
Requirements for and Evaluation of User Support for
Large-Scale Ontology Alignment

-
Extended version

Valentina Ivanova1,2 and Patrick Lambrix1,2 and Johan Åberg1

(1) Dept of Computer and Information Science and (2) the Swedish e-Science Research Centre
Linköping University, 581 83 Linköping, Sweden

Abstract. Currently one of the challenges for the ontology alignment commu-
nity is the user involvement in the alignment process. At the same time, the focus
of the community has shifted towards large-scale matching which introduces an
additional dimension to this issue. This paper aims to provide a set of require-
ments that foster the user involvement for large-scale ontology alignment tasks.
Further, we present and discuss the results of a literature study for 7 ontology
alignments systems as well as a heuristic evaluation and an observational user
study for 3 ontology alignment systems to reveal the coverage of the require-
ments in the systems and the support for the requirements in the user interfaces.

1 Motivation

The growth of the ontology alignment area in the past ten years has led to the develop-
ment of many ontology alignment tools. The progress in the field has been accelerated
by the Ontology Alignment Evaluation Initiative (OAEI) which has provided a discus-
sion forum for developers and a platform for an annual evaluation of their tools. The
number of participants in the OAEI increases each year, yet few provide a user interface
and even fewer navigational aids or complex visualization techniques. Some systems
provide scalable ontology alignment algorithms. However, for achieving high-quality
alignments user involvement during the process is indispensable.

Nearly half of the challenges identified in [43] are directly related to user involve-
ment. These include explanation of matching results to users, fostering the user involve-
ment in the matching process and social and collaborative matching. Another challenge
aims at supporting users’ collaboration by providing infrastructure and support during
all phases of the alignment process. All these challenges can be addressed by providing
user interfaces in combination with suitable visualization techniques.

The demand for user involvement has been recognized by the alignment community
and resulted in the introduction of the OAEI Interactive track in 2013. Quality measures
for evaluation of interactive ontology alignment tools have been proposed in [37]. The
results from the first two editions of the track, [10] and [12], show the benefits from
introducing user interactions (in comparison with the systems’ non-interactive modes).
In the first edition the precision for all (five) participants and the recall for three was

raised. For the second edition three (out of four) systems increased their precision and
two their recall. The test cases presented in [21] show that simulating user interactions
with 30% error rate during the alignment process has led to the same results as a non-
interactive matching.

With the development of the ontology engineering field the size and complexity of
the ontologies, the alignments and, consequently, the matching problems increase as
emphasized in [43] by the large-scale matching evaluation challenge. This trend is de-
manding scalable and (perhaps) novel user interfaces and interactions which is going to
impose even stricter scalability requirements towards the algorithms in order to provide
timely response to the users. For instance, graph drawing algorithms should not intro-
duce delays in order for a tool to provide interactive visualization. Scalability, not only
in terms of computation, but also in terms of interaction is one of the crucial features
for the ontology alignment systems as stated in [21]. According to [40] user interactions
are essential (in the context of large ontologies) for configuring the matching process,
incremental matching and providing feedback to the system regarding the generated
mapping suggestions.

Currently many alignment systems focus on their main task—ontology alignment—
with little or no support for an infrastructure or functionalities which are not directly
related to the alignment process. Coping with the increasing size and complexity of
ontologies and alignments will require not only comprehensive visualization and user
interactions but also supporting functionalities not directly related to them. For instance,
the authors in [15] identify cognitive support requirements for alignment tools not di-
rectly related to the alignment process—interrupting/resuming the alignment process
and providing a feedback on its state. Achieving collaborative matching is going to
need a suitable environment.

This paper provides requirements for ontology alignment tools that encourage user
involvement for large-scale ontology alignment tasks (section 2). We also present the
results from a literature study (section 3) and two user interface evaluations (section 4)
to reveal the coverage of the requirements in current ontology alignment systems and
the support for the requirements in their user interfaces. Section 5 concludes the paper.

2 Requirements for User Support in Large-Scale Ontology
Alignment

This section presents requirements for ontology alignment systems meant to foster user
engagement for large-scale ontology alignment problems. Subsection 2.1 summarizes
the requirements presented in [15] which address the cognitive support that should be
provided by an alignment system to a user during the alignment process. While they are
essential for every alignment system, their influence becomes more pressing with in-
creasing ontology size and complexity. Further, the focus in the community has shifted
towards large-scale matching since the time they have been developed. For instance,
DBpedia and the Gene Ontology are among the five most commonly used ontologies
according to a survey conducted in 2013 and presented in [44]. Thus other require-
ments (not necessary related to the user interface) to assist the user in managing larger
and more complex ontologies and alignments are in demand (subsection 2.2). They

are extracted from existing works and systems and from the authors’ personal experi-
ence from developing ontology alignment and debugging systems [27, 26, 25]. These
requirements contribute to the development of a complete infrastructure that supports
the users during large-scale alignment tasks (and may pose additional visualization and
interface requirements). Since those requirements address user involvement as well they
sometimes overlap with those in subsection 2.1 and can be considered complementary
to them.

The requirements discussed in this section are crucial for large-scale alignment
tasks, but also beneficial for aligning small and medium size ontologies. While the
alignment of two medium size ontologies is feasible on a single occasion by a single
user even without techniques for reducing user interventions, the alignment of large-
scale ontologies without such techniques would be infeasible.

The authors in [17] identify requirements for supporting user interactions in align-
ment systems which can be seen as a subset of the requirements in this paper. The same
applies for those in [13] which lists requirements for alignment editors and visualizers
relevant for individual and collaborative matching and explanation of alignments.

2.1 User Interface Requirements

The requirements identified in [15] are based on research in the area of cognitive theo-
ries and a small user study with four participants. They are grouped in four conceptual
dimensions (table 1). The Analysis and Generation dimension includes functions for au-
tomatic computation and trial execution of mapping suggestions (potential mappings),
inconsistency detection/resolution and services for interrupting/resuming the alignment
process. The mappings and mapping suggestions together with explanations why/how
they are suggested/accepted are visualized by services in the Representation dimen-
sion. Other functions include interactions for overview and exploration of the ontolo-
gies and alignments and feedback for the state of the process. Requirements 1, 2 and 3
from [17] and the first and the third requirements in [13] focus on similar services. The
Analysis and Decision Making dimension considers the users’ internal decision making
processes and involves exploration of the ontology terms and their context during the
process of discovering and creating (temporary) mappings, and validating mapping sug-
gestions. During the Interaction dimension the user interacts with the system through
its exploration, filtering and searching services in order to materialize his/her decisions
by creating mappings and accepting/rejecting mapping suggestions. Requirements 4, 5
and 6 from [17] cover similar interactions. Such requirements are also identified in [13].
The requirements for the Analysis and Decision Making dimension can be considered to
utilize the functionalities represented by the requirements in the Interaction dimension.

The requirements provided by the Representation and Interaction dimensions are
involved in the human-system interaction and can be roughly separated in the follow-
ing three subcategories of the user interface category (shown in table 2)—manipulation
(M), inspection (I) and explanatory (E) requirements. Those in the first category in-
clude actions for transforming the mapping suggestions in an alignment—accept/reject
mapping suggestions, add metadata and manually create mappings, etc. Similar func-
tionalities are also needed for the ontologies (#5.0) since the user may need to, for
instance, introduce a concept in order to provide more accurate mappings, as described

Table 1. Cognitive support requirements adapted from [15].

Dimensions Requirements
Analysis #3.1: automatic discovery of some mappings;
and #3.2: test mappings by automatically transforming instances between ontologies;
Generation #3.3: support potential interruptions by saving and returning users to given state;
Dimension #3.4: support identification and guidance for resolving conflicts;

#4.1: visual representation of the source and target ontology; (I)
#4.2: representation of a potential mapping describing why it was suggested,

where the terms are in the ontologies, and their context; (I,E)
Repre- #4.3: representation of the verified mappings that describe why the mapping
sentation was accepted, where the terms are in the ontologies, and their context; (I,E)
Dimension #4.4: identify visually candidate-heavy regions; (I)

#4.5: indicate possible start points for the user; (E)
#4.6: progress feedback on the overall mapping process; (E)
#4.7: feedback explaining how the tool determined a potential mapping; (E)

Analysis #1.1: ontology exploration and manual creation of mappings; (I,M)
and tooling for the creation of temporary mappings; (M)
Decision #1.2: method for the user to accept/reject a suggested mapping; (M)
Making #1.3: access to full definitions of ontology terms; (I)
Dimension #1.4: show the context of a term when a user is inspecting a suggestion; (I)

#2.1: interactive access to source and target ontologies; (I)
Interaction #2.2: interactive navigation and allow the user to accept/reject suggestions; (I,M)
Dimension #2.3: interactive navigation and removal of verified mappings; (I,M)

#2.4: searching and filtering the ontologies and mappings; (I)
#2.5: adding details on verified mappings and manually create mappings; (M)

in [29] as well. Those in the second category cover a broad set of actions for inspecting
the ontologies and alignments—exploring the ontologies, mappings and mapping sug-
gestions, search and filter by various criteria (name, already mapped concepts, rejected
suggestions, etc.), zoom, overview, etc. Those tasks can be aligned with the first five
tasks identified in [23] and based on [42] which discusses the tasks that should be sup-
ported by information visualization applications. The third category includes services
for presenting information to the user, for instance, reasons to suggest/accept a map-
ping suggestion, how the tool has calculated it, hinting at possible starting points and
showing the current state of the process.

2.2 Infrastructure and Algorithms Requirements

Various requirements arise from the tendency of increasing the size and complexity
of the ontologies, alignments and alignment problems. They need to be supported by
scalable visualization and interaction techniques as well. For instance, an introduction
of a debugging phase during the alignment process (discussed below) will demand ad-
equate presentation of the defects and their causes which is a problem of the same
scale as the main problem discussed in this paper. This subsection does not discuss

Table 2. Requirements to support user involvement in large-scale matching tasks. (supported(X);
partly supported(+); special case, details in the text(*); not supported(-))

Requirements AlViz SAMBO PROMPT CogZ RepOSE AML COMA

la
rg

e-
sc

al
e

us
er

in
te

rf
ac

e
m

an
ip

ul
at

e #2.5;1.1 create mapping manually X(*) X X X + - X(*)
#2.2;1.2 accept/reject suggestion X(*) X X X X - X(*)
#2.5 add metadata to mapping - X X X - - -
#2.3 move a mapping to list - X X X + - -
#5.0 ontology X - X X - - -

in
sp

ec
t

#2.2;1.4 mapping suggestions X(*) X X X + - X(*)
#2.3 mappings X(*) X X X X X X(*)
#4.4 heavy-regions X - - X - - +
#2.4 filter/search -/X -/X -/- X/X -/- +/X -/X
#4.1/2/3;2.1;1.1/3 ontologies X X X X X + X

ex
pl

ai
n

#4.2/7;5.8 why/how suggested + + X X + + +
#4.3 why accepted - X X X - - -
#4.5 starting point + - - + X - +
#4.6 process state X + + X + - +

in
fr

as
tr

uc
tu

re
&

al
go

ri
th

m
s #5.1;3.3 sessions + X + + + - X

#5.2 clustering X + - X X X X
#5.3 reduce user interventions - + + - - - -
#5.4 collaboration - - - - - - -
#5.5 environment - + + - - + +
#5.6 recommend/rank - X + + X - X
#5.7;3.4 debugging - X X X X X -
#5.8;4.2/7 matchers configuration - X + + X X X
#5.9.1;3.2 trial execution - - - - - - -
#5.9.2;1.1 temporary decisions X + + X - - -

the techniques for large-scale matching identified in [40] or matching with background
knowledge since they are not directly related to user involvement. However some of
those techniques affect the interactivity of the systems and thus indirectly influence the
user involvement.

Aligning large and complex ontologies cannot be handled on a single occasion.
Thus the user should be able to suspend the process, preserve its state and resume it
at another point in time (#3.3). Such interruptions of the alignment process (#5.1)
may take place during different stages, for instance, during the computation of mapping
suggestions, during their validation, etc. At the time of interruption the system may pro-
vide partial results which can be reused when the alignment process has been resumed.
SAMBO [26] implements this by introducing interruptible computation, validation and
recommendation sessions. Requirement 9 in [17] can be seen as similar, but without
saving and reusing already validated suggestions.

Another strategy to deal with large-scale tasks is to divide them into smaller tasks
(#5.2). This can be achieved by clustering algorithms or grouping heuristics. Smaller
problems can be more easily managed by single users and devices with limited re-

sources. Requirement 8 from [17] proposes distributing parts of the task among several
users. The authors of AlViz [28] highlight that clustering the graph improves the interac-
tivity of the program (by reducing the size of the problem). Clustering of the ontologies
and alignments will allow reusing visualization techniques that work for smaller prob-
lems. A fragment-based strategy is implemented in [11] where the authors also note
that not all fragments in one schema would have corresponding fragments in another.

In the context of large-scale matching it is not feasible for a user to validate all map-
ping suggestions generated by a system, i.e., tool developers should aim at reducing
unnecessary user interventions (#5.3). The authors in [37] define a measure for eval-
uating interactive matching tools based on the number and type of user interventions in
connection with the achieved F-measure. LogMap2 [21] only requires user validation
for problematic suggestions. In [26] the authors demonstrate that the session-based ap-
proach can reduce the unnecessary user interventions by utilizing the knowledge from
previously validated suggestions. GOMMA [24] can reuse mappings between older
ontology versions in order to match their newer versions. PROMPT [34] logs the op-
erations performed for merging/aligning two ontologies and can automatically reap-
ply them if needed. Reducing the user interventions, but at the same time effectively
combining manual validation with automatic computations are two of the challenges
identified in [36]. The authors in [9] and [41] discuss criteria for selecting mapping
suggestions to show and strategies for user feedback propagation in order to reduce
the user-system interactions. The same issues in a multi-user context are presented in
[8]. A dialectical approach reusing partial alignment to map portions of two ontologies
without exposing them is evaluated in [38].

Matching large ontologies is a lengthy and demanding task for a single user. It can
be relaxed by involving several users who can discuss together and decide on problem-
atic mappings in a collaborative environment. The social and collaborative matching
(#5.4) is still a challenge for the alignment community [43]. Requirement 7 in [17] ad-
dresses this open opportunity. It has potential to reduce the load of a single user and the
number of incorrect mappings by building on the collective knowledge of a number of
people who can review mappings created by other participants [13]. One of the quality
aspects for ontology alignment discussed in [29] is the social aspect—it can be achieved
by means of collaboration and information visualization techniques.

Another challenge insufficiently addressed [43] by the alignment community is re-
lated to the environment (#5.5) where such collaboration could happen. Apart from
aligning ontologies it should also support a variety of functions for managing align-
ments as explained in [13]. Accommodating different versions of alignments, for in-
stance, would require an entire infrastructure on its own and probably a permanent stor-
age similarly to GOMMA/COMA++. The environment should support communication
services between its members—discussion lists, wikis, subscriptions/notifications, mes-
sages, annotations, etc.

Providing recommendations (#5.6) is another approach to support the user dur-
ing the decision making process. Such recommendations can be based on external re-
sources, previous user actions, based on other users’ actions (in a collaborative environ-
ment), etc. They can be present at each point user intervention is needed—choosing an
initial matcher configuration [3], validating mapping suggestions [25], choosing a start-

ing point, etc. The authors in [26] implement recommendation sessions which match
small parts of the selected ontologies in order to recommend the best settings for match-
ing them. Different weights can be assigned to the recommendations depending on their
sources. Suitable ranking/sorting strategies could be applied to present them in a par-
ticular order.

The outcome of the applications that consume alignments is directly dependent on
the quality of the alignments. A direct step towards improving the quality of the align-
ments and, consequently, the results from such applications is the introduction of a
debugging step during the alignment process (#5.7). It was shown in [18] that a do-
main expert has changed his decisions regarding mappings he had manually created,
after an interaction with a debugging system. Most of the alignments produced in the
Anatomy, LargeBio and even Conference (which deals with medium size ontologies)
tracks in OAEI 2013 [10] are incoherent which questions the quality of the results of the
semantically-enabled applications utilizing them. According to [21] reasoning-based
error diagnosis is one of the three essential features for alignment systems. Almost half
of the quality aspects for ontology alignment defined in [29] address lack of correctness
in the alignment in terms of syntactic, semantic and taxonomic aspects. The trends to-
ward increasing the size and complexity of the alignment problem demand debugging
techniques more than ever. In this context a debugging module should be present in
every alignment system. The authors in [22] show that repairing alignments is feasible
at runtime and improves their logical coherence when (approximate) mapping repair-
ing techniques are applied. Since ontology debugging presents considerable cognitive
complexity (due to the, potentially, long chains of entailments) adequate visual support
to aid user interactions is a necessity.

In the field of ontology debugging there is already ongoing work that addresses ex-
planation of defects to users [4], [32]. These techniques could be borrowed and applied
to ontology alignment to address the challenge for explaining the matching results
to the users (#4.2, #4.7). The authors in [36] specify generating human understandable
explanations for the mappings as a challenge as well. The authors in [3] implement ad-
vanced interfaces for configuring the matching process (#5.8) which provide the users
with insights of the process and contribute to the understanding of the matching results.

Trial execution of mappings (#5.9.1) (what-if), supports the user by confirming
his/her expectations (#3.2), will be of great help during the debugging and alignment
by aiding the user understanding the consequences of his/her actions. Additionally sup-
port for temporary decisions (#5.9.2), including temporary mappings (#1.1), a list of
performed actions and undo/redo actions, will help the user to explore the effects of
his/her actions (and reduce the cognitive load).

3 Literature Study

A literature study was performed on a number of systems. It does not aim to provide
a complete overview of the existing alignment systems. The systems in the study were
selected because they have mature interfaces, often appear in user interface evaluations
and accommodate features addressing alignment of large ontologies. Some systems
were omitted since their user interfaces are not described in papers (YAM++ [31]) or

provide only limited functionalities (LogMap [20]). Table 2 shows the systems’ support
for the requirements identified in section 2.

3.1 Systems

AlViz [28] is a Protégé plug-in which uses the linking and brushing paradigm for con-
necting multiple views of the same data where navigation in one of the views changes
the representation in the other. During the alignment process each ontology is repre-
sented as a pair of views—a tree and a small world graph—i.e., four views in total for
the two ontologies. The trees provide well-known editing and exploratory functionali-
ties. There is no clear distinction between mappings and mapping suggestions (X(*)).
Mappings are edited, accepted and rejected in the tree views by toolbar buttons for
defining the type of mappings. The small world graphs represent an ontology as a graph
where the nodes (represent the entities) are clustered according to a selected level of
detail. The size of the clusters corresponds to the number of nodes in them. The edges
between the clusters represent the selected relation (mutual property). Intuitive explo-
ration is achieved by the linking and brushing technique, adjustable level of details (by
means of a slider) and selecting a relationship to present (from a drop-down list). The
small world graphs provide an overview of the ontologies where color-coding provides
an overview of the similar clusters (in the two ontologies). The colors of the clusters are
inherited from the underlying nodes according to one (out of three) strategy. Tooltips
and labels can be switched on and off.

Different sessions are not directly supported, but simple interruption and resumption
of the alignment process can be achieved by saving and loading the input file which
contains the mappings. Temporary decisions for questionable mappings are supported
by a tracking button. Undo/redo buttons and history of activities are also provided.

SAMBO [26] (based on [27]) is an ontology alignment system that addresses the chal-
lenges related to user involvement by introducing interruptible sessions—computation,
validation and recommendation sessions. The computation session computes mapping
suggestions between two ontologies and can utilize results from previous validation and
recommendation sessions. The user validates the mapping suggestions during the vali-
dation session. A reasoner may be used during both sessions to check the consistency
of the (validated) mapping suggestions in connection with the ontologies. Both sessions
can provide partial results upon interruption thus the validation session may start before
the end of the computation and not all of the mapping suggestions need to be validated
at once. The recommendation session matches small parts of the two ontologies offline
using an oracle or previous validation decisions if available. It employs different (com-
bination of) algorithms and filtering strategies in order to recommend the best future
settings for matching the two ontologies. The different strategies and mapping sugges-
tions are stored in a database. The user may choose to start a new or to resume a saved
session. A detailed description of the current user interface is availabe in subsection 4.1.

RepOSE [25], shown in Figure 1, is based on an integrated taxonomy alignment and
debugging framework [19]. The system can be seen as an ontology alignment system

Fig. 1. RepOSE [19].

with a debugging component for detecting and repairing modelling defects in taxonomy
networks (missing and wrong subsumption relations/mappings). The alignment process
goes through three phases—generation of mapping suggestion, validation and repairing.
Separate panels to guide the user through the validation and repairing phases are pro-
vided. Possible starting points, recommendations and ranking strategies are available
during both phases. The alignment process can be configured by selecting matchers,
their weights and the threshold for filtering the mapping suggestions. The algorithm for
detecting defects in the debugging component can be seen as a structure-based align-
ment algorithm—as such it is configured separately. The suggestions it computes are
logically derivable and they are presented to the user together with their derivation
paths. The rest are only presented with their confidence values.

During the validation phase the mapping suggestions are shown as graphs in groups
where the last group in the list contains the most suggestions. The nodes in the graph
represent concepts and the edges—relations and mappings. The nodes are color-coded
according to their hosting ontology and the edges—the state of the represented re-
lations/ mappings—mapping suggestions, asserted/added/removed relations/mappings.
When the user accepts/rejects a suggestion the corresponding edge is labeled accord-

ingly and it is moved to the list for repairing. The user can validate only a portion of the
suggestions and start the repairing phase. The user can see each pair of ontologies and
their current alignment and the entire ontology network upon request. During the repair-
ing phase the system provides alternative repairing actions instead of directly adding the
validated mapping. Logically derivable wrong mappings can be also repaired.

The system checks for contradictions after each group of suggestions is validated
and after a repairing action and warns the user if such are found. There is no indication
for the process state but it can be observed by reflecting on the validation and repairing
phases. Sessions are only supported through saving/loading the ontologies and map-
pings, but the suggestions are not preserved and have to be computed from scratch.

AML has been designed based on AgreementMaker [7] with the purpose of match-
ing very large ontologies thus we consider only AML in our study. Its user interface
is presented in [39]. The working area in AML is divided into two panels—a Resource
Panel, on the top, provides a summary of the ontologies, alignment, etc., and a Mapping
Viewer where modules extracted from the ontologies and alignment are represented as
graphs. Instead of showing the entire network, the visualization focuses on a single
mapping where the graph depicts the mapping, up to five (default is two) levels of
ascending/descending concepts of the concepts in the mapping and other mappings be-
tween the displayed concepts (if any). The nodes and edges are labeled with the names
of the classes and relations (subsumptions are not labeled), respectively, and colored de-
pending on the ontology they belong to. The mappings are labeled with their confidence
values and their directions are denoted with arrows. Three options are provided for nav-
igating through the mappings—list of mappings, previous/next buttons and search (in
combination with auto-complete). The user can configure the alignment process by se-
lecting a matcher, its threshold, cardinality for the alignment and sources of background
knowledge. The final alignment can be repaired and evaluated against a reference align-
ment.

COMA++ is a system for matching large schemata and ontologies [3]. It consists of
five components accessible through a user interface [11]. The repository stores the
ontologies and alignments (sessions support). The Workspace tab provides access to
the schema and mapping pools which manage the ontologies and alignments in mem-
ory. Other operations involving alignments, such as merging schema and alignments,
add/remove mappings in edit mode, comparing (evaluating an alignment against a refer-
ence alignment using different quality measures) and diff/intersect (determining the dif-
ferent/shared mappings between two alignments) are provided as well. The Match menu
provides a variety of options for configuring the matching process through the match
customizer—creating/modifying/deleting/resetting matchers and strategies, showing the
dependencies between them and saving them (into the repository) for future use. The
matching process is performed in the execution engine. Some of the strategies support
iterations, where the user can modify the output prior to the execution of the next itera-
tion. The toolbar has buttons for configuring/running/interrupting the process, step-by-
step execution and editing mappings. A detailed description of the current user interface
is availabe in subsection 4.1.

PROMPT suite [35] is a set of Protégé plug-ins for managing ontologies and their ver-
sions: iPROMPT merges and aligns ontologies interactively employing the local context
of the concepts; AnchorPROMPT computes additional mapping suggestions acting on
a larger scale than iPROMPT; PROMPTDiff performs structural comparison between
different versions of an ontology and PROMPTFactor extracts independent modules
from an ontology. These plug-ins share interface components, data structures, some al-
gorithms and heuristics. The first version of PROMPT, [34], shows the source and target
ontologies as indented trees on both sides of the screen where the mapping suggestions
are presented as a list of pairs between them. An explanation for why a pair of concepts
is a mapping suggestion is provided to the user. The user can examine the suggestions
from the list, save those that are correct or create new mappings. Upon user action the
tool detects conflicts, if any it suggests solutions and generates new suggestions in the
area the latest operation has happened. The suggestions/conflicts are resorted to list first
those in the area of the latest operation. PROMPT can log operations and execute them
again if needed. The process state can be observed indirectly.

CogZ (Figure 5) addresses the cognitive support requirements from [15]. It is a visu-
alization plug-in which extends the PROMPT user interface and reuses the rest of its
components.

The first version of CogZ, Jambaprompt [14], includes a graph visualization of the
neighborhood of each of the concepts in a mapping suggestion—direct super and sub-
classes. Each of the classes can be expanded thus providing an incremental navigation.
The Jambaprompt plug-in also supports filtering of the mapping suggestions by vari-
ous criteria. It is extended in [15] to provide an overview of the ontologies and map-
pings by employing treemaps. The user can identify potentially ’heavy regions’ using
the treemaps in combination with color-coding. Pie-charts provide additional details
regarding already mapped concepts and mapping suggestions. Temporary mappings,
different from the mapping suggestions, are introduced in CogZ to relieve the users’
memory and help them to write down potential solutions. Similarly to COMA++, the
mappings between the ontologies (shown as trees) are presented with lines which can
be annotated to provide additional details. CogZ provides semantic zoom and interac-
tive search. A detailed description of the current user interface is available in subsection
4.1.

3.2 Results

Table 2 shows the systems’ support for the requirements identified in section 2. The ma-
nipulation and inspection requirements are almost entirely supported by the first four
systems. However to be able to draw conclusions for the level of usability of the differ-
ent visualization approaches, a user study is needed. It is worth noting that COMA++
and AlViz do not distinguish between mappings and mapping suggestions (X(*)), a
functionality that may help the users to keep track which correspondences have been
already visited. The least supported category from the user interface requirements is the
one that assists the users most in understanding the reasons for suggesting/accepting
mapping suggestions. While PROMPT and CogZ provide a textual description to ex-
plain the origin of mapping suggestions, the other tools only present a confidence value

(which may (not) be enough depending on how familiar the domain expert already is
with the ontology alignment field). Other requirements in this category include provid-
ing a starting point and a state of the process. Even though rarely supported they can
often be observed by the number/status of the verified suggestions.

Some systems limit the amount of data presented to the user by using sessions and
clustering. Only two systems preserve the state of the process during interruptions. The
others partially address the session requirement by save/load (ontologies and align-
ments) functions but without preserving the already computed suggestions. Almost all
of the tools support clustering of the content presented to the user (not necessary for
all views/modes) to avoid cluttering of the display. Clustering during the computations
is also often supported. Another possibility could be to guide the user (through com-
plex interfaces and huge input) by presenting different interfaces connected to different
phases of the process, for instance, by providing a different view for each phase. Such
approach is implemented in RepOSE where the validation and repairing phases are pre-
sented in different views. The existence of different phases in general could also allow
for more opportunities for fine-tuning of the process.

The session-based approach in [26] helps reducing the user interventions during
the alignment process by reusing previously validated mappings. PROMPT takes into
account the area of the latest user intervention while computing a new portion of sug-
gestions to maintain the user’s focus. To assist the user decision making process some
systems provide recommendations in various forms—SAMBO provides a recommen-
dation session, COMA++ default matchers configuration, RepOSE recommendations
(from external sources) during the validation. Matchers’ configuration is also supported
to different extent—COMA++ provides advanced matchers’ combinations while Re-
pOSE only supplies a list with matchers and their weights. To support temporary deci-
sions CogZ introduces temporary mappings and AlViz a tracking button. SAMBO par-
tially presents such functionality by an undo button and history of actions, PROMPT
by reapplying the user actions. Trial execution is not supported by any of the tools.

Looking at the table we can conclude that most of the systems provide debugging
techniques, but this is not the case in reality as discussed in subsection 2.2. Although
these systems consider debugging of the alignment, they address different kinds of
defects—RepOSE detects/repairs modelling defects in taxonomies, SAMBO checks
for inconsistencies and AML addresses disjointness assuming the ontologies are co-
herent. Further, RepOSE relies on manual repairing while AML repairs the alignment
automatically.

The social and collaborative matching is still a challenge. SAMBO, PROMPT and
CogZ provide mapping annotations but it is unlikely they have been developed to ad-
dress this issue. While implementing other functionalities SAMBO and COMA++ took
first steps in providing a collaborative environment by introducing permanent storages.
AML, PROMPT and COMA++ have functions for evaluating an alignment against a
reference alignment and for comparing two alignments.

4 User Interface Evaluations

As a further step in our study, we conducted a usability evaluation to reveal to what level
the requirements are supported. We applied a multiple method approach by conducting
an observational study and a heuristic evaluation to address the three aspects of the ISO
9241-11 standard for usability, [1]: efficiency, effectiveness, satisfaction. The standard
defines these terms as follows:

– usability—extent to which a product can be used by specified users to achieve spec-
ified goals with effectiveness, efficiency and satisfaction in a specified context of
use.

– effectiveness—accuracy and completeness with which users achieve specified goals.
– efficiency—resources expended in relation to the accuracy and completeness with

which users achieve goals.
– satisfaction—freedom from discomfort, and positive attitudes towards the use of

the product.

We selected three ontology alignment systems (CogZ, COMA 3.0 and SAMBO),
from those in the literature study, that support as many as possible of the requirements
in the user interface category; were freely available to us and that could be used without
the installation of additional software packages. We evaluated the user interfaces using
a heuristic evaluation (the effectiveness aspect) by an expert user as well as through an
observational study using novice users. From the observational study we collected task
completion times (the efficiency aspect) and task success (the effectiveness aspect). The
satisfaction aspect is addressed by the SUS questionnaire [5].

CogZ [15] and COMA 3.0 [30] were downloaded on October 6, 2014. COMA
3.0 CE V3 [30] was downloaded from http://sourceforge.net/projects/coma-ce/. To use
CogZ [15] we downloaded Protégé 3.4.8 (build 269) since it is bundled with PROMPT
and there is no need of additional software packages installation. We used the default
matcher $NodesNameW in COMA 3.0 which generated 1361 mappings. We used lex-
ical matching with synonyms in CogZ which generated 1447 mappings. In SAMBO
[26] (our own system) we used two configurations of matchers depending on the order
of the input ontologies—Ngram and TermWN (3809 suggestions) and Ngram (single
threshold 0.7) (3206 suggestions) when the first ontology was AMA, respectively, NCI-
A.

4.1 Heuristic Evaluation

Our first evaluation is a heuristic evaluation. It aims to reveal usability issues by com-
paring the systems’ interfaces to a set of accepted usability heuristics. This evaluation
considers Nielsen’s ten heuristics defined in [33] and presented briefly below. Accord-
ing to Nielsen [33] ”The principles are fairly broad and apply to practically any type
of user interface, including both character-based and graphical interfaces.”. We note
that these heuristics are not related in any way to the requirements in table 2.

a. Simple and Natural Dialog—provide only absolutely necessary information, any
extra information competes for the users’ attention; group relevant information to-
gether and follow gestalt principles;

Fig. 2. SAMBO [26], Suggestion Align mode.

b. Speak the Users’ Language—use users’ familiar terminology and follow the natural
information workflow; use metaphors with caution;

c. Minimize the Users’ Memory Load—pick from a list rather than recall from the
memory; use commonly recognizable graphic elements;

d. Consistency—the same things are at the same place and perform the same function;
follow accepted graphical/platform/etc. conventions;

e. Feedback—provide timely and accurate feedback for all actions and task progress
information;

f. Clearly Marked Exits—provide components to revoke or reverse actions;
g. Shortcuts—design the system proactively rather than reactively, provide accelera-

tors for (experienced) users or default configurations for novice users;
h. Good Error Messages—meaningful error messages showing the problem in users’

language and possible recovery actions instead of system codes;
i. Prevent Errors—provide confirmation dialogs for irreversible actions;
j. Help and Documentation—provide documentation for different type of users.

SAMBO provides two separate modes—Suggestion Align, figure 2, and Align Manu-
ally, figure 3,—where a single high level task is performed in each. All potential map-
pings for a single concept (calculated by the system) are displayed for validation in the
Suggestion Align mode. The user can create mappings manually in the Align Manually
mode where the ontologies are displayed side-by-side. The system is web-based and
the navigation between the modes is performed with a button, however, a link would
be a more intuitive choice {d}. Both modes provide minimalistic design but they also
contain elements that are not necessary for the tasks and take vertical space on the
screen—the logo and the email address at the bottom {a}. While the layout in the Sug-
gestion Align mode fits nicely in the browser dimensions this could be an issue in the

Fig. 3. SAMBO [26], part-of Align Manually mode.

Align Manually mode (and some screen dimensions) since part of the information may
not be presented on the screen (which will require scrolling) {a}. The tab set takes
vertical space but provides limited information for the state of the process {a}.

The browser window in the Suggestion Align mode (figure 2) is divided into two
parts by a thick gray line but the buttons above and below are very close to it (taking
into account the distances between the other elements as well) {a}. Thus the line and
the buttons may be perceived as one unit instead of different units. The information
belonging to a concept is grouped together and enclosed in a box in the upper and cen-
tral parts {a}. However it does not show the concept context in the ontology hierarchy.
All mappings for a concept are presented as a list where the user chooses the current
mapping by a radio button. The user can annotate and rename a mapping using the
text fields below. Each mapping can be accepted as equivalence or subsumption map-
ping or rejected by the corresponding buttons. Their labels clearly explain their func-
tion, however, the buttons’ color matches the background color, they are glued together
and slightly change their appearance on hover. Since they perform the most important
function in this mode they can be designed such that they stand out among the other
elements {a}. The bottom part of the screen encloses several elements with various
functions {a}—the button for navigation between the modes is aligned together with
the undo button, a button that automatically aligns the remaining potential mappings
and a label (Remaining Suggestions) that provides information for them. This label is
actually a link which lists all remaining suggestions but it does not look clickable {d}.
The same issue appears with the History label which is a link as well. It presents the
sequence of user accepting/rejecting/creating actions {d}. A warning box next to the
History label shows a message relevant to the previous action. While the message is
explanatory {h} it appears after the action took place.

The window is divided similarly in the Align Manually mode (figure 3). The top
and central parts contain both ontologies represented as unmodifiable indented trees,
the comment box is below them together with a search field (discussed below). The
concepts that participate in validated mappings are marked with ’M’ in both trees. The
buttons for creating mappings are aligned with the undo button (placed on the other
side of the screen) and their labels look differently than in the other mode {d}. The
bottom part is the same as in the other mode without the elements related to the mapping
suggestions.

As mentioned already the system provides an undo button but it does not show a
confirmation dialog for possibly slowly reversible actions (such as those connected to
the Align Remaining or Lock Session buttons) {f, i}. It lists the sequence of accepted,
rejected and created mappings in the history and provides comments even for the re-
jected mappings {c}. It helps the user to set up the alignment process by providing a
choice between several matchers and default strategies {g}. Some of them are explained
in the help which is a bit outdated {j}. The system does not show the alignment process
configuration after the process has been run or the similarity values for the mapping
suggestions {c}.

The search function has several issues—it is case sensitive, accepts only exact input
(no autocomplete or correction) and it should be activated by the search button next to
the text field (pressing Enter on the keyboard does not work) {g}. The search reloads
both trees and loses the current selection. It does not jump to hit and highlights only the
first match in the hierarchy {g}.

COMA 3.0 is a desktop system which provides one view during the alignment process
[30]. Its user interface is depicted in figure 4. A standard toolbar contains four drop
down menus for importing/exporting information to/from the repository (Repository),
configuring and executing the matching process (Match), set operations over alignments
(Matchresult) and additional information for the current alignment (View). More de-
tails regarding their functions are presented in section 3. Most of the screen space is
occupied by the two ontologies which are placed side-by-side in separate scrollable
windows. Several labels below each ontology show statistical information regarding its
structure which is not directly related to the ontology alignment task {a}. As a concept
is selected the labels are updated to show the concept name and path to it in the hierar-
chy. The labels for both ontologies are connected through small colored squares. Their
colors resemble mappings color-coding but no explanation what they represent is given
{a}. Search boxes are available for each of the ontologies. Selected functions from the
toolbar menus are available through buttons in the resizable left side of the screen {c}.
Some basic information for the current alignment is constantly presented to the user
although it is not constantly needed {a}.

There is no explicit distinction between validated and potential mappings as there
is in the other two systems in the user interface evaluations {c}. In our opinion the
list with calculated mappings in COMA 3.0 is closer to (and thus considered as) map-
ping suggestions, since the users go through it and choose which of them (not) to keep
in the final alignment. If a concept in a mapping is selected the system automatically
shows the other concept in the mapping if it is under an unfolded branch {g}. The user

Fig. 4. COMA 3.0. [30].

cannot select a mapping. All actions for a mapping are available through its concepts’
context menus {d}. The concept context menu contains (un)folding options, a show
instances option and all mappings related actions. To achieve more intuitive interaction
the mappings should be selectable and the corresponding actions should be available
in the mapping context menu (currently not existing) {d}. Actions available for a sin-
gle mapping include Create Correspondence, Delete Correspondence and Set Highest
Similarity Value. The last action is only available for mappings computed by the system
and carries the ’validate mapping’ semantics, i.e., the user wants to preserve this cor-
respondence in the final alignment. However its phrasing significantly differs from the
phrasing of the other two {b, d}.

Since there is no explicit difference between validated and potential mappings the
user needs to remember the mappings he had already visited {c}. There is a list with
mappings but it only shows their current confidence values and not if they have been
changed or existed before. The system provides default matchers’ configuration {c, g}.

Messages at the bottom left corner constantly inform the user what it is going on in
the system {e}. Messages to explain/hint for actions also appear there. A progress bar
at the bottom right corner is provided for time-consuming actions. The system provides
neither undo nor cancel buttons or confirmation messages {i, f}. Such could be very
useful in connection with the ’X’ button (Delete selected Schema or Matchresult from
Workspace). Tooltips are supported for many of the buttons, explicit help is missing {j}.

Fig. 5. The latest version of CogZ.

The search function has several issues—the scroll bar shows pink markers where
the search results appear but there is no jump to hit {g}. Only concepts under expanded
branches are considered during the search. It is not case sensitive and works with part
of the input.

CogZ is a Protégé plug-in which extends the PROMPT user interface and reuses the
rest of its components. Its interface, presented in figure 5, is more complex than those in
the previous two systems. The screen is divided into two major views—each side of the
upper part contains an ontology represented as a unmodifiable indented tree; the space
between them is occupied by their mappings; the bottom part contains three tabs. Both
views are resizable and can be completely removed from the screen. The mappings are
presented as lines which run through the middle part of the screen and connect concepts
in both ontologies. The lines can be selected and have a tooltip but do not have a con-
text menu {d}. The tooltip has different content depending on the type of the mapping
{c}—for a potential mapping it shows the reason the system has suggested it; for tem-
porary and validated mappings it shows the mapped concepts. Several buttons above
the mappings are used to apply different functions to them—create(m+)/remove (m−)
(temporary, t+) mapping, mark as mapped/temporary. The mark as mapped/temporary
and m− buttons apply actions on potential mappings while m+, m− and t+ are used
to add, delete and add temporary mappings. m− is placed in group with m+ and t+

and at a distance from mark as mapped/temporary (it also looks differently from them)
{d}. Four buttons that apply different filters on the mappings are aligned with these

above. They have different icons but two of them have the same tooltip. The potential,
validated and temporary mappings are depicted in dashed red, thick blue and dashed
blue lines respectively. They appear thinner when they are not selected. The concepts in
these mappings are marked with ’C’, ’M’ and ’T’ after the concept name in the ontology
trees. There is a search box above each ontology and a red-green progress bar which
shows the state of the process {e}, i.e., what portion of the mappings for this ontology
are validated. Next to the progress bar a toggle button filters the ontology according to
the different mappings which are selected from a drop-down list next to the filtering
button. Next to it two buttons navigate back and forth through the mappings.

The first tab in the bottom part of the screen contains a table with all potential
mappings. When a potential mapping is selected in the table it is also highlighted in
the upper view (if filtering is not applied there) {g}. There is a search field on top of
the table. It continues through the entire screen and it is activated on a key press {g}.
The user can sort the mappings by a concept name by clicking at the column headers
(however nothing hints that the column headers are clickable) {c}. Four buttons on top
of the search strip and at the far right corner apply actions on a single potential mapping.
They are almost unnoticeable due to their distance, color, unfamiliar icons and tooltips
(view/create/remove operation) {a}. Remove operation removes a potential mapping
from the list, view and create operation open the same dialog box which is prefilled
with the concepts in a potential mapping or empty depending on the choice of operation.
At the same time there is a Create Mapping button at the very bottom of the window
which is much more visible than these four (the fourth runs a mapping algorithm) but it
does not show the same dialog. Moreover a double click on a potential mapping opens
the view operation dialog. So it seems to us that this part of the screen contains three
ways to validate a mapping (view operation, Create Mapping button and double click)
{d}. The three operation buttons could be moved down to the Create Mapping button
or in a context menu for a potential mapping (currently not existing) {d}. The Create
Mapping button attracts attention even when the user is working at the upper part of the
screen. This is due to its size, the size of the buttons (smaller) at the top of the upper
view and probably because of the unclear separation of both views. In short the system
provides several buttons looking differently with different tooltips which look like they
are meant for the same two actions, i.e., validate and create a mapping {c, d}. At the
bottom a resizable window shows the reason why the system has calculated the mapping
{c, e}. The second tab shows the completed mappings and is also synchronized with
the upper view as the potential mappings tab {c, d, g}. The third tab contains two parts,
each of them shows the neighborhood (parents and children) and the selected concept
(and the different relationships between them) in each of the ontologies above. They are
visualized as graphs where the layout can be changed with buttons above the view or
by dragging. The different types of nodes and relationships can be switched on and off
{a, g}.

While running the alignment algorithms the system shows a progress bar and the
red-green progress bar shows the proportion between the validated and potential map-
pings {e}. Several times while working with the system it became unresponsive or froze
for a while without any clear sign that the action in question is (successfully) performed
{e}. Sometimes the actions had to be repeated in order to appear in the interface. Mean-

while exceptions are thrown in the console but nothing shows on the screen that there
is a problem or how it could be resolved {h}.

The system does not provide help but there are tooltips helping the user to under-
stand the purpose of the buttons {j}. Most of the actions assigned to buttons can be
canceled but there is no undo button {i, f}.

The system provides carefully designed search functionality—it filters away the
concepts which do not match the search criteria and jumps to the first hit {g}. The
concept names consisting of more than a word and including space are enclosed in
a single quote (’). When searching for such concepts the users have to use the same
character at the beginning of the input or ’*’ which replaces an arbitrary number of
characters.

4.2 Observational User Study

We conducted an observational user study in order to achieve better understanding of
how the systems support the requirements in the user interface category. According to
Nielsen [33] ”User testing with real users is the most fundamental usability method and
is in some sense irreplaceable, since it provides direct information about how people
use computers and what their exact problems are with the concrete interface being
tested.”. We describe the study design, the participants and show its results. The tasks
together with their answers, participants’ remarks, task time and success can be found
in [2].

Procedure and Participants 8 participants took part in the study—3 master and 5
PhD students (7 male, 1 female). All had Computer Science background and none of
them has shown a particular interest in the Semantic Web area. All participants have
acquired basic ontology engineering knowledge as part of ongoing or past university
courses. Each participant performed between 11 and 17 tasks with the systems (since
not all of the systems supported all of the requirements). The study was scheduled for
2 sessions, which lasted for 2 hours (with a break after 1 hour) and 1 hour, respectively.
It was expected that a user would work with each system for approximately 1 hour. To
prevent carry-over effects (learning) between the systems we counterbalanced the order
in which they were presented to the users. We also used a different order of the input
ontologies.

We were particularly interested in how the requirements in section 2 are supported in
a large-scale setting. Thus we used the two ontologies from the Anatomy track from the
OAEI 2014—AMA (2,737 concepts, 1,807 asserted is-a relations) and NCI-A (3,298
concepts, 3,761 asserted is-a relations) as representatives of the smallest use cases in a
large-scale setting.

The study was conducted as follows. Each participant was presented with a project
introduction and a tutorial during the first session. The tutorial provided basic knowl-
edge about ontologies and ontology alignment and ended with several small tasks in
order to ensure that all participants possessed the same level of understanding of the
area. This took around 10 minutes per participant. The tutorial was available to the par-
ticipant at the beginning of all sessions. After that the participants started solving the

Table 3. User study tasks.

Task Requirement
A. Discard following potential mapping. #2.2, 1.2
B. Count mapping suggestions for X in A and Y in B. #2.2
C. Find ONE parent and child for X in A and Y in B. #2.1/4, 1.1/4, 4.1/2/3
D. Keep following potential mapping. #2.2, 1.2
E. Create following mapping. #2.5, 1.1
F. Count ALL parents and children of X in A and Y in B. #2.1/4, 1.1/4, 4.1/2/3
G. Find in the system why/how it has suggested
potential mapping between X in A and Y in B. #4.2, 4.7
H. Set up the system to display ALL concepts in potential mappings. #2.4
I. Find a concept that has nearby children and/or
parents with more than 10 potential mappings. #4.4
J. Give estimation of the validated mappings. #4.6
K. Write in the system your arguments to decide
there is a mapping between X in A and Y in B. #2.5
L. Record in the system the mapping between X in A and Y in B is correct,
such that you can change your current decision. #1.1, 5.9.2
M. Give estimation of the potential mappings for validation. #4.6
N. Set up the system to display ALL concepts in verified mappings. #2.4
O. Find in the system why the mapping X in A and Y in B was created/accepted. #4.3
P. Show in the system ALL concepts for which you may change your decision. #2.4

tasks with a particular system. Before the first task with each system the participants re-
ceived the same hints on how to use search (since there are issues in all three systems).
They were observed by one of the authors who took notes regarding their actions on the
screen and their comments after each task and regarding the systems. When a partici-
pant gave a wrong answer, the observer provided the right answer. In three cases the first
system took more time than expected, thus an additional third session was scheduled.

Tasks Design The tasks in the study were developed to include as many of the re-
quirements in the user interface category as possible. Most of the requirements in the
infrastructure and algorithms category were not covered due to their limited support
in the systems and since they would require significantly longer sessions and domain
knowledge. A brief description of the tasks and the corresponding requirements are
listed in table 3. Some tasks were performed twice since we were interested in their
subsequent execution times. Since the systems do not support all requirements not all
tasks were possible with every system. Task success and task times were collected for
each task. The participants filled in the System Usability Scale (SUS) [5] questionnaire
after all tasks with one system were completed. They were asked to provide at most
three things that they like and dislike after working with each system as well.

Table 4. Number of participants (max 8) successfully completed a task (details in the text (*)).

System/Task A B C D E F G H I J K L M D A N O E P
SAMBO 8 1 5 6 7 4 n/a n/a 7 5 8 n/a 8 6 8 n/a 6 7 n/a
COMA 3.0 2 2 7 2* 8 4 * n/a 6 n/a n/a n/a n/a 8 8 n/a n/a 8 n/a
CogZ 7 4 8 8 3 4 7 5 8 8 n/a 4 8 8 7 8 n/a 7 8

Results Table 4 shows the number of participants that successfully completed each
of the tasks per system. The tasks not applicable to a system are denoted with n/a.
Although we collected time per task and task success for task G (*) in COMA 3.0 we
use this to understand how the users perceive the similarity value rather than to provide
comparison with CogZ.

The first 6 tasks were solved with varying success by the participants. Most partic-
ipants (4 out of 6) who did not complete task A in COMA 3.0 chose a wrong option
to reject the mapping—instead of selecting both concepts in a mapping and choosing
Delete Correspondence from one of the concepts context menu they used the ’X’ but-
ton which deletes the entire alignment. The participant who did not solve task A in
CogZ could not find the mapping but after help from the observer he was able to solve
it. The success in task B varied due to different reasons. For SAMBO most users (4
out of 7) could not find where the mapping suggestions are listed. They had to open
a separate link, however the link looks like a label. For COMA 3.0 the users provided
wrong numbers due to not realizing that a concept may exist in several places in the
tree and as a consequence several lines represent a mapping between the same two con-
cepts. For CogZ 2 participants did not understand the task and 2 gave wrong numbers
since they were counting the suggestions between the two ontologies while one of the
ontologies was filtered because of previous search. Most of the users that did not solve
task F (all systems) did not realize that a concept may appear several times in the hier-
archy although this was hinted in the task description and a similar situation appeared
in task B. Task E in CogZ was not solved since 2 participants had problems finding one
of the concepts, 1 participant did not realize that this is not a mapping suggestion and
looked at the mapping suggestions list (after help from the observer he still had prob-
lems finding it). As mentioned earlier there is no explicit separation between mappings
and mapping suggestions in COMA 3.0. Thus the way task D (*) is interpreted is that
the user keeps the mapping if he chooses Sets Highest Similarity Value. In 3 out of 6
cases the participants selected Retain only Fragment Correspondences.

Table 5 shows the average time per task per system. The task times for task A (*) in
SAMBO are not directly comparable with the other systems due to the system’s design
and study scenario. While the user has to search for a mapping suggestion in COMA
3.0 and CogZ and then delete/remove it in SAMBO the suggestion was presented to the
user (due to the system design). Task A (*) in CogZ took much longer for one of the
participants. The average time for this task is 1:35 min if we exclude his time from the
results. The task success and time improved significantly for the subsequent execution
of tasks A, D and E.

Table 5. Average task time per system in minutes (details in the text (*)).

System/Task A B C D E F G H I J K L M D A N O E P
SAMBO 0:30* 4:14 3:11 1:16 2:29 4:25 - - 1:58 0:28 0:06 - 0:01 0:21 0:09* - 0:47 1:07 -
COMA 3.0 2:54 3:03 1:39 1:33 0:41 4:03 * - 1:04 - - - - 0:34 0:31 - - 0:25 -
CogZ 2:47* 1:27 1:37 0:44 2:08 1:48 0:40 0:37 1:04 0:06 - 1:45 1:42 0:29 0:17 0:11 - 0:38 0:05

0

10

20

30

40

50

60

70

80

90

100

COMA SAMBO CogZ
0

10

20

30

40

50

60

70

80

90

100

COMA SAMBO CogZ

Fig. 6. SUS questionnaire scores. (average (left) and boxplot of the dataset (right))

Figure 6 shows the results of the SUS questionnaire.

4.3 Discussion

We discuss the results of the user study and heuristic evaluation in connection with the
requirements from table 2 in Section 3. Slight differences in the supported requirements
could be in place since table 2 is based on a literature review and table 3 is based on
the most recent available versions of the systems (not necessarily the same as in the
literature review). Further we present additional important findings.

Requirements Coverage Tables 3 and 4 show that most of the requirements in the
manipulation, inspection and explanation categories from table 2 are covered by at least
one of the systems and most of them are covered by all three. Mappings can be created
manually in all three systems {#2.5, 1.1}. As already discussed COMA 3.0 does not ex-
plicitly support mapping suggestions. In our opinion the list with calculated mappings
in COMA 3.0 is closer to (and thus considered as) mapping suggestions, since the users
go through it and choose which of them to keep in the final alignment and which not.
It supports modifying the similarity value of a mapping which can be seen as accept-
ing/keeping the mapping {#2.2, 1.1}. CogZ and SAMBO support accepting/rejecting
mapping suggestions. Only SAMBO among the three supports adding metadata to a
mapping {#2.5}. None of the systems support editing of the ontologies.

Although there was not a dedicated task related to the inspection of the verified
mappings {#2.3} task J required browsing the table with completed mappings in CogZ

and the history list in SAMBO. The navigation through the table in CogZ is synchro-
nized with the tree visualization of the ontologies. The history list in SAMBO is static
and verified mappings cannot be removed. In COMA 3.0 the user can obtain a list of
the current mappings but without any information if they had been changed earlier or
existed before. The mapping suggestions can be inspected in both CogZ and SAMBO
with some differences {#2.2, 1.4}. SAMBO provides an unordered list and a view (Sug-
gestion Align) and CogZ provides a sortable list synchronized with the tree represen-
tations of the ontologies. Regions with many mappings {#4.4} can be identified easily
in COMA 3.0 and CogZ through the number of lines connecting the ontology trees
and more difficult in SAMBO where the user should go through the list with mapping
(suggestions) and separately browse the ontologies hierarchy. CogZ provides several
filters {#2.4} for potential, temporary and validated mappings and filters the ontology
trees during search. Filters are not supported by COMA 3.0 or SAMBO. As discussed
earlier CogZ also provides carefully designed search {#2.4} which jumps to hit, while
the search in SAMBO and COMA 3.0 is not functioning that well. All systems covered
in the study represent the ontologies as unmodifiable indented trees. The hierarchy of
the ontologies can be explored in all three systems however in SAMBO this can not be
done in the Suggestion Align view {#4.1, 4.2, 4.3, 2.1, 1.1}. Only CogZ provides access
to the full definitions of the terms in an ontology {#1.3}.

SAMBO is the only system that provides the possibility for an explanation why a
mapping has been accepted and even rejected since it is the only one that provides anno-
tations for a mapping {#4.3}. Only CogZ provides textual human readable explanation
why/how a mapping has been suggested {#4.2, 4.7, 5.8}. COMA 3.0 provides the cal-
culated similarity value on top of the link however it was not directly perceived as an
explanation by the users (task G), several of them were looking for an explicit expla-
nation. Three of the participants stated that if they would know the matching algorithm
they would know the reason. The user can observe the state of the matching process
{#4.6} by the number of mapping suggestions left and validated mappings in CogZ and
SAMBO. A progress bar is provided in CogZ for this purpose as well. It was not used
by the participants since the number of mapping suggestions they had been working
on was too small to be marked on it. The filtering of the ontologies according to po-
tential/validated/temporary mappings can be used for the same purpose. As mentioned
several times COMA 3.0 users can only see the current similarity values but not how
they have changed. Temporary decisions are supported only by CogZ {#1.1, 5.9.2}.

It comes at no surprise that most of the tasks are supported in the CogZ system
since they are based on the requirements in the user interface category which are based
on [15]. There were several tasks for some of the requirements and they were not per-
formed in the systems that do not support them. For instance tasks H, N and P are
related to the filtering part of #2.4. Since both SAMBO and COMA 3.0 do not support
filtering these tasks were not performed with them.

Additional Observations and Discussions In what follows P followed by a number
indicates the participant who made the remark. The other letters indicate the task.

Several issues became clearly noticeable while observing the users performing the
tasks and in their comments after each task. In several cases the users could not com-

plete a task or gave a wrong answer because they could not find the concept they
were looking for because of the visualization. In task F performed with COMA 3.0
P2 counted only the concepts with children as children of a concept. In three cases
in COMA 3.0 with three different users (C.P1, F.P3, F.P4) the participants counted a
sibling concept as a parent concept although the tree in COMA 3.0 is visualized with
guiding lines on all levels. One participant (P5) stated that the guiding lines helped him
a lot during counting (task F). Another participant (P2) commented after task C that the
tree representation in COMA 3.0 is better than CogZ because of the guiding lines. P6
also explained after task C that he followed the guiding lines to see which is parent and
which is child. P1 counted one parent twice in CogZ and commented (after task F) that
it is harder to see if the parents are the same because of the distance. P4 stated (after
task F) that it was easier to see the parents in CogZ in comparison with COMA 3.0. Al-
though the trees are collapsible in all systems P7.C said that in CogZ it was easy to find
parents because the nodes can be contracted (CogZ was the last system for P7). P6.C
said regarding the trees in the SAMBO system that he had problems aligning which
is a parent and which is a child. The same was true for P8.F but he had expanded the
entire ontologies and did not collapse any branch. P4.C and P2.F used a pen to align the
concepts.

Another issue appeared around the tree representation of the ontologies. The partic-
ipants had to consider multiple inheritance, i.e., the same concept appears several times
under different parents (and thus places) in an ontology, for task B (COMA 3.0) and F
(all three). An example of multiple inheritance was given in the tutorial as well. Two
participants did not experience difficulties with that but only one (P7) of them managed
to solve all F tasks correctly. The other one (P4) did not succeed because he counted a
sibling concept as a parent in one of the systems and due to a search problem in another.
P7 managed to solve all F tasks and explicitly noted that he had an ontology engineering
course and due to that he looked for another appearance of a concept. He had solved task
B as well and commented that representing a mapping in the tree several times (when a
concept has several parents) is how this representation works, but it was confusing for
him. All other participants did not think of searching for more than a single occurrence
of a concept. While some of them did not make the same mistake again (P6, P8) others
did it in the B and after that in the F tasks with the same system. P6 commented twice
he remembered he had done a mistake regarding multiple inheritance.

As commented in the heuristic evaluation the search functionality was tricky and
due to it several tasks were not successfully completed. In three cases that happened
with SAMBO (C.P2, E.P7, F.P4). All participants complained about different aspects
of it in the like/dislike section. 5 participants complained about the search functionality
in COMA 3.0 as well. 3 liked the pink markers although 2 of them complained about
other aspects of the search. Only P5 was satisfied with the search functionality and
said that it worked well. Although CogZ provided the best search functionality among
the three tested systems P1 and P4 did not solve task E because of search problems as
well. The same task was solved by P6 but it took him long time. To solve this task the
users had to find the upper leg concept in the AMA ontology. When searching for this
concept the user has to input * or ’ at the beginning. It appeared last in the search results

while upper appeared many times before. Despite this issue CogZ search and filtering
functions were greatly appreciated by the participants.

Another issue that constantly appeared across all systems was the terminology. It
is also covered by the second Nielsen heuristic [33] in section 4.1. While it should be
noted that the participants are not regular ontology alignment systems users all of them
have had an ontology engineering course. Thus the terminology is not completely new
for them. In the tutorial and task descriptions we tried to avoid any of the terms that
appeared in the systems. Mapping was an exception since it is general and we could
not find a more suitable word to represent its meaning. We also avoided terms that
can be considered hints by the participants (accept/reject/remove/delete etc.). SAMBO
uses the term mapping suggestions for potential mappings, Suggestion Align for the
mode where potential mappings are accepted/rejected and Remaining Suggestions for
the list with mappings left for validation. Two users were unsure what Suggestion Align
means and does1. Two other participants complained about the other two terms while
performing different tasks. The term correspondence is used in COMA 3.0 to denote
a mapping and Match Result to denote the alignment. P1.A and P6.A (COMA 3.0 was
their second system) complained that correspondence is not something they expect and
P1 explicitly said that he got used to the terminology in the system before (CogZ).
P6 mentioned that he does not know what Set Highest Similarity Value and Retain
only Fragment Correspondences mean and P8 also added that the words in the concept
context menu did not sound familiar. It was observed that the users hesitated to press
Set Highest Similarity Value. While the terminology issues in COMA 3.0 and SAMBO
were caused by (we would generalize) little familiar words, the terminology issue in
CogZ had another aspect. In the former case the search took significant part of the
task times but once it was done the users were quick to choose what to press (here
we mainly consider the A, D and E tasks). In CogZ the search was quicker but it was
observed that the users were not confident in choosing actions (this could, however, be
equally attributed to the fact that in CogZ create/accept/reject could be performed in
different ways). As said earlier CogZ has Mark as mapped, m+, Create Mapping, View
operation, Create operation and a View operation dialog which opens on double click
on a potential mapping. The users were unsure of using Mark as mapped in at least
four cases. P6 was not sure what Remove operation does and P8.D, P4 and P1.D said
they were wondering which button to use. P4 even stressed he did not like that there are
many buttons for the same thing in CogZ.

The like/dislike section gave the users possibility to express at most three thing they
like and dislike regarding the systems. There were also other observations which did
not appear with the same frequency as these above. We list them briefly here for each
system. One of the most appreciated features in SAMBO was the Suggestion Align view.
Remaining suggestions and History were also explicitly mentioned although lists with
potential/completed mappings are presented in CogZ as well. SAMBO was the only
system that provided help documentation (although outdated) but it was used by three
participants. One of them mentioned that there he saw how the things look like. Apart

1 The button opens the Suggestion Align mode in SAMBO. However it looked like that it shows
the suggestions for a concept selected in a tree in the Align Manually mode (because of the
button’s place on the screen).

from the search and terminology the users also disliked that the potential mappings
were not shown in the Align Manually mode. Several users commented that it was not
obvious that the Remaining suggestions and History labels are actually links.

In COMA 3.0 the users liked the mapping representation—color-coded lines be-
tween the trees placed side-by-side. Many of the users tried to select a mapping by
clicking on it and were also looking for a context menu. One disliked that the map-
ping context menu actually appeared for a concept. This comment can be juxtaposed
to heuristic {d} in subsection 4.1 which suggests that common conventions should be
followed.

The Neighborhood View in CogZ appeared as one of its advantages. Many partic-
ipants found it (while solving tasks not related to it) but did not use it at all. It could
have been very useful for task F discussed in detail earlier. The users expected a context
menu in the table with potential mappings as well. During the first task several users
were confused because it was not clear which ontology is presented on which side of
the screen. In order to figure out one of them used the difference in the concept names
and another the potential mappings list. One user stated that the button Create Map-
ping draws attention and that the two views are not well separated inline with one of
the points from the heuristic evaluation. Comparing the three systems CogZ was most
unstable in the sense that it was not clear if an action took place or the user has to repeat
an action in order to see it in the interface. This was the only thing (’bugs’) one of the
participants mentioned in his dislike section.

It comes at no surprise that most of the tasks are supported in CogZ since they are
based on the requirements in the user interface category which are based on [15]. As
shown in tables 2, 3 and 4 SAMBO and COMA 3.0 cover fewer requirements. The ex-
planation category is the least supported user interface category inline with the literature
study. As it can be seen from the task success and time the users showed varying per-
formance at the beginning which improved in terms of success and decreased in time to
the last tasks. CogZ achieved the highest SUS score from the three (Fig. 6) which falls
at the border between OK and GOOD in the adjective rating scale in [6]. COMA 3.0
scored a bit higher at SUS than SAMBO, both at the beginning of the OK interval. OK
should not be perceived as satisfactory but rather that improvements are needed. SUS
provides a good assessment of the perceived usability of a system with a small sample
as in our case and SUS scores have ”modest correlation with task performance” [6]. As
take away issues from this study we would pinpoint the search and filter functionality
especially in a large-scale context, explicit explanation of the matching results (reduces
the users cognitive load) and the Suggestion Align mode which was appreciated by the
users.

5 Conclusions and Future Work

We have developed and presented requirements to foster user involvement in large-scale
ontology alignment problems and have conducted a user study to reveal to what extent
the requirements in the user interface category are supported in three selected systems.
A heuristic evaluation was conducted by one of the authors as well. This provided addi-
tional critique to the systems interfaces and covered aspects slightly or not mentioned in

the user study (such as positioning of the elements on the screen). We also showed that
the heuristic evaluation can provide quick yet valuable feedback for the user interface
design.

The literature study showed that the requirements in the infrastructure and algo-
rithms category are supported to a varying degree and more research and support is
needed in, e.g., sessions, reducing user intervention, collaboration and trial execution.
The explanation category, which assists the users most in understanding the reasons for
suggesting/accepting mapping suggestions, is the least supported from the user interface
categories. The user interface evaluations show that state-of-the-art ontology alignment
systems still have many weaknesses from a usability point of view. The study high-
lighted the importance of seemingly trivial issues like search and issues like ontology
visualization which become crucial in a large-scale setting. Regarding our study, one
limitation, that needs to be addressed in future work, is that all systems in the interface
evaluations represent ontologies as trees. It was shown in [16] that a graph representa-
tion may be more suitable when dealing with multiple inheritance.

Acknowledgments. We thank the National Graduate School in Computer Science (CUGS)
and the Swedish e-Science Research Centre (SeRC) for financial support.

References

1. ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=16883. Accessed: 2015-03-20.

2. Materials from the observational user study. Available at http://www.ida.liu.se/
˜patla/publications/ESWC15/.

3. D Aumüller, H H Do, S Maßmann, and E Rahm. Schema and ontology matching with
COMA++. In SIGMOD, pages 906–908, 2005.

4. S Bail, B Parsia, and U Sattler. Declutter Your Justifications: Determining Similarity Be-
tween OWL Explanations. In Proceedings of the 1st International Workshop on Debugging
Ontologies and Ontology Mappings (WoDOOM 2012), volume 79 of LECP, pages 13–24,
2012.

5. J Brooke. SUS: A quick and dirty usability scale. In Usability Evaluation in Industry. 1996.
6. J Brooke. SUS: A Retrospective. J. of Usability Studies, 8(2):29–40, 2013.
7. I F Cruz, F P Antonelli, and C Stroe. Agreementmaker: Efficient matching for large real-

world schemas and ontologies. Proc. VLDB Endow., 2(2):1586–1589, 2009.
8. I F Cruz, F Loprete, M Palmonari, C Stroe, and A Taheri. Pay-As-You-Go Multi-user Feed-

back Model for Ontology Matching. In K Janowicz et al., editor, EKAW, volume 8876 of
LNCS, pages 80–96. 2014.

9. I F Cruz, C Stroe, and M Palmonari. Interactive user feedback in ontology matching using
signature vectors. In ICDE, pages 1321–1324, 2012.

10. B Cuenca Grau et al. Results of the ontology alignment evaluation initiative 2013. In OM,
pages 61–100, 2013.

11. H H Do. Schema Matching and Mapping-based Data Integration. PhD thesis, 2005.
12. Z Dragisic et al. Results of the ontology alignment evaluation initiative 2014. In OM, pages

61–104, 2014.
13. J Euzenat and P Shvaiko. User Involvement. In Ontology Matching, pages 353–375. 2013.

14. S M Falconer, N F Noy, and M A Storey. Towards Understanding the Needs of Cognitive
Support for Ontology Mapping. Ontology Matching, 2006.

15. S M Falconer and M A Storey. A Cognitive Support Framework for Ontology Mapping. In
K Aberer et al., editor, ISWC/ASWC, volume 4825 of LNCS, pages 114–127. 2007.

16. B Fu, N F Noy, and M A Storey. Indented Tree or Graph? A Usability Study of Ontology
Visualization Techniques in the Context of Class Mapping Evaluation. In H Alani et al.,
editor, ISWC, volume 8218 of LNCS, pages 117–134. 2013.

17. M Granitzer, V Sabol, K W Onn, et al. Ontology Alignment—A Survey with Focus on
Visually Supported Semi-Automatic Techniques. Future Internet, pages 238–258, 2010.

18. V Ivanova, J L Bergman, U Hammerling, and P Lambrix. Debugging taxonomies and their
alignments: the ToxOntology-MeSH use case. In WoDOOM, pages 25–36, 2012.

19. V Ivanova and P Lambrix. A unified approach for aligning taxonomies and debugging tax-
onomies and their alignments. In The Semantic Web: Semantics and Big Data, volume 7882
of LNCS, pages 1–15. 2013.

20. E Jiménez-Ruiz and B C Grau. Logmap: Logic-based and scalable ontology matching. In
The Semantic Web ISWC 2011, volume 7031 of LNCS, pages 273–288. 2011.

21. E Jiménez-Ruiz, B C Grau, Y Zhou, and I Horrocks. Large-scale Interactive Ontology
Matching: Algorithms and Implementation. In ECAI, pages 444–449, 2012.

22. E Jiménez-Ruiz, C Meilicke, B C Grau, and I Horrocks. Evaluating Mapping Repair Systems
with Large Biomedical Ontologies. In Description Logics, pages 246–257, 2013.

23. A Katifori, C Halatsis, G Lepouras, C Vassilakis, and E G. Giannopoulou. Ontology visual-
ization methods - a survey. ACM Computing Surveys, 39(4), 2007.

24. T Kirsten, A Gross, et al. GOMMA: a component-based infrastructure for managing and
analyzing life science ontologies and their evolution. J. of Biomedical Semantics, 2:6, 2011.

25. P Lambrix and V Ivanova. A unified approach for debugging is-a structure and mappings in
networked taxonomies. J. of Biomedical Semantics, 4:10, 2013.

26. P Lambrix and R Kaliyaperumal. A Session-Based Approach for Aligning Large Ontologies.
In P Cimiano et al., editor, ESWC, volume 7882 of LNCS, pages 46–60. 2013.

27. P Lambrix and H Tan. SAMBO - a system for aligning and merging biomedical ontologies.
J. of Web Semantics, 4(3):196–206, 2006.

28. M Lanzenberger, J Sampson, and M Rester. Ontology visualization: Tools and techniques
for visual representation of semi-structured meta-data. J.UCS, 16(7):1036–1054, 2010.

29. M Lanzenberger, J Sampson, M Rester, Y Naudet, and T Latour. Visual ontology alignment
for knowledge sharing and reuse. J. of Knowledge Management, 12(6):102–120, 2008.

30. S Massmann, S Raunich, D Aumüller, P Arnold, and E Rahm. Evolution of the COMA
match system. In OM, pages 49–60, 2011.

31. D Ngo and Z Bellahsene. Yam++ : A multi-strategy based approach for ontology matching
task. In EKAW, volume 7603 of LNCS, pages 421–425. 2012.

32. T A T Nguyen, R Power, P Piwek, and S Williams. Predicting the Understandability of OWL
Inferences. In Proceedings of the 10th European Semantic Web Conference (ESWC 2013),
volume 7882 of LNCS, pages 109–123. 2013.

33. J Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., 1993.
34. N F Noy and M A Musen. Algorithm and Tool for Automated Ontology Merging and Align-

ment. In AAAI, pages 450–455, 2000.
35. N F Noy and M A Musen. The PROMPT suite: interactive tools for ontology merging and

mapping. J. of Human-Computer Studies, 59(6):983–1024, 2003.
36. L Otero-Cerdeira, F J Rodrı́guez-Martı́nez, and A Gómez-Rodrı́guez. Ontology matching:

A literature review. Expert Systems with Applications, 42(2):949–971, 2015.
37. H Paulheim, S Hertling, and D Ritze. Towards Evaluating Interactive Ontology Matching

Tools. In P Cimiano et al., editor, ESWC, volume 7882 of LNCS, pages 31–45. 2013.

38. T R Payne and V Tamma. A Dialectical Approach to Selectively Reusing Ontological Cor-
respondences. In K Janowicz et al., editor, EKAW, volume 8876 of LNCS, pages 397–412.
2014.

39. C Pesquita, D Faria, E Santos, J Neefs, and F M Couto. Towards Visualizing the Alignment
of Large Biomedical Ontologies. In DILS, pages 104–111, 2014.

40. E Rahm. Towards Large-Scale Schema and Ontology Matching. In Z Bellahsene et al.,
editor, Schema Matching and Mapping, pages 3–27. 2011.

41. F Shi, J Li, J Tang, G Xie, and H Li. Actively Learning Ontology Matching via User Inter-
action. In A Bernstein et al., editor, ISWC, volume 5823 of LNCS, pages 585–600. 2009.

42. B Shneiderman. The eyes have it: a task by data type taxonomy for information visual-
izations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343,
1996.

43. P Shvaiko and J Euzenat. Ontology Matching: State of the Art and Future Challenges.
Knowledge and Data Engineering, 25(1):158–176, 2013.

44. P Warren, P Mulholland, T Collins, and E Motta. Using ontologies. volume 8876 of LNCS,
pages 579–590. 2014.

