase

Hu2011 [33] Manual Precision
Only 6 complex correspondences found on the 3 datasets :
Restaurant (OAEI), SwetoDBLP/ESWC, Mondial/Factbook

Warren2006 [46] Manual Precision
Small datasets with 1 correspondence (userid, time, name
concatenation), Citeseer-DBLP

Qin2007 (Ontograte) [38] Manual Precision, Recall UMD People Ontology and CMU Person and Employee Ontology

Dou2010 (Ontograte) [6] Manual
Precision, Recall, Execution
time

Store7 database, NBA schemata transformed into ontologies
(Official site9 and Yahoo Sport Site 10), Mouse and zebrafish gene
DB

An2008 [32] Manual
Precision, Recall, F-measure,
Execution time

GeneExpress Data Management + Other CM pairs from previous
paper

An2012 [37] Manual Top-1 accuracy, top-k accuracy
Form libraries [64], VSO, bibliographic data ontology, movie
ontology, extension of the GoodRelations ontology

An2005 (MapOnto) [34] Manual
Qualitative evaluation,
Execution time

See 11

An2005b (MapOnto) [35] Manual
Precision, Recall, F-measure,
Labor Savings

See 12

Doan2003 (CGLUE) [30] Unknown Accuracy
Course Catalog I and II (Cornell and Washington) [62] , Company
Profile (ontologies from Yahoo.com and TheStandard.com)

Boukottaya2005 [44] Unknown Precision, Recall, F-measure Bibliographic data description schemas

Nunes2011 [48] Unknown Precision, Recall, F-measure Created target ontology from source ontology

deCarvalho2013 [49] Unknown Accuracy
Synthetic datasets from SDG (Synthetic Dataset Generator),
datasets from [62], Google Fusion Tables

Dhamankar2004 (iMAP)
[45]

Unknown
Top-1 accuracy, Top-3
accuracy

Real Estate, Inventory, Cricket (cricinfo.com vs cricketbase.com),
Financial wizard

Parundekar2010 [26] Unknown
Statistics on the output
alignments

See 13

Saleem2008 (PORSCHE)
[51]

Unknown
Execution time, Comparison
with COMA++

Purchase order schemas, BOOKS, OAGIS

Svab2009 [31], Kaabi2012 (ARCMA) [39], Yan2001 (Clio)
[28, 29], Arnold2013 (COMA++) [47]

None
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ent ways. The use of weighted, relaxed and semantic
precision/recall could be an interesting solution [66].
First, precision and recall metrics do not take into ac-
count the confidence and relations of the correspon-
dences nor the equivalence of two correspondences ex-
pressed in different ways. For these matters, weighted
and relaxed precision and recall [67] consider the re-
lation, and confidence of a correspondence. Semantic
precision and recall [66] compare the deductive clo-
sure sets of axioms of the ontologies merged with a
reference alignment and with the output alignment.
Therefore, these metrics integrate the fact that two ex-
pressions may mean the same thing (e.g., Author ≡
∃authorOf.> is the same as Author≡ ∃writtenBy−.>).
However, these metrics are not used in complex on-
tology alignment evaluation so far. Finally, one could
also consider to measure the suitability of the output
alignment for a given application as it was done for the
OA4QA track of the OAEI [68] or for a library appli-
cation [69]. The metrics would then take into account
the suitability of the output alignment to the given task.

6. Discussion

Earlier works in the field have introduced the need
for complex alignments [2]. With the explosion of
LOD datasets this need becomes even more evident.
Many works have been proposed so far in the liter-
ature, in different fields (databases, semantic web).
This is a complex task, even manually, that requires to
deeply identify the context of ontology entities. This
section summarises the findings in this survey and dis-
cusses potential directions to fostering the develop-
ment in the field.

Here, an overview of the approaches for generating
complex correspondences has been presented. These
works, due to their nature and scope, exploit repre-
sentation models with different levels of expressive-
ness (XML, web forms, database schemes, ontologies)
and, as a consequence, generate complex alignments
mostly “compatible” with their models and query lan-
guages (logical constructions for ontology and trans-
formations functions for XML, web queries, etc.). Few
works focus on block-based matching. Furthermore,
there is a clear distinction between the approaches
based on instance-level information and the ones based
on ontology-level information (terminological level,
schema structure, etc.). Hybrid solutions have been ad-
dressed to a lesser extent. One can observe as well
the variety of approaches (patterns, statistical-based,

genetic programming, etc.) that have been adopted in
these proposals.

The field could be organised into two ‘classes’ of
matching approaches, those relying on defined struc-
tures such as atomic patterns, composite patterns and
paths, and those which discover the correspondences
more freely. For the former, mostly classical pat-
terns have been adopted (CAT, CAV, etc.), while au-
tomatically learning new patterns is mostly under-
exploited. For the latter, the quality of the output align-
ments depends on the quality of the input they rely
on (e.g., corpus of instances, corpus of web forms, set
of knowledge-rules, etc.). These approaches may be
faced with sparseness problem, frequent attribute prob-
lem or with specific corpus distribution that may lead
to false correspondences (cf. same problem as Exam-
ple 5):

Example 5. If o1 is populated with most students of
age 23,
∀ x, o1:Student(x) ≡ o2:age(x, 23) can be a valid
correspondence for the instance-based matching algo-
rithms.

While some approaches rely on simple correspon-
dences as an input resources, others are able to dis-
cover complex correspondences without this kind of
input. Another aspect refers to the kind of relation of a
correspondence generated. As for simple alignments,
most works are still limited to generating equivalences.
The semantics of the confidence of a correspondence
as well are rarely considered.

The proposed classification tried to capture some of
the aspects above, by focusing on the specificities of
complex correspondences on two main axis. The first
axis characterises the different types of output (type
of correspondence) and the second one the structures
used in the process to guide the correspondence de-
tection. With respect to this classification, while some
approaches adopt a mono-strategy (atomic patterns,
for instance), others can fall in diverse categories. For
some of them, the task of classifying them into some
specific category was not a simple task. This classifi-
cation could hence be extended with a “hybrid” cate-
gory for both axis. However, this would make reading
difficult.

The classification on the type of correspondence
can also be extended. In particular, correspondences
can be of both logical and transformation function
types For example, ∀x, y1, y2 Person(x) ∧ name(x,
concatenation(y1, " ",y2)) ≡ firstName(x,y1) ∧
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lastName(x,y2) contains both logical constructors and
transformation functions.

Other characteristics of the alignments could be a
base for classification such as the nature of the cor-
respondence relation (subsumption, implication, dis-
jointness, etc.), the formalism of the alignment (query,
first-order logic, etc.), the purpose of the alignment
(query rewriting, ontology merging, etc.), the user in-
volvment in the matching process, etc. One could also
argue that one could dispose the different axis of our
classification in a multi-layer classification as in [70].
However, this does not make sense here because our
layers are not fully independent of each other, as in
[70].

On a different matter, one can observe that (in
matching web query interfaces, for instance) the corre-
spondences are pragmatically coherent but not seman-
tically equivalent. For example, number of tickets =
adult + children + senior is a practical correspondence
for counting the number of passengers. The semantic
meaning of this correspondence is however question-
able as a ticket and a passenger are not quite the same
thing. This raises questions about the notion of context
of an alignment.

Few approaches here are able to match many schemata
at once. They rely on web query interfaces for their
matching (schemas and query interfaces). However, in
complex domains where several ontologies describing
different but related aspects of the domain have to be
linked together, matching multiple ontologies simul-
taneously, known as holistic matching, is required. It
is typically the case in complex domains, such as bio-
medicine, where several ontologies describing differ-
ent but related phenomena have to be linked together
[71]. As stated in [72], the increase in the matching
space and the inherently higher difficulty to compute
alignments pose interesting challenges to this task.
Generating complex correspondences in a holistic set-
ting is in the next generation of complex ontology
matching.

One can also observe that few approaches involve
an interactive task where the user could provide some
seeds for the matching process. Moreover, a correspon-
dence can be expressed in various ways, a user might
prefer one expression. For now, no approach proposes
a framework for visualisation and edition of complex
correspondences. This could be a lead for the develop-
ment of the field and a solution for user-involvement.
As most matchers are black boxes to the end users,
explanation of complex correspondences could be an-
other interesting direction.

Another important aspect in (complex) ontology
matching is the evaluation of approaches. It helps de-
velopers to improve their approaches and users to
choose the most suitable one for their needs or tasks.
While the evaluation of simple ontology matching has
developed fully in the last fifteen years in the con-
text of the Ontology Alignment Evaluation Initiative
(OAEI) [73], to the best of our knowledge, there is no
benchmark for evaluating complex correspondences.
One can argue that proposing such kind of data set
could help foster the development of the field. While
the approaches discussed have been evaluated on dif-
ferent data sets, which mostly have extended raw data
sets in order to fit the evaluation of the approaches,
they have not been exposed as a benchmark (in fact,
few of them are publicly available, this is as well the
case for most complex matchers). As stated above, a
complex correspondence can be expressed in different
ways. Thus, the need for several annotators and a mea-
surement of their agreement in order to generate a con-
sensual benchmark is evident. The ways for comput-
ing the confidence can rely on such consensus. Fur-
thermore, representing the different ways a correspon-
dence can be expressed may reduce the bias in the eval-
uation and avoiding privileging approaches which fit a
particular type of correspondence.

Having a benchmark for complex evaluation also
requires methods for evaluating the generated align-
ments on this benchmark. This opens different per-
spectives in terms of (automatic) evaluation. While the
manual evaluation of the generated alignments or of
sample of them is a time-consuming task that depends
on the interpretation of the expert, the classical met-
rics of precision and recall are not adapted to complex
correspondences. A more suitable version of precision
and recall could be extending the semantic precision
and recall proposed in [66], which is based on the de-
ductive closure axiom sets of the reference and gener-
ated alignments. Evaluating the approaches in a task-
oriented way could be also interesting, as for instance
ontology merging and query rewriting. For ontology
merging, a metric using the complex correspondences
could take into account the conservativity, the coher-
ence and the decidability of the merged ontology. For
query rewriting, having a populated benchmark and
gold standard queries, as for the OA4QA campaign
[74], could be exploited for evaluating the correspon-
dences in a query rewriting setting.

As a more general reflection, questions on pragmatic
and semiotic heterogeneity [75] are still open. Even if
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the output of the approach are useful in practice, one
can still wonder whether they are absolute [76].

7. Conclusions

Complex alignments are complementary to sim-
ple alignments for overcoming conceptual hetero-
geneities between ontologies. This survey have pro-
vided an overview of the different complex match-
ing approaches. This covers approaches deadling with
models of different levels of expressiveness (from
XML to databases and ontologies). A definition of
complex correspondences (and alignments) has been
proposed. A classification of these approaches based
on their specificities has been proposed. The speci-
ficities of the complex matching approaches rely on
their output (type of correspondence) and their process
(guiding structure). The evaluation of these approaches
on different datasets have also been discussed. Finally,
some perspectives for the field has been discussed.

As a main perspective, a benchmark for complex
evaluation will be proposed in the context of the OAEI
campaigns. Another direction is to proposed a task-
oriented evaluation of complex alignments, as for
query rewriting. Fostering the development of com-
plex approaches depends on the availability of such
data sets.
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