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ABSTRACT
The Unified Medical Language System (UMLS) Metathesaurus con-
struction process mainly relies on lexical algorithms and manual
expert curation for integrating over 200 biomedical vocabularies.
A lexical-based learning model (LexLM) was developed to predict
synonymy among Metathesaurus terms and largely outperforms
a rule-based approach (RBA) that approximates the current con-
struction process. However, the LexLM has the potential for being
improved further because it only uses lexical information from
the source vocabularies, while the RBA also takes advantage of
contextual information. We investigate the role of multiple types
of contextual information available to the UMLS editors, namely
source synonymy (SS), source semantic group (SG), and source
hierarchical relations (HR), for the UMLS vocabulary alignment
(UVA) problem.

In this paper, we develop multiple variants of context-enriched
learning models (ConLMs) by adding to the LexLM the types of
contextual information listed above. We represent these context
types in context-enriched knowledge graphs (ConKGs) with four
variants ConSS, ConSG, ConHR, and ConAll. We train these ConKG
embeddings using seven KG embedding techniques. We create the
ConLMs by concatenating the ConKG embedding vectors with
the word embedding vectors from the LexLM. We evaluate the
performance of the ConLMs using the UVA generalization test
datasets with hundreds of millions of pairs.

Our extensive experiments show a significant performance im-
provement from the ConLMs over the LexLM, namely +5.0% in
precision (93.75%), +0.69% in recall (93.23%), +2.88% in F1 (93.49%)
for the best ConLM. Our experiments also show that the ConAll
variant including the three context types takes more time, but does
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not always perform better than other variants with a single context
type. Finally, our experiments show that the pairs of terms with
high lexical similarity benefit most from adding contextual informa-
tion, namely +6.56% in precision (94.97%), +2.13% in recall (93.23%),
+4.35% in F1 (94.09%) for the best ConLM. The pairs with lower
degrees of lexical similarity also show performance improvement
with +0.85% in F1 (96%) for low similarity and +1.31% in F1 (96.34%)
for no similarity. These results demonstrate the importance of using
contextual information in the UVA problem.

CCS CONCEPTS
•Computer systems organization→Neural networks; •Com-
puting methodologies → Neural networks; • Applied com-
puting → Bioinformatics.
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1 INTRODUCTION
The Unified Medical Language System (UMLS) Metathesaurus is
a biomedical terminology integration system developed by the
US National Library of Medicine to integrate biomedical terms
by organizing clusters of synonymous terms into concepts. The
current construction process of the UMLS Metathesaurus heavily
relies on lexical similarity algorithms to identify candidates for
synonymy, although terms that do not share a common semantics
are prevented from being recognized as synonymous. Additionally,
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synonymy asserted between terms in a source vocabulary is gener-
ally preserved in theMetathesaurus. Final synonymy determination
comes from human curation by the Metathesaurus editors. Given
the current size of the Metathesaurus with over 15 million terms
from 214 source vocabularies, this process is inevitably costly and
error-prone (as pointed out by [8, 9, 19, 28, 29].)

Motivation.Nguyen et al. [34] formalized synonymy prediction
in the UMLS Metathesaurus as a vocabulary alignment problem,
referred to as the UMLS Vocabulary Aligment (UVA) problem. The
scale of this problem is extremely large (even when restricted to
English terms from active vocabularies), since 8.7M biomedical
terms need to be compared pairwise. Additionally, they developed a
rule-based baseline (“RBA baseline”) that approximates theMetathe-
saurus construction process described above. Moreover, to evaluate
their vocabulary alignment algorithms, they created different UVA
dataset variants (also referred to as “seed alignment” or “ground
truth”) with different degrees of lexical similarity among the nega-
tive examples. The UVA datasets contain hundreds of millions of
pairs of biomedical terms (as described in Section 5.2), i.e., several
orders of magnitude more than the datasets typically used for eval-
uating ontology alignment algorithms (e.g., tens of thousands of
pairs in the OAEI datasets).

In practice, the full scale of the UVA problem (8.7M2) is im-
practical for any kind of experimentation. For this reason, all the
experiments use the UVA datasets for evaluating the models before
applying the best models to the full scale of the UVA problem.

To address the UVA problem, Nguyen et al. [33, 34] developed a
scalable supervised learning approach with lexical learning models
(LexLMs) that largely outperformed the RBA baseline. However,
they noted as a limitation of their work that they only leveraged
lexical information and did not include any contextual informa-
tion. For example, the terms “COLD” from NCI and “Cold” from
SNOMEDCT_US have the same lexical embeddings and will there-
fore be predicted as synonymous by the LexLM. However, these
two terms can be disambiguated by adding to the LexLM their
source synonyms, such as “Chronic Obstructive Lung Disease” and
“Common cold”, respectively. Therefore, we believe that the LexLM
can be further improved, because it only uses lexical information
from biomedical vocabularies, while the RBA also takes advantage
of contextual information.

Note that we choose to add contextual information to the LexLM,
because its Siamese architecture and BioWordVec embeddings have
been shown to outperform the BERT-based approaches for the UVA
problem [3]. In [3], the authors implemented and scaled up differ-
ent approaches for extracting word and sentence embeddings from
the BERT-based models such as BioBERT [21], UmlsBERT [26],
SapBERT [24], BlueBERT [37]. Their experiments showed that the
LexLM with a Siamese Network architecture and BioWordVec em-
beddings performed best. Additionally, other existing approaches,
e.g., from the OAEI [12, 18, 20, 31, 41], were developed and tested
with OAEI datasets that are small compared to the UVA problem.
Therefore, these approaches are not suitable for the scale of the UVA
problem. However, scaling up and adapting existing approaches is
not trivial and beyond the scope of this paper.

Objectives. Our first objective is to improve the performance of
the LexLM by adding the different types of contextual information

available to the UMLS editors, namely source synonymy (SS), source
semantic group (SG), and hierarchical relations (HR).

Our second objective is to investigate if these types of contextual
information should be added individually or collectively into the
LexLM. We assess each approach in terms of computational costs
and experimental performance given the size of the UVA datasets.

Our third objective is to evaluate the performance of the context-
enriched models on the UVA datasets containing different degrees
of lexical similarity in the biomedical term pairs. This will allow us
to evaluate the feasibility of applying the proposed approach at the
full scale of the UVA problem [34].

Approach. To evaluate the types of contextual information in-
dividually and collectively, we represent each context type in a
context-enriched knowledge graph (ConKG) variant: ConSS, ConSG,
and ConHR for each individual context type, and ConAll for all
the context types. We use various KG embedding techniques to
train these ConKG embeddings and then concatenate the ConKG
embeddings with the lexical embeddings from LexLM to create
the ConLM models. We evaluate the performance of these ConLM
models on the UVA datasets for each KGE technique with different
lexical similarity levels in their biomedical term pairs.

Note that we use various existing KGE techniques in the exper-
iments for the purpose of exploring how these KGE techniques
perform with common hyper-parameters when adding multiple
context types. Given the cost of running each experiment (5-6 days
for each), we did not attempt to identify optimal hyper-parameters
for each KGE technique. Therefore, our approach would not sup-
port a fair comparison of these KGE techniques and we make no
claim that our work represents any kind of systematic evaluation
or performance benchmark for the KG embedding techniques.

Contributions. For each objective, we obtain the experimental
results as follows.

Our contribution for the first objective (improving the perfor-
mance of the LexLM) is an approach to develop context-enriched
learning models (ConLMs) with significant overall performance
improvement over the reference LexLM, namely +5.0% in precision
(93.75%), +0.69% in recall (93.23%), +2.88% in F1 (93.49%) for the
best ConLM. The experiments also show performance gains from
+1.52% to +2.88% in F1 from the ConLMs with all the seven KGE
techniques.

Our contribution for the second objective (adding types of con-
textual information individually or collectively) is an extensive set
of experiments for evaluating the ConLMs with multiple ConKG
variants showing that, although the ConAll variant including the
three context types takes the longest time for training, it does not
always outperform single context type variants (lower performance
with 4 out of 7 KGE techniques). However, no single context type
performs better than ConAll across all KGE techniques.

Our contribution for the third objective (assessing the impact
of adding contextual information on specific datasets) is an exten-
sive set of experiments showing that the pairs with a high degree
of lexical similarity among negative examples benefit most from
adding contextual information, with +6.56% in precision (94.97%),
+2.13% in recall (93.23%), +4.35% in F1 (94.09%) for the best ConLM.
The pairs with lower degrees of lexical similarity also show perfor-
mance improvement with +0.85% in F1 (96%) for low similarity and
+1.31% in F1 (96.34%) for no similarity.
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The remainder of the paper is organized as follows. Section 2
provides background knowledge about the Metathesaurus and how
lexical and contextual information is transformed into ConKGs. Sec-
tion 3 describes the KG embedding techniques selected for training
the embedding vectors for the ConKGs. Section 4 describes how the
ConLMs are developed. In Section 5, we present our experiments
and their results. In Section 6, we discuss our findings and future
work. In section 7, we discuss the related work. Section 8 concludes
the paper.

2 CONTEXT-ENRICHED KNOWLEDGE
GRAPHS

This section describes how multiple variants of context-enriched
knowledge graphs (ConKG) are constructed using the various types
of contextual information from source vocabularies. These ConKG
variants will be used as input for training the KG embeddings in
Section 3.

2.1 Background Knowledge on the UMLS
Metathesaurus

Nguyen et al. [34] described the knowledge representation aspects
of UMLS used in the synonymy prediction task. Here we briefly
summarize key concepts from [34] and add new concepts specific
to contextual information. The examples below are illustrated in
Figure 1.

AUI. Every occurrence of a term in a source vocabulary is
assigned a unique atom identifier (AUI). For example, “Cold” in
SNOMEDCT_US and “COLD” in NCI are assigned different AUIs,
“A2880095” and “A17684490”, respectively. Let A be the set of AUIs.

SCUI andms . Each AUI is optionally associated with one iden-
tifier provided by its source (“Source CUI” or SCUI). Terms consid-
ered synonymous in a source vocabulary are assigned the same
SCUI. For example, the terms “COLD” and “Chronic Obstructive
Lung Disease” are associated with the same SCUI, “C3199”, from
the source vocabulary NCI. SCUIs play an important role in the
Metathesaurus construction process because source synonymy is
very often conserved in the Metathesaurus.

(M1) Let S be the set of SCUIs in the Metathesaurus. Letms be
the function that maps an atom a ∈ A to an SCUI s ∈ S such that s
=ms (a).

Source SemanticGroup andmд . Source semantic groups (SGs)
are assigned to a source vocabulary (or to its top-level terms for
multi-domain vocabularies). An SCUI from a source will inherit its
semantic groups from its source. For example, “COLD” with SCUI
“C3199” inherits the SG “Disorders” from the top-level term “Disease,
Disorder or Finding” (fromNCI). LetG be the set of semantic groups
in the Metathesaurus.

(M2) Letmд be the function that maps an SCUI s ∈ S to a set of
semantic groups such thatmд(s) ⊂ G.

Source Hierarchical Relations andmh . An SCUI may have
parent or child terms in a source vocabulary. For example, “COLD”
with SCUI “C3199” (from NCI) has “Chronic Lung Disorder” with
SCUI “C98541” as a parent and “Pulmonary Emphysema” with SCUI
“C3348” as a child.

(M3) Letmh be the function that maps an SCUI s ∈ S to a set of
its parents,mh : S → S such thatmh (s) ⊂ S .

Figure 1: Example illustrating the contextual information
available for disambiguating the terms COLD from NCI
and Cold from SNOMEDCT_US, including source synonyms
(through has_SCUI), source semantic group (Disorders),
and source hierarchical relations (through has_parentSCUI).
Note that SNOMEDCT_US and NCI are two examples out of
over 200 vocabularies from the UMLS Metathesaurus that
are included in the UVA datasets.

Figure 2: An example of the ConAll variant in the knowl-
edge graph representation.

2.2 Context-enriched Knowledge Graphs
Here we explain how we construct the context-enriched knowledge
graphs (ConKGs) (Figure 2) and define the set of triples constructed
for each ConKG variant.

A is the set of AUIs, S is the set of SCUIs,G is the set of SGs, and
the mapping functions {ms ,mд ,mh } are defined in M1, M2, and M3
above.

ConSS. Let rs denote the binary relation has_SCUI from an AUI
a ∈ A to an SCUI s ∈ S . The ConSS variant includes the triples
representing the relationship between an AUI and its SCUI.

(V1) ConSS = {(a, rs , s) : s =ms (a)}.
ConSG. Let rд denote the binary relation has_SG from an SCUI

s ∈ S to a SG д ∈ G. The ConSG variant includes the triples
representing the relationship between an SCUI and its semantic
groups.

(V2) ConSG = {(s, rд ,д) : д ∈mд(s)}.
ConHR. Let rh denote the binary relation has_parentSCUI from

an SCUI s ∈ S to its parent SCUI p ∈ S . The ConHR variant includes
the triples representing the relationship between an SCUI and its
parent SCUI.

(V3) ConHR = {(s, rh ,p) : p ∈mh (s)}.
ConAll. ConAll = ConSS ∪ ConSG ∪ ConHR. An example of

ConAll is shown in Figure 2.
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Table 1: Set of ConKG embeddings for each ConKG variant

Variant ConKG Triples Set of ConKG embedding vectors

ConSS {(a, rs , s) : s =ms (a)} {EConSS (a) ⊕ EConSS (ms (a)) : ∀a ∈ A}

ConSG {(s, rд ,д) : д ∈mд(s)} {EConSG (ms (a)) ⊕
∑
|
∥mд (ms (a)) ∥
j=1 EConSG (дj ) : ∀a ∈ A,дj ∈mд(ms (a))}

ConHR {(s, rh ,p) : p ∈mh (s)} {EConHR (ms (a)) : ∀a ∈ A}

ConAll
{(a, rs , s) : s =ms (a)} {EConAll (a)⊕
{(s, rд ,д) : д ∈mд(s)} EConAll (ms (a))⊕

{(s, rh ,p) : p ∈mh (s)}
∑
|
∥mд (ms (a)) ∥
j=1 EConAll (дj ) : ∀a ∈ A,дj ∈mд(ms (a))}

Table 2: List of abbreviations used in the paper

Notion Meaning Notion Meaning

AUI Atom unique ID A set of AU Is
SCUI Source concept unique identifier T set of ConKG triples
SS Source synonym T ′ set of ConKG negative triples
SG Semantic group S set of SCUIs
HR Hierarchical Relation ms A → S
TOPN_SIM Highest level of lexical similarity G set of SGs
RAN_NOSIM Zero lexical similarity mд S → G
RAN_SIM Low lexical similarity mh S → S
LexLM Lexical-based learning model E A ∪ S ∪G
ConLM Context-enriched learning model E set of entity embeddings
ConKG Context-enriched knowledge graph C set of ConKG embeddings
TRAIN_ Prefix of training datasets

∑
| average an array of vectors

GEN_ Prefix for generalization test sets ⊕ concatenate vectors

3 EMBEDDINGS FOR CONTEXT-ENRICHED
KNOWLEDGE GRAPHS

This section describes how the ConKG triples are transformed
into their respective ConKG embedding vectors using various KG
embedding techniques. We selected a few candidate algorithms
from each KG algorithm class, (1) Translational distance-based:
TransE [5], TransR [23]; (2) Semantic matching-based: RESCAL
[36], DistMult [46], HolE [35], and ComplEx [40]; and (3) Neural
network-based: ConvKB [32] due to their popularity and demon-
strated all-around performance on multi-relational graphs. These
trained ConKG embedding vectors will be then added to the LexLM
to form the ConLMs in Section 4. A list of abbreviations is provided
in Table 2 for convenience.

3.1 Knowledge Graph Embeddings
We explore different KG embedding approaches to transform the
structural representation of ConKG triplesT into a low-dimensional
vector space, while preserving the semantics defined in the ConKG.
Such transformation allows the ConKG triples to be added to the
LexLM as a set of ConKG embedding vectors. Here we describe how
ConKG triples are transformed into ConKG embedding vectors.

Given that A is the set of AUIs, S is the set of SCUIs, and G is
the set of SGs, let E be the set of ConKG entities, E = A ∪ S ∪G.
Let R be the set of all ConKG relations, R = {rs , rд , rh }. Let T
be the set of ConKG triples, a triple t ∈ T if t = (e1, r , e2) with
r ∈ R, and e1, e2 ∈ E. Let T ′ be the set of negative ConKG triples,
t ′ = (e ′1, r , e

′
2) ∈ T ′ if ∃t = (e1, r , e2) ∈ T and t ′ < T . Let d = 2 ∗ i

(i ∈ N) be the dimension of embedding vector. We choose d to be
an even number to facilitate the representation of ComplEx vectors
as explained later in this section.

Generating embedding vectors. KG embedding techniques
generate the embeddings for entity and relation vectors of dimen-
sion d using a scoring function fr : E × R × E → R. This scor-
ing function measures the plausibility of facts by minimizing the

loss function L(T , T ′, θ ) with respect to parameter θ either by
(a) distance-based (TransE, TransR), (b) similarity-based (RESCAL,
HolE, DistMult, and ComplEx) or (c) neural network-based (Con-
vKB) scoring functions. (See [17] for details about scoring and loss
functions for the various embedding techniques.)

Entity embeddings. Let E be the set of embedding vectors
of E, then e ∈ E is an embedding vector of entity e . Here we
only use entity embeddings because our ConKG has only three
relations and these relation embeddings are not particularly useful
for our task. While the embedding for an entity or relation from
TransE, HolE, and DistMult is a single vector with dimensiond = 2i ,
ComplEx embeddings require two vectors (real and imaginary) of
dimensiond = i . In this case, we concatenate the real and imaginary
vectors for each entity into a single vector of dimension d = 2i .
For ComplEx, we denote the two-vector embeddings as E = (Er e ,
Eim ), then we define the embedding vector for an entity e as E(e) =
Er e (e) ⊕ Eim (e), ∀e ∈ E.

The output of each KG embedding technique is a set of entity
embeddings: EConSS , EConSG , EConHR , and EConAll , which will
be used to derive the ConKG embeddings in the next section.

3.2 ConKG Embeddings
We derive ConKG embeddings C for each type of contextual in-
formation described in Section 2.2 with respect to a ∈ A, so that
we can add them to the word embedding vectors from the LexLM
described in Section 4. For each type of contextual information,
we generate a ConKG embedding vector c ∈ C for each a ∈ A by
concatenating the entity embeddings of ConKG entities inside the
ConKG triples corresponding to a, including ms (a) for an SCUI,
andmд(ms (a)) for a semantic group. As an SCUI is mapped to a set
of semantic groups, we get the entity embedding for each semantic
group and average the set of embedding vectors (

∑
| ). We reuse the

mapping functions defined in Section 2.2. Table 1 shows the set of
the ConKG embeddings for each type of contextual information.
The output of each KG embedding technique is a set of context-
enriched embeddings for all AUIs: CConSS , CConSG , CConHR , and
CConAll , which will be added to the reference LexLM in Section 4
and evaluated in Section 5.

4 NEURAL NETWORK ARCHITECTURE
This section describes the LexLM architecture from [34], which we
will be using as the reference model, and our approach for adding
the context-enriched embeddings from Section 3 to the LexLM.

LexLM. The LexLM (grey boxes in Figure 3) adopts the Siamese
architecture [30] that takes in a pair of inputs and learns represen-
tations based on explicit similarity and dissimilarity information de-
fined during training. The inputs (a pair of atoms) are pre-processed
and transformed into their numerical representationswith BioWord-
Vec embeddings pre-trained from PubMed text corpus and MeSH
data [47]. The word embeddings are then fed to Long Short Term
Memory (LSTM) layers to learn the semantic and syntactic features
of the atoms through time. The LexLM relies exclusively on the
lexical features of the atoms, i.e., the terms themselves.

ConLMs. We develop the ConLM (Figure 3), which adds to
the LexLM (at the LSTM layer) a specific variant of the ConKGs
described in Section 3. For each ConKG variant, we first feed the
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Figure 3: The architecture of the neural network in
the Context-enriched Learning Model (ConLM) created by
adding the ConKG embeddings to the Lexical-based Learn-
ing Model (LexLM) embeddings (grey boxes) from [34].
The seven KGE technique used for ConKG include TransE,
TransR, DistMult, HolE, ComplEx, RESCAL, and ConvKB.

Table 3: The ConKG variants with their respective number
of unique entities E, relations R, and positive triples

ConKG |E| |R| |T |
ConAll 10,716,301 3 14,774,566
ConSS 10,553,767 1 7,062,582
ConHR 2,816,992 1 3,520,969
ConSG 3,653,711 1 4,191,015

respective trained ConKG embedding vectors to a 50-unit dense
layer to learn the derived features in Table 1. We then concatenate
(⊕) the output of the dense layer with the output of the LSTM
units from the LexLM. Together, they form the contextualized atom
embedding, which is then fed to subsequent dense layers with
128 and 50 learning units, respectively. The output is a Manhattan
distance similarity function [1], which computes a score indicating
the degree of synonymy between the atoms with a threshold of
0.5. The datasets used for training and testing the ConLMs are
described in Section 5.2. The trained models are evaluated to assess
their respective contribution in Section 5.

5 EVALUATION
This section presents our implementation of the ConLM variants
and a set of experiments to evaluate the ConLM variants towards
the three objectives as described in Section 1. We describe the
set of experiments in Section 5.1, and present the datasets used
for training and testing in Section 5.2. We report and discuss the
results from the experiments towards the objectives in Section 5.4.
We analyze the significance of the results in the Section 5.5. The
datasets from [34] are available at https://bit.ly/uva-datasets.

5.1 Experimental Setup
We have presented the ConLM variants with 4 ConKG variants for
representing the context types in Section 2.2. Figure 3 presented
the architecture of the neural network of the ConLM where KGE
techniques are employed to generate the ConKG embeddings. We

Table 4: Statistics of the UVA datasets for both training and
generalization tests in terms of number of positive/negative
pairs of biomedical terms

Training DS Negative Positive Total

TRAIN_ALL (train) 101,322,647 16,743,627 118,066,274

Generalization Test DS Negative Positive Total

GEN_ALL 166,410,710 5,581,208 171,991,918

GEN_TOPN_SIM 54,752,228 5,581,208 60,333,436

GEN_RAN_SIM 54,445,899 5,581,208 60,027,107

GEN_RAN_NOSIM 58,256,526 5,581,208 63,837,734

select 7 KGE techniques to be evaluated in this paper, including
TransE, TransR, HolE, ComplEx, DisMult, RESCAL, and ConvKB
as described in Section 3. Therefore, we have 28 variants of the
ConLM to be implemented and evaluated, since each KGE technique
is paired with each of the four context types.

For our implementation of the ConLM, there are multiple steps
in our pipeline: (1) we extract the context types from the UMLS
Metathesaurus and generate the ConKG datasets representing the
ConKG variants, (2) we use the implementation of KGE techniques
from the two libraries, OpenKE [13] and PyKEEN [2], for training
the ConKG embeddings from the ConKG datasets, (3) we implement
the training and testing of 28 variants of the ConLM using Keras
and Tensorflow.

All these experiments are deployed as batches of parallel jobs
with the Slurm 1 workloadmanager to the Biowulf high-performance
computing cluster 2 at the National Institutes of Health (NIH). We
used Tesla V100x GPUs with 32GB of GPU RAM and at least 220GB
of CPU RAM for each training and testing task.While the implemen-
tation is configurable and reproducible in a different environment,
these experiments are computationally- and resource-intensive. We
estimated that we used 2753 GPU hours for the set of experiments
reported in this paper. Run-time information is provided in Table 5.

5.2 Datasets
This section describes the datasets for the three types of experi-
ments. We used release 2020AA of the UMLS Metathesaurus re-
stricted to English terms from active source vocabularies. The UMLS
can be downloaded with a no-cost license 3.

5.2.1 Datasets for Training Embeddings for ConKGVariants. Table 3
shows the characteristics of the four datasets generated for training
the KG embeddings for each ConKG variant. We use a positive to
negative triple ratio ∈ {1, 50, 200} for generating the triple instances
described in Section 2.2. The negative triples are automatically
generated using the “bern" sampling technique [43] to corrupt
either the e1 or e2 entity.

5.2.2 Datasets for Training and Testing ConLMs. To compare the
ConLMs against the LexLM baseline, we reuse the training and
testing (generalization) datasets from Table 4 generated in [34].
The different datasets splits are based on the degree of lexical sim-
ilarity among negative examples. The prefix "TRAIN_" refers to

1https://slurm.schedmd.com/documentation.html
2https://hpc.nih.gov/
3https://uts.nlm.nih.gov/uts/
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Table 5: Training time (approximate hours per 100 epochs) for each combination of ConKG variant (ConSS for source syn-
onymy, ConSG for semantic group, ConHR for hierarchical relations, andConAll for all of them) andKGembedding technique
(TransE, TransR, DistMult, HolE, ComplEx, RESCAL, and ConvKB). The total training time for all is 2753 hours

TransE TransR DistMult HolE ComplEx RESCAL ConvKB

KGE ConLM Total KGE ConLM Total KGE ConLM Total KGE ConLM Total KGE ConLM Total KGE ConLM Total KGE ConLM Total

ConAll 30 74 104 60 62 122 41 85 126 48 77 125 43 79 122 60 78 138 68 87 155

ConSS 13 75 88 27 78 105 20 84 104 21 69 90 18 85 103 27 68 95 45 75 120

ConHR 4 102 106 9 65 74 5 80 85 6 66 72 5 81 86 10 62 72 17 70 87

ConSG 6 66 72 11 76 87 7 74 81 7 69 76 7 81 88 12 65 77 22 71 93

Table 6: Results for ComplEx embedding technique towards
3 objectives: (O1) the highest overall performance gain with
+2.88% in F1 with GEN_ALL, (O2) ConAll variant outper-
formed the other 3 variants for allmetrics, and (O3) the high-
est performance gains +4.35%, +1.31%, +0.85% in F1 for pairs
with high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9958 0.9375 0.9323 0.9349 0.9892 0.9497 0.9323 0.9409
ConAll Diff 0.0020 0.0500 0.0069 0.0288 0.0085 0.0656 0.0213 0.0435

Score 0.9939 0.9008 0.9139 0.9073 0.9858 0.9318 0.9139 0.9227
ConSS Diff 0.0001 0.0133 -0.0115 0.0012 0.0051 0.0477 0.0029 0.0253

Score 0.9947 0.9126 0.9237 0.9181 0.9868 0.9333 0.9237 0.9284
ConHR Diff 0.0009 0.0251 -0.0017 0.0120 0.0061 0.0492 0.0127 0.0310

Score 0.9946 0.9070 0.9283 0.9175 0.9869 0.9299 0.9283 0.9291
ConSG Diff 0.0008 0.0195 0.0029 0.0114 0.0062 0.0458 0.0173 0.0317

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9928 0.9894 0.9323 0.9600 0.9938 0.9967 0.9323 0.9634
ConAll Diff 0.0023 0.0036 0.0213 0.0131 0.0014 -0.0004 0.0161 0.0085

Score 0.9901 0.9779 0.9139 0.9448 0.9913 0.9852 0.9139 0.9482
ConSS Diff -0.0004 -0.0079 0.0029 -0.0021 -0.0011 -0.0119 -0.0023 -0.0067

Score 0.9915 0.9839 0.9237 0.9528 0.9926 0.9915 0.9237 0.9564
ConHR Diff 0.0010 -0.0019 0.0127 0.0059 0.0002 -0.0056 0.0075 0.0015

Score 0.9915 0.9792 0.9283 0.9531 0.9932 0.9936 0.9283 0.9598
ConSG Diff 0.0010 -0.0066 0.0173 0.0062 0.0008 -0.0035 0.0121 0.0049

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

training and "GEN_" refers to the generalization dataset. The suffix
"_ALL" dataset contains the following splits: (a) TOPN_SIM - neg-
ative pairs with highest level of lexical similarity, (b) RAN_SIM -
random negative pairs with low level of lexical similarity, and (c)
RAN_NOSIM - random negative pairs with no lexical similarity.
Training and generalization datasets are mutually exclusive. The
LexLM variant trained on the TRAIN_ALL dataset performs best
across the four generalization tests (GEN_ALL, GEN_TOPN_SIM,
GEN_RAN_SIM, and GEN_RAN_NOSIM) and is used as baseline
here. In practice, we use the dataset TRAIN_ALL for training 28
variants of our ConLMs, and the four generalization datasets for
testing our ConLMs (Section 5.3.2).

5.3 Training
5.3.1 Training 28 Variants of ConKG Embeddings. We use both
OpenKE [13] and PyKEEN [2] libraries to implement the KG em-
bedding techniques to train the embeddings independently for
each ConKG variant described in Section 2.2. Since this is not a

Table 7: Results for TransE embedding technique towards 3
objectives: (O1) the best performance gain with +1.99% in F1
with GEN_ALL, (O2) ConAll variant outperformed the other
3 variants for all metrics except precision, and (O3) the high-
est performance gains +3.72%, +1.05%, and +0.69% in F1 for
pairs with high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9952 0.9210 0.9311 0.9260 0.9879 0.9382 0.9311 0.9346
ConAll Diff 0.0014 0.0335 0.0057 0.0199 0.0072 0.0541 0.0201 0.0372

Score 0.9944 0.9117 0.9171 0.9144 0.9866 0.9371 0.9171 0.9270
ConSS Diff 0.0006 0.0242 -0.0083 0.0083 0.0059 0.0530 0.0061 0.0296

Score 0.9951 0.9239 0.9263 0.9251 0.9876 0.9391 0.9263 0.9327
ConHR Diff 0.0013 0.0364 0.0009 0.0190 0.0069 0.0550 0.0153 0.0353

Score 0.9947 0.9079 0.9302 0.9189 0.9874 0.9329 0.9302 0.9316
ConSG Diff 0.0009 0.0204 0.0048 0.0128 0.0067 0.0488 0.0192 0.0342

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9923 0.9853 0.9311 0.9574 0.9935 0.9946 0.9311 0.9618
ConAll Diff 0.0018 -0.0005 0.0201 0.0105 0.0011 -0.0025 0.0149 0.0069

Score 0.9907 0.9817 0.9171 0.9483 0.9918 0.9884 0.9171 0.9514
ConSS Diff 0.0002 -0.0041 0.0061 0.0014 -0.0006 -0.0087 0.0009 -0.0035

Score 0.9920 0.9873 0.9263 0.9558 0.9931 0.9948 0.9263 0.9593
ConHR Diff 0.0015 0.0015 0.0153 0.0089 0.0007 -0.0023 0.0101 0.0044

Score 0.9916 0.9778 0.9302 0.9534 0.9933 0.9926 0.9302 0.9604
ConSG Diff 0.0011 -0.0080 0.0192 0.0065 0.0009 -0.0045 0.0140 0.0055

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

systematic evaluation, nor a performance benchmark across vari-
ous KG embedding techniques, we did not attempt to select opti-
mal hyper-parameters for each technique. Instead we ran various
hyper-parameter selection experiments and obtained a list of hyper-
parameters that balance performance and training speed, as well
as maximize the GPU memory across all techniques.

Training parameters. Each ConKG variant is trained with each
KG embedding technique with (a) 100-1000 epochs, (b) batch size
∈ {50, 256, 1024, 2048} depending on the complexity of the KG tech-
nique and available GPU memory, (c) learning rate ∈ {0.01, 0.05},
(d) loss margin of 1.0, (e) positive to negative triple sampling ratio
∈ {1, 50, 200}, and with (f) embedding dimension of size ∈ {50, 100},
(g) optimizer ∈ {SGD,Adam}. Table 5 shows the training time for
each combination of ConKG variant and KG embedding technique.

5.3.2 Training and Testing 28 ConLMVariants. We trained 28 ConLM
variants (by combining each of the four context types with each
of the seven KGE techniques) using the 28 variants of the ConKG
embeddings obtained from the training presented in Section 5.3.1.
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Table 8: Results for DisMult embedding technique towards 3
objectives: (O1) the best performance gain with +1.62% in F1
with GEN_ALL, (O2) ConAll variant outperformed other 3
variants in all metrics except precision, and (O3) the highest
performance gains +3.62%, +0.87%, +0.67% F1 for pairs with
high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9949 0.9129 0.9319 0.9223 0.9877 0.9353 0.9319 0.9336
ConAll Diff 0.0011 0.0254 0.0065 0.0162 0.0070 0.0512 0.0209 0.0362

Score 0.9948 0.9177 0.9218 0.9197 0.9872 0.9389 0.9218 0.9302
ConSS Diff 0.0010 0.0302 -0.0036 0.0136 0.0065 0.0548 0.0108 0.0328

Score 0.9945 0.9104 0.9225 0.9164 0.9866 0.9324 0.9225 0.9274
ConHR Diff 0.0007 0.0229 -0.0029 0.0103 0.0059 0.0483 0.0115 0.0300

Score 0.9947 0.9084 0.9300 0.9191 0.9874 0.9331 0.9300 0.9316
ConSG Diff 0.0009 0.0209 0.0046 0.0130 0.0067 0.0490 0.0190 0.0342

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9919 0.9805 0.9319 0.9556 0.9935 0.9932 0.9319 0.9616
ConAll Diff 0.0014 -0.0053 0.0209 0.0087 0.0011 -0.0039 0.0157 0.0067

Score 0.9913 0.9841 0.9218 0.9519 0.9924 0.9912 0.9218 0.9552
ConSS Diff 0.0008 -0.0017 0.0108 0.0050 0.0000 -0.0059 0.0056 0.0003

Score 0.9914 0.9836 0.9225 0.9521 0.9924 0.9901 0.9225 0.9551
ConHR Diff 0.0009 -0.0022 0.0115 0.0052 0.0000 -0.0070 0.0063 0.0002

Score 0.9916 0.9784 0.9300 0.9536 0.9933 0.9924 0.9300 0.9602
ConSG Diff 0.0011 -0.0074 0.0190 0.0067 0.0009 -0.0047 0.0138 0.0053

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

We use the TRAIN_ALL dataset variant with 118M pairs as shown
in Table 4 for training our ConLMs.

Training parameters. We also use the same training hyper-
parameters from the LexLM, namely 100 epochs, batch size of 8192,
and Adam optimizer. Training each epoch of the ConLMs takes
about 30 minutes to one hour as shown in Table 5.

Evaluationmetrics.To evaluate our synonymy predictionmod-
els, we employ the usual metrics for machine learning systems,
namely accuracy, precision, and recall. Since precision and recall
are equally important to our application, we use the F1 score, the
harmonic mean of the precision and recall, as a balanced metric to
represent them both.

5.4 Results
We test these 28 trained ConLM variants using four generalization
test sets including GEN_ALL, GEN_TOPN_SIM, GEN_RAN_SIM,
and GEN_RAN_NOSIM as shown in Table 4. We report the results
for these 28 variants of the ConLMs in Table 6-8 and Table 9-12 (in
Appendix) with each KGE technique in a separate table. Each table
contains four blocks corresponding to the four generalization test
datasets with different degrees of lexical similarity. Each block com-
pares the four ConLM variants using the same generalization test
dataset. In each table, we summarize the results of each technique
towards the three objectives of the paper. Here we summarize the
results per objective across all KGE techniques.

5.4.1 Objective 1: Improving the Performance of the LexLM. To
evaluate the overall performance of the ConLM over the LexLM,
we compare the results from ConLM variants using the GEN_ALL

dataset because this dataset contains the pairs from different de-
grees of lexical similarity (the top-left green block).

The best F1 scores of the ConLMs with different KGE techniques
increased between +1.52% and +2.88% compared to the LexLM, and
the ConLMwith the best F1 score is trained with the ConAll variant
(Table 6 with ComplEx). Compared to the LexLM, the best ConLM
has gained +5.0% in precision, +0.69% in recall, and +2.88% in F1. We
also observed the pattern that most of the ConLM variants gained
more in precision and less (or lost) in recall.

5.4.2 Objective 2: Adding Context Types Individually or Collectively.
To evaluate the ConKG variants collectively and individually, we
compare the performance of the ConKG variants across multiple
KGE techniques because one variant can perform well with one
technique but not with others.

From Table 6-8, we observed that the ConAll variant outper-
formed other ConKG individual variants in 3 out of 7 KGE tech-
niques. Particularly, it outperformed others (with ComplEx Table
6) in every metric. It also outperformed others (TransE in Table 7
and and DisMult in Table 8) in every metric except precision (lower
than ConHR). On the other hand, Table 5 shows that the training
time for ConAll with these KGE techniques is several times higher
than other ConKG variants.

Table 9 shows that ConSG is the only individual ConKG variant
that outperformed the ConAll in every metric. We also observed
that ConAll does not outperform other ConKG individual variants
in 3 KGE techniques (TransR, ConvKB, and RESCAL) as shown in
Table 10-12. In summary, there is no clear winner for these cases.

5.4.3 Objective 3: Assessing the Impact of Adding Contextual In-
formation on Specific Datasets. For this objective, we evaluate the
performance of the ConLMs using UVA datasets with high/low/no
lexical similarity, including GEN_TOPN_SIM, GEN_RAN_SIM, and
GEN_RAN_NOSIM. Respectively, the highest performance gains
in F1 are from +3.28% to +4.35%, +0.58% to +1.31%, and +0.19% to
+0.85% for different KGE techniques. In other words, the largest gain
in F1 is observed with datasets that contain a high degree of lexi-
cal similarity between terms. However, more modest performance
gains can be observed consistently across all datasets, including
those with no similarity between terms.

5.5 Statistical Analysis
To assess the statistical significance of the difference in overall
performance between the best ConLM (ConAll in Table 6) and the
reference LexLM on the GEN_ALL dataset, we perform a McNemar
test. This test compares the distribution of positive and negative pre-
dictions between the two models. The McNemar statistics (60887.0)
indicates that the difference is statistically significant (p < 0.001). Of
note, since our goal is not to assess the superiority of specific KGE
techniques or types of contextual information, we did not perform
a systematic statistical analysis of all differences in performance.

6 DISCUSSION AND FUTUREWORK
Findings. As we hypothesized, the use of KG embeddings to add
contextual information to the reference LexLM yielded significant
performance improvement over the LexLM baseline, especially in
terms of precision (+5.0% to reach 93.75%). Even more remarkably,
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there was no concomitant loss of recall, but marginal gain instead
(+0.69% to reach 93.23%) and the overall performance (F1) also in-
creased (+2.88% in F1 to reach 93.49%). We showed a large degree of
variability among KG embedding techniques and among types of
contextual information. The optimal type of contextual information
seems to depend on the KGE technique used. ConAll performs best
with three of the seven KGE techniques tested, but at the cost of
increased training time. On the other hand, no single context type
outperforms ConAll across all KGE techniques. Therefore, selecting
the optimal context type for the UVA task at scale will require a
trade off between performance and training time. Also important is
the fact that only the semantic group is guaranteed to be specified
for each atom, while source synonymy and hierarchical relations
are only present for about 50% of the atoms on average. This may
explain the somewhat strong performance of ConAll. Finally, our
experiments also confirmed that the addition of contextual informa-
tion not only benefits pairs of terms with high lexical similarity as
we expected, but also improves performance across all test datasets.

Significance. The performance of the reference LexLM was
already very strong, especially given the limited information avail-
able to this model (i.e., only the lexical features of terms). How-
ever, given the very large number of comparisons required for the
Metathesaurus construction, the number of false positives remained
important despite precision values near 90%. Therefore, increasing
precision by 5.0% (to reach 93.75%) represents a substantial advance
for the UVA task, especially because recall was not negatively af-
fected. Moreover, the gain in precision with ConLM results in a drop
of almost 50% in the false positive rate compared to LexLM (from
0.391% to 0.207%). In practice, this performance gain will translate
in savings in manual curation, as fewer false positive synonyms
will need to be corrected. Another important result for the applica-
tion of ConLMs to the UVA task is that the addition of contextual
information to the LexLM improves performance across all datasets,
not only on highly similar terms. This shows that the performance
of ConLMs will likely generalize to the UMLS Metathesaurus as a
whole, where most terms exhibit no similarity with other terms.

Limitation and Future Work. As mentioned earlier, this in-
vestigation is no substitute for a systematic performance evaluation
of KG embedding techniques and thorough benchmarking. Our
focus was rather on the application to the UVA task. Performing a
comprehensive analysis of the differences with the LexLM baseline
was beyond the scope of this investigation, but is part of our future
work. Finally, we plan to improve the performance of the LexLM,
e.g., by developing novel embedding techniques that consider the
unique characteristics of the UMLS Metathesaurus.

7 RELATEDWORK
Biomedical ontology alignment is a long-standing research effort
driven by the Ontology Alignment Evaluation Initiative (OAEI)
since 2005. With the growth of interest in integrating biomedical
ontologies at scale [34], studies have looked into using rule-based
and statistical approaches [12, 18, 31], as well as supervised learning
approaches for ontologies matching [11] by assessing the similarity
[20, 41] and relatedness [25] between words and sentences. Such
tasks are also known as Semantic Text Similarity (STS) tasks.

Recent progress has been attributed to the use of a combina-
tion of knowledge-based similarity with deep learning techniques,
such as word embeddings [27] for input feature representation, and
Siamese Network [4, 14, 15, 30] to learn the underlying semantics
and structure. Unsupervised approaches, such as transformer-based
mechanisms, have also been explored with a great degree of suc-
cess [10]. Nonetheless, these techniques are largely based on lexical
features and require very large text corpora to learn from. In [16],
contextualized representations of concepts with ancestral, child,
data property neighbor, and object property neighbor contexts are
used to discover semantically equivalent concepts. In our approach,
we exploit the graph structure of various types of contextual infor-
mation through the use of KG embeddings.

There are several families of KG embedding techniques [17, 38].
They aim to map entities and relations into low-dimensional vec-
tors while capturing their structural and semantic meanings [42],
and have shown to benefit a variety of knowledge-driven tasks [22].
Since this is the first attempt to use the various types of contextual
information in the UVA task at scale, we explored three of the pop-
ular classes of techniques because of their demonstrated success
in various tasks: translational distance-based with TransE [5], and
TransR [23]; semantic matching-based using RESCAL [36], Dist-
Mult [46], HolE [35], and ComplEx [40]; and neural network-based
using ConvKB [32]. We evaluated their performance in the UVA
task, but did not benchmark them against other forms of graph rep-
resentation techniques [17, 45]. Many embedding techniques listed
in [38] are not selected due to the specific characteristics of context
in our datasets, e.g., having no attributes/literals (but 10 techniques
in [38] including AttrE [39] and KDCoE [6] leveraging attributes),
having English-only (but MTransE [7] leveraging multilingual), or
very large (RDGCN [44] being not scalable).

8 CONCLUSION
In summary, we demonstrated the importance of using contextual
information in the UMLS vocabulary alignment task. Particularly,
we showed that it was possible to improve on the performance of a
learning model based on the lexical features of biomedical terms by
taking into account the context of these terms in their source vocab-
ulary (source synonymy, source semantics, hierarchical relations).
Adding contextual information to the lexical model through KG
embeddings yielded a substantial gain in precision with no negative
effect on recall and was particularly beneficial to lexically similar
strings, such as homonyms, but also improved performance overall.
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A APPENDIX
A.1 Reproducibility
The experiments are reproducible with the materials to be made
available at https://bit.ly/www2022-supp.
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A.2 Additional Tables
Given the limited space in the paper, here we provide the remaining
tables for the KGE techniques.

Table 9: Results for HolE embedding technique towards 3
objectives: (O1) the best performance gain with +1.92% in F1
with GEN_ALL, (O2) ConAll variant not outperforming the
other 3 variants for all metrics, and (O3) the highest perfor-
mance gains +3.74%, +1.04%, and +0.76% in F1 for pairs with
high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9948 0.9111 0.9297 0.9203 0.9874 0.9339 0.9297 0.9318
ConAll Diff 0.0010 0.0236 0.0043 0.0142 0.0067 0.0498 0.0187 0.0344

Score 0.9936 0.8919 0.9148 0.9032 0.9855 0.9274 0.9148 0.9210
ConSS Diff -0.0002 0.0044 -0.0106 -0.0029 0.0048 0.0433 0.0038 0.0236

Score 0.9945 0.9072 0.9237 0.9154 0.9865 0.9304 0.9237 0.9270
ConHR Diff 0.0007 0.0197 -0.0017 0.0093 0.0058 0.0463 0.0127 0.0296

Score 0.9951 0.9183 0.9325 0.9253 0.9880 0.9370 0.9325 0.9348
ConSG Diff 0.0013 0.0308 0.0071 0.0192 0.0073 0.0529 0.0215 0.0374

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9917 0.9801 0.9297 0.9542 0.9933 0.9930 0.9297 0.9603
ConAll Diff 0.0012 -0.0057 0.0187 0.0073 0.0009 -0.0041 0.0135 0.0054

Score 0.9899 0.9749 0.9148 0.9439 0.9911 0.9823 0.9148 0.9473
ConSS Diff -0.0006 -0.0109 0.0038 -0.0030 -0.0013 -0.0148 -0.0014 -0.0076

Score 0.9913 0.9820 0.9237 0.9520 0.9925 0.9903 0.9237 0.9558
ConHR Diff 0.0008 -0.0038 0.0127 0.0051 0.0001 -0.0068 0.0075 0.0009

Score 0.9923 0.9835 0.9325 0.9573 0.9936 0.9945 0.9325 0.9625
ConSG Diff 0.0018 -0.0023 0.0215 0.0104 0.0012 -0.0026 0.0163 0.0076

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

Table 10: Results for TransR embedding technique towards
3 objectives: (O1) the best performance gain with +1.56% in
F1 with GEN_ALL, (O2) ConAll variant not outperforming
the other 3 variants for all metrics, and (O3) the highest per-
formance gains +3.31%, +0.8%, and +0.45% in F1 for pairs with
high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9947 0.9108 0.9287 0.9197 0.9872 0.9322 0.9287 0.9305
ConAll Diff 0.0009 0.0233 0.0033 0.0136 0.0065 0.0481 0.0177 0.0331

Score 0.9949 0.9243 0.9192 0.9217 0.9871 0.9401 0.9192 0.9295
ConSS Diff 0.0011 0.0368 -0.0062 0.0156 0.0064 0.0560 0.0082 0.0321

Score 0.9946 0.9122 0.9237 0.9179 0.9867 0.9321 0.9237 0.9279
ConHR Diff 0.0008 0.0247 -0.0017 0.0118 0.0060 0.0480 0.0127 0.0305

Score 0.9946 0.9072 0.9290 0.9180 0.9871 0.9310 0.9290 0.9300
ConSG Diff 0.0008 0.0197 0.0036 0.0119 0.0064 0.0469 0.0180 0.0326

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9918 0.9826 0.9287 0.9549 0.9931 0.9919 0.9287 0.9593
ConAll Diff 0.0013 -0.0032 0.0177 0.0080 0.0007 -0.0052 0.0125 0.0044

Score 0.9914 0.9873 0.9192 0.9520 0.9925 0.9941 0.9192 0.9552
ConSS Diff 0.0009 0.0015 0.0082 0.0051 0.0001 -0.0030 0.0030 0.0003

Score 0.9916 0.9797 0.9290 0.9537 0.9931 0.9919 0.9290 0.9594
ConHR Diff 0.0011 -0.0061 0.0180 0.0068 0.0007 -0.0052 0.0128 0.0045

Score 0.9915 0.9840 0.9237 0.9529 0.9927 0.9923 0.9237 0.9568
ConSG Diff 0.0010 -0.0018 0.0127 0.0060 0.0003 -0.0048 0.0075 0.0019

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

Table 11: Results for the ConvKB embedding towards 3 ob-
jectives: (O1) the best overall performance gain with +1.54%
in F1 with GEN_ALL, (O2) ConAll variant not outperform-
ing the other 3 variants for all metrics, and (O3) the highest
performance gains +3.28%, + 0.58%, and +0.19% in F1 for pairs
with high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9943 0.9111 0.9149 0.9130 0.9854 0.9263 0.9149 0.9205
ConAll Diff 0.0005 0.0236 -0.0105 0.0069 0.0047 0.0422 0.0039 0.0231

Score 0.9949 0.9227 0.9202 0.9215 0.9872 0.9405 0.9202 0.9302
ConSS Diff 0.0011 0.0352 -0.0052 0.0154 0.0065 0.0564 0.0092 0.0328

Score 0.9947 0.9148 0.9230 0.9189 0.9869 0.9344 0.9230 0.9287
ConHR Diff 0.0009 0.0273 -0.0024 0.0128 0.0062 0.0503 0.0120 0.0313

Score 0.9944 0.9067 0.9235 0.9150 0.9866 0.9307 0.9235 0.9271
ConSG Diff 0.0006 0.0192 -0.0019 0.0089 0.0059 0.0466 0.0125 0.0297

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9909 0.9859 0.9149 0.9490 0.9922 0.9954 0.9149 0.9534
ConAll Diff 0.0004 0.0001 0.0039 0.0021 -0.0002 -0.0017 -0.0013 -0.0015

Score 0.9914 0.9869 0.9202 0.9524 0.9924 0.9923 0.9202 0.9549
ConSS Diff 0.0009 0.0011 0.0092 0.0055 0.0000 -0.0048 0.0040 0.0000

Score 0.9915 0.9844 0.9230 0.9527 0.9926 0.9923 0.9230 0.9564
ConHR Diff 0.0010 -0.0014 0.0120 0.0058 0.0002 -0.0048 0.0068 0.0015

Score 0.9910 0.9789 0.9235 0.9504 0.9927 0.9926 0.9235 0.9568
ConSG Diff 0.0005 -0.0069 0.0125 0.0035 0.0003 -0.0045 0.0073 0.0019

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549

Table 12: Results for RESCAL embedding technique towards
3 objectives: (O1) the best performance gain with +1.52% in
F1 with GEN_ALL, (O2) ConAll variant not outperforming
the other 3 variants for all metrics, and (O3) the highest per-
formance gains +3.38%, +0.78%, and +0.43% in F1 for pairs
with high/low/no degree of lexical similarity

GEN_ALL GEN_TOPN_SIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9944 0.9021 0.9283 0.9150 0.9867 0.9282 0.9283 0.9283
ConAll Diff 0.0006 0.0146 0.0029 0.0089 0.0060 0.0441 0.0173 0.0309

Score 0.9939 0.8964 0.9167 0.9065 0.9856 0.9266 0.9167 0.9216
ConSS Diff 0.0001 0.0089 -0.0087 0.0004 0.0049 0.0425 0.0057 0.0242

Score 0.9949 0.9171 0.9257 0.9213 0.9871 0.9343 0.9257 0.9300
ConHR Diff 0.0011 0.0296 0.0003 0.0152 0.0064 0.0502 0.0147 0.0326

Score 0.9947 0.9091 0.9294 0.9191 0.9873 0.9330 0.9294 0.9312
ConSG Diff 0.0009 0.0216 0.0040 0.0130 0.0066 0.0489 0.0184 0.0338

LexLM Score 0.9938 0.8875 0.9254 0.9061 0.9807 0.8841 0.9110 0.8974

GEN_RAN_SIM GEN_RAN_NOSIM

accuracy precision recall F1 accuracy precision recall F1

Score 0.9913 0.9774 0.9283 0.9522 0.9930 0.9913 0.9283 0.9587
ConAll Diff 0.0008 -0.0084 0.0173 0.0053 0.0006 -0.0058 0.0121 0.0038

Score 0.9903 0.9778 0.9167 0.9463 0.9916 0.9859 0.9167 0.9501
ConSS Diff -0.0002 -0.0080 0.0057 -0.0006 -0.0008 -0.0112 0.0005 -0.0048

Score 0.9918 0.9856 0.9257 0.9547 0.9930 0.9938 0.9257 0.9585
ConHR Diff 0.0013 -0.0002 0.0147 0.0078 0.0006 -0.0033 0.0095 0.0036

Score 0.9917 0.9806 0.9294 0.9543 0.9931 0.9910 0.9294 0.9592
ConSG Diff 0.0012 -0.0052 0.0184 0.0074 0.0007 -0.0061 0.0132 0.0043

LexLM Score 0.9905 0.9858 0.9110 0.9469 0.9924 0.9971 0.9162 0.9549
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