
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Incremental Schema Integration for Data
Wrangling via Knowledge Graphs
Javier Flores a, Kashif Rabbani b, Sergi Nadal a, Cristina Gómez a, Oscar Romero a, Emmanuel Jamin c

and Stamatia Dasiopoulou c

a Department of Service and Information System Engineering, Universitat Politècnica de Catalunya, Barcelona,
Spain. E-mails: jflores@essi.upc.edu, snadal@essi.upc.edu, cristina@essi.upc.edu, oromero@essi.upc.edu
b Department of Computer Science, Aalborg University, Aalborg, Denmark. E-mail: kashifrabbani@cs.aau.dk
c SEMBU, NTT Data, Barcelona, Spain. E-mails: emmanueljeanjacques.jamin@nttdata.com,
stamatia.dasiopoulou@nttdata.com

Abstract. Virtual data integration is the current approach to go for data wrangling in data-driven decision-making. In this pa-
per, we focus on automating schema integration, which extracts a homogenised representation of the data source schemata and
integrates them into a global schema to enable virtual data integration. Schema integration requires a set of well-known con-
structs: the data source schemata and wrappers, a global integrated schema and the mappings between them. Based on them,
virtual data integration systems enable fast and on-demand data exploration via query rewriting. Unfortunately, the generation
of such constructs is currently performed in a largely manual manner, hindering its feasibility in real scenarios. This becomes
aggravated when dealing with heterogeneous and evolving data sources. To overcome these issues, we propose a fully-fledged
semi-automatic and incremental approach grounded on knowledge graphs to generate the required schema integration constructs
in four main steps: bootstrapping, schema matching, schema integration, and generation of system-specific constructs. We also
present NextiaDI, a tool implementing our approach. Finally, a comprehensive evaluation is presented to scrutinize our approach.

Keywords: Schema integration, Bootstrapping, Virtual data integration

1. Introduction

Big data presents a novel opportunity for data-driven decision-making and modern organizations acknowledge its
relevance. Consequently, it is transforming every sector of the global economy and science, and it has been identi-
fied as a key factor for growth and well-being in modern societies1,2. With an increasingly large and heterogeneous
number of data sources available, it is, however, unclear how to derive value from them [1]. It is, thus, commonplace
for any data science project to begin with a data wrangling phase, which entails iteratively exploring heterogeneous
data sources to enable exploratory analysis [2]. Let us consider the WISCENTD project3 of the World Health Or-
ganization (WHO) as an exemplary data science project deeply transforming a traditional organization into a data-
driven one. The main goal of this project is to build a system for managing the extraction, storage, and integrated
processing of data coming from a variety of data sources related to a group of 21 neglected tropical diseases with
diverse and multidimensional natures. For each of these diseases, the data exchange flows are not well-defined and

1https://digital-strategy.ec.europa.eu/en/policies/strategy-data
2https://strategy.data.gov/
3https://ods.cat/en/who-information-system-to-control-eliminate-ntds-wiscentd/

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:jflores@essi.upc.edu
mailto:snadal@essi.upc.edu
mailto:cristina@essi.upc.edu
mailto:oromero@essi.upc.edu
mailto:kashifrabbani@cs.aau.dk
mailto:emmanueljeanjacques.jamin@nttdata.com
mailto:stamatia.dasiopoulou@nttdata.com

2 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Schema matching2 User2(Source) Bootstrapping + Wrappers1

(Global) Schema integration 3Query5

Data Sources

Mapping generation4

GAV LAV GLAV

Virtual Data Integration
System

Global
schema

Mappings Source
schemas

Fig. 1. The schema integration pipeline

drug distributors, pharmacies, health ministries, NGOs, researchers and WHO analysts generate a wealth of data
that is ingested into WISCENTD (specifically, in its Data Lake platform) with different formats and schema. Most
of these data have been generated by third parties and the WHO data scientists are often unaware of their schema,
which hinders their capacity to conduct comprehensive data analysis. In this context, data wrangling via virtual data
integration is nowadays a popular first step toward understanding the available data sources [3]. Oppositely to phys-
ical data integration, where data are warehoused in a fixed target schema, virtual data integration systems keep data
in their original sources, build an intermediate infrastructure to provide virtual data integration and provide means
to retrieve data at query time [4]. Thus, allowing fast and on-demand data exploration in settings that require fresh
data. It is however reported that data scientists spend up to 80% of their time in the manual effort of implement-
ing such data integration pipeline, which is a complex and error-prone process that generates a high-entry barrier
[5, 6] for non-IT people. As a result, most current efforts are ad-hoc for a given project and do not generalize. From
a theoretical point of view, it is currently the case that the underlying setting has changed (i.e., ill-structured and
heterogeneous data sources currently arriving on demand), but the systems supporting data integration are still far
from supporting such needs [7]. There is, thus, a growing need for the definition of new approaches that assist and
automate such integration pipeline [8].

Data integration encompasses three main tasks: schema integration, record linkage, and data fusion [9, 10]. In
this paper, we focus on schema integration for virtual data integration to support flexible and on-demand data
wrangling. We thus address the problem of automating the extraction of schemata from the sources, as well as their
homogenization and integration [11]. The required constructs needed to enable schema integration have been prop-
erly studied in the literature [12]: the data source schemata, the target or integrated schema, mappings between the
source and target schemata and wrappers fetching the actual data residing in the data sources. Figure 1 exemplifies
the traditional steps conducted to build them. The process begins with a (1) bootstrapping and wrapper generation
phase, which extracts a schema representation of each source and the program that allows fetching its data. Next, a
(2) schema matching phase finds overlapping concepts among different sources, in order to later integrate them. (3)
Schema integration is an iterative, user-supervised and incremental task, completed when all source schemata have
been integrated into a single and unified global schema. The final phase consists of the (4) generation of mappings,
which relate the global schema back to the sources. Virtual data integration systems rely on these constructs to, via
rewriting algorithms, automatically rewrite queries over the global schema into queries over the sources [12]. The
processes described above do neither support record linkage nor data fusion, which fall out of our scope. Oppositely
to a traditional scenario, where all data sources were static, homogeneous and under control of the organization,
having a dynamically evolving and heterogeneous set of data sources yields new challenges to efficiently implement
such pipeline. We identify the following three:

1. The variety of structured and semi-structured data formats hamper the bootstrapping of the source schemata
into a common representation (or canonical data model) that facilitate their homogenization.

2. Instead of the classical waterfall execution, the dynamic nature of data sources introduces the need for a pay-
as-you-go approach [13] that should support incremental schema integration.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Incremental schema integration3

Generation of constructs4

Schema matching2

Supporting existing
approaches

Bootstrapping + Wrapper Generation1

Bootstrap Source graph Production
rules

Standardized schema
GRDFS + wrappers

Data source

Derivation of
global

schema

Annotated
schema

integration
GI

Data sources
Alg. 1 Section 4.3

Integrated class
annotations

Integrated property
annotations

Integrated join
annotations

Annotated schema
integration GI

(GRDFS | GI)+ alignments +
(GRDFS | GI)

Alg. 2Alg. 6Alg. 8

Alg. 9

Derivation of
source

schemata

Derivation of
mappings

Alg. 10

Query5

mappings

Source schemata

Global schema

Automatic process

Output

Input

Legend

Virtual Data
Integration System

Section 6

Fig. 2. Our approach in a nutshell.

3. The large number and variety of domains in the data sources, some of them unknown at exploration time,
hinders the use of predefined domain ontologies to lead the process.

The limitations highlighted above have seriously hampered the development of end-to-end approaches for schema
integration, which is a major need in practice, especially when facing Big Data [14, 15]. To that end, we propose
an all-encompassing approach that largely automates (essential for Big Data scenarios) schema integration. On top
of that, we also implement our approach as an open-source tool called NextiaDI

4. Our approach is grounded on
knowledge graphs, a widely accepted formalism to represent and homogenize metadata. As depicted in Figure 2,
our approach first bootstraps the schemata of structured and semi-structured data formats into source graphs (see
phase 1). These are graph-based representations of the particular schema of each data source. Such source graphs
are further homogenized into a canonical data model, the RDFS data model, using production rules [16]. Source
graphs are accompanied by an automatically generated wrapper that allows to retrieve data from the sources via
the source graph. We, next (see phase 2), leverage on the state-of-the-art on schema matching [17] to discover
alignments among the source graphs, which are used to guide the incremental schema integration process (see
phase 3). There we are able to capture the relationships of the modeled data sources via unions and joins, and
generate a graph representing the integration of all data sources’ schemata. At each step, our approach extracts
and captures rich metadata in the form of RDFS graphs that contain all the required information to generate the
schema integration constructs. Such metadata are agnostic of the target system we want to use. Thus, in phase 4 ,
we generate the required schema integration constructs for the target system (e.g., an ontology-based data access
system, e.g., [18], or a mediator-based system, e.g., [19]). The system-specific constructs generated are then directly
used by the targeted system built-in query rewriting capabilities (as in phase 5) to enable on-demand querying
and, therefore, data wrangling. The novelty of our approach lies in the automatic and incremental creation of the
constructs required for schema integration of virtual data integration systems. To our knowledge, this is the only
approach supporting this process.

Contributions. We summarize our contributions as follows:

– Our approach is able to deal with heterogeneous and semi-structured data sources.
– It follows an incremental pay-as-you-go approach to support end-to-end schema integration.
– It provides a single, uniform and system-agnostic framework grounded on knowledge graphs.

4In the ancient Nahuatl language, the term nextia means to get something out or put something together

4 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Approach Required metadata Supported data model
Implementation

Availability Automation
IncMap [20] RDB Schema Relational Unknown Semi-automatic

BootOX [21] RDB Schema Relational Unavailable Automatic

Janus [22] and
XS2OWL [23]

XML Schema XML Unknown Automatic

DTD2OWL [24] DTD Schema XML Unknown Automatic
Table 1

Comparison of bootstrapping state-of-the-art techniques

– We developed and implemented novel algorithms to largely automate all the required phases for schema inte-
gration: 1 bootstrapping (and wrapper generation) and 3 schema integration.

– Our approach is not specific for a given system and it generates system-agnostic metadata that can be later
used to generate the 4 specific constructs of most relevant virtual data integration systems. We showcase
it by generating the specific constructs of two representative families of virtual data integration systems (an
ontology-based data access system and a mediator-based system).

– We introduce NextiaDI, a tool to support the proposed approach. To our knowledge, NextiaDI is the very first
tool supporting the semi-automatic creation of the schema integration constructs for virtual data integration
systems.

Reproducibility and Code Repository. In an attempt to maximize transparency and openness, NextiaDI is public as
an open source Java library, with methods implementing the above mentioned phases. Additionally, the companion
website5 contains details on how to guarantee the reproducibility of the experiments conducted and explained later
in the paper to scrutinize our approach.

Outline. The rest of the paper is structured as follows. We first discuss the related work in Section 2. Next, Section
3 presents the formal overview of our approach to further dive in its two main stages: data source bootstrapping
(Section 4) and schema integration (Section 5). Section 6 shows how our approach is able to the constructs required
by data integration engines. Our approach implemented by NextiaDI is extensively evaluated in Section 7. We finally
conclude our paper and present future work in Section 8.

2. Related Work

Data integration encompasses three main tasks: schema integration, record linkage, and data fusion [9, 10]. A
wealth of literature has been produced for each of them. In this paper, we focus on automating and standardizing the
process to create the schema integration constructs for virtual data integration systems. Accordingly, in this section,
we discuss related work on the two main phases depicted in Figure 2: bootstrapping and schema integration. We
wrap up this section discussing the available virtual data integration systems that provide some kind of support to
generate the necessary schema integration constructs.

2.1. Related work on bootstrapping

Bootstrapping techniques are responsible for extracting a representation of the source schemata and there has
been a significant amount of work in this area, as presented in several surveys [25–28]. Most of the current avail-
able efforts, however, do require an a priori available target schema and / or materialize the source data in the
global schema [29–31]. Since our approach is bottom-up and meant for virtual systems, we subsequently focus on
approaches generating the schema from each source (either checking the available metadata or instances) without
using a reference schema or ontology. Table 1 depicts the most representative ones. To better categorize them, we

5See more details at https://www.essi.upc.edu/dtim/nextiadi/

https://www.essi.upc.edu/dtim/nextiadi/

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Approach Integration type
Strategy Implementation

Alignments
preservation

Source schema
preservation

Incremental Availability Automation

PROMPT [33] Full merge Archieved Semi-automatic

Chimaera [34] and
FCA-Merge [35]

Full merge Unknown Semi-automatic

ONION [36] Simple merge X X Unknown Semi-automatic

OntoMerge [37] Simple merge X X Unavailable Automatic

ATOM [38] Asymmetric merge X Unknown Semi-automatic

CoMerger [39] Full merge X X Active Automatic

Chevalier et. al [40] Full merge X X Unknown Semi-automatic
Table 2

Comparison of schema integration state-of-the-art techniques

distinguish three dimensions: required metadata, supported data sources, and implementation, which we detail as
follows, accompanied by a discussion to highlight our contributions.

Required metadata. All approaches define transformation rules to generate the schemata from the available data
source metadata as in [29], [22], [23], and [24]. However, these transformation rules do require well-defined
schemata, even for semi-structured data sources such as XML, which is not realistic for data wrangling tasks. An-
other relevant problem we identified in all these approaches is the lack of standardization of both the process and the
generated schemata. All of them present ad-hoc rules that are not compliant with both the data source metamodel
and, importantly, the target metamodel (typically, RDFS or OWL). This hinders the reuse and interoperability of
these approaches within the end-to-end schema integration process. Indeed, the same schema processed by different
approaches may result in different outputs. This is aligned with the current efforts on schema integration, which are
specific for a project and do not generalize well.

Supported data sources. Most approaches focus on bootstrapping relational data sources, assuming a traditional
data integration setting, and only three support semi-structured data models [22–24] (in all cases, XML). Yet, in
data science, most of the data available comes in the form of semi-structured data sources (e.g., JSON and CSV).

Implementation. Current approaches do not provide an open implementation. BootOX [21] is integrated into Op-
tique system [32], but it is no longer maintained or publicly available.

Discussion. Our bootstrapping proposal differs from the state-of-the-art as follows: (1) the schema is extracted
from the physical structure of the available data (i.e., instances) without relying on a pre-defined available schema
of the source, (2) the process and produced schema are standardized. Specifically, our transformation rules are
defined at the metamodel level and guarantee the output generated is compliant with both the data source and target
metamodels. Standardization is key for efficient maintenance and its reuse in the subsequent schema integration
phase, and (3) our approach is generic and adaptable to any data source data model. For those models not considered,
we could extend our approach by providing a set of transformation rules satisfying the soundness and completeness
properties defined in Section 4. Note that these rules are per pair of metamodels and therefore reusable between
sources of the same format.

2.2. Related work on schema integration

Schema integration is the process of generating a unified schema that represents a set of source schemata. This
process requires as input semantic correspondences between their elements (i.e., alignments). In Table 2, we de-
pict the most relevant state-of-the-art approaches. We distinguish three dimensions: integration type, strategy, and
implementation:

6 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Integration type. We follow the classification presented in [41], which categorizes the kinds of integration into
three types, namely: simple merge, full merge, and asymmetric merge. The former integrates schemata by adding
one-to-one bridge axioms between pairs of schemata. Approaches such as [36] and [37] preserve the original source
schemata and alignments, which is a desirable property to manage source evolution [42] and mandatory for incre-
mental approaches. However, their main drawback is the lack of common concepts, which can lead to complex
queries when integrating a large number of schemata. Full merge integrates the source schemata generating a new
schema where equivalent concepts are merged into a single new concept. In most approaches, the original source
schemata is not preserved and therefore lost. Thus, these approaches are not incremental. [39] is the only approach
under this category able to preserve specific elements of the source schemas upon request. Asymmetric merge can
be performed using the simple and merge schema via one-to-many axioms to integrate schemas and derive a full
merge. To the best of our knowledge, [38] is the only approach in this category. This kind of merge prioritizes one
of the schemas (target) over the others (source), that is, the target schema will preserve all axioms and in case of
disagreement with the target schema, elements of the source schema are removed from the integration.

Incremental integration. Most approaches (e.g., [33, 35, 37]) integrate the source schemata in one shot. Thus,
to process a new data source the whole process is started from scratch without reusing the previously generated
structures. Instead, [38] reuses the integrated structure to facilitate further integration incrementally. To that end, it
adopts the asymmetric merge strategy, however, it only supports the integration of taxonomies (i.e., classes with no
attributes and only hierarchical relationships among them).

Implementation. All approaches provide tools, however only [39] is openly available. There exists a demo of
[37] on its website6, however, as of today the service is down. Regarding [33], it is available as a plugin to the
Protégé tool, however it is not longer maintained. Overall, we also encountered that none of the tools offer any
documentation for users making them hard to use.

Discussion. Our work differs from these works as follows: (1) the global schema is incrementally generated, rather
than generated in one shot. (2) We thus incrementally support the integration of any resource (e.g., rdfs:Class and
rdf:Property) rather than just focusing in one resource as in [38] (3) In contrast to any other approach, we generate
annotations (i.e., metadata) and preserve the original schemata and alignments. These metadata are agnostic of
the virtual data integration system at hand, and we are able to derive generic system-specific constructs from our
system-agnostic annotations.

2.3. Related work on data integration systems supporting bootstrapping and / or schema integration

We examined virtual data integration systems that have introduced a pipeline supporting bootstrapping and / or
schema integration with the goal of providing query access to a set of data sources. We have excluded systems
that rely on the manual generation of schema integration constructs [43, 44] and focus on those that support semi-
automatic creation of such constructs.In all cases, nevertheless, the processes introduced are specific and dependent
on the virtual data integration system at hand. Further, note that some popular data integration systems such as
Karma [31], Pool Party Semantic [45], or Ontotext7 are excluded since they only support physical integration. Table
3 summarizes such efforts.

Optique [32]. It is a virtual data integration system developed as a result of research and industrial projects (e.g.,
[47]). For each data source, the source schema and RML mappings are generated using BootOX. In order to integrate
schemata, equivalent resources between the source and global schemas are mapped manually. During this process,
there is no matching technique. Moreover, the global schema is fully maintained by the user, who must update it if it
is incomplete with respect to the data sources and propagate the changes throughout the system constructs. However,
creating the system constructs does not follow an incremental process. Therefore, new constructs, which are tightly
coupled with the system, are needed each time a new data source is added, or the global schema is updated. Finally,
Optique allows the integration of relational, streaming, and sensor data and provides a query interface which is
performed by the Ontop tool [44].

6http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html
7https://www.ontotext.com/

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Approach
end-to-end DI workflow Bootstrapping step Schema integration Implementation

Bootstrapping
Schema

matching
Schema

integration
Query Type

Supported
data sources

Type Incremental Availability
Last

maintenance

Optique [32] X X X
Provided and

extracted
Relational, sensor
data and streaming

Simple
merge

-
On request

(demo)
2016

Mastro Studio [46] X X Provided Relational - -
Commercial

use
Unknown

Table 3
Comparison of virtual data integration systems automating, at least partially, schema integration

Mastro studio [46]. It is a virtual data integration system currently available as commercial software maintained by
OBDA Systems. The system supports only relational databases, which are mapped to a provided global schema. The
mappings are defined in the system’s native language, making them tightly coupled to the system. Moreover, there
are no schema matching and schema integration phases as it is assumed the user will provide the global schema.
Thus, the main complexity is maintaining the global schema and mappings. The query phase explodes the ad-hoc
mappings to provide a more efficient query retrieval.

Discussion. All systems generate constructs tightly coupled with the system needs and assume a provided global
schema. We, instead, construct the global schema incrementally from the sources, which is crucial for data wran-
gling. In these approaches, there are three common problems: (1) maintaining the mappings when the schema
evolves, (2) updating the global schema to get a complete view of the data sources, and (3) incrementally generat-
ing all systems constructs. These problems are even more complex for all the other approaches (e.g., systems and
query engines) that fully rely on creating such constructs manually [19, 44, 48–51]. Our approach is the only one
incrementally generating and propagating changes. Further, we are not tied to any system. Our approach generates
and collects rich metadata from the bootstrapping and schema integration steps. These metadata are rich enough to
generate system-specific constructs for schema integration, as we show in Section 6. Our generic metadata is able
to capture the evolution and automates its maintenance. Thus, if we need to update the constructs generated for a
specific system, we only need to re-run the algorithms to produce the specific constructs and replace them in the
system. Moreover, as integration is performed bottom-up, generating a global schema will always be complete with
respect to the data sources, which is the main requirement for data wrangling.

3. Approach overview

We now introduce the formal overview of our approach and the running example used in the following sections.

3.1. Formal definitions and approach overview

3.1.1. Data source bootstrapping and production rules
Here, we present the formal definitions that are concerned with phase 1 as depicted in Figure 2.

Datasets. Let M be the set of considered semi-structured and structured data models (e.g., CSV, JSON, or XML),
then, a dataset (intuitively, a dataset is each source file) Dm = {d1, . . . , dn}, where m ∈ M, is a collection of
data elements where each di adheres to m’s data model. We denote schema(d) the set of elements that represent
the physical structure of d’s data model (e.g., the set of keys for a JSON document). Since our focus is on data
integration, we assume all data elements in a dataset are homogeneous (i.e., they share the same schema), formally
depicted as ∀di, d j ∈ Dm : schema(di) = schema(d j), and hence with a slight abuse of notation we will refer to the
schema of a dataset as schema(Dm).

Typed graphs. We consider RDF graphs G = (VG, EG), which are unweighted, directed edge-labeled graphs. As
customary, we see EG as a set of triples of the form 〈s, p, o〉, where p is a labeled edge from s to o with s, o ∈ VG.
Then, we say G is typed with respect to a graphM = (VM, EM) (i.e., a metamodel), denoted as GM, if for every
node v ∈ VG there exists a triple in EG of the form 〈v,rdf:type,mi〉, where mi ∈ VM (note we assume that VG

includes the elements of VM). We assume the existence of a set of boolean constraints PM for a given metamodel

8 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

M, which allow to guarantee that the elements of GM are well-formed with respect toM. Intuitively, PM concerns
constraint checking aspects such as generalizations, referential integrity, cardinality, or keys. Then, we say GM is
consistent if all constraints in PM hold in GM.

Bootstrapping algorithm. A bootstrapping algorithm for a data model m is a function Bm : Dm → G from the set
Dm of all datasets adhering to m’s data model to the set G of all graphs. Then, we say Bm isM-sound if the graphs
it generates are typed and consistent with respect to a metamodelM. Formally, ∀Dm ∈ Dm we have that Bm(Dm) is
typed with respect toM, which we denote GM = Bm(Dm).

Graph queries. We consider the query language of conjunctive graph queries (CQs) as defined in [52]. Formally,
a CQ Q is an expression of the form Q(x1, . . . , xm) ← 〈s1, p1, o1〉, . . . , 〈sn, pn, on〉, where each si, o j are either
vertex labels or variables, and each pi is either an edge label or a variable. The semantics of answering a query
CQ Q over a graph G (i.e., QG(x1, . . . , xm)) is based on binding nodes and edges from G to the set of variables
{x1, . . . , xm} that match the conjunction of patterns. In this paper, instead of the traditional homomorphism-based
mapping semantics, where different variables can be bound to the same vertex, we assume the more restrictive
isomorphism-based semantics, forcing mappings to be injective.

Production rules. Let GS , GT be two typed graphs, respectively typed to S, T . Then, a source-to-target production
rule p from S to T (i.e., pS→T) is an existential axiom of the form ∀xΘGS (x)→ ∃yΨGT (x, y), where ΘGS is a CQ
over GS , and ΨGT is a CQs over GT . A production system is a set of production rules P = {p1, . . . , pk}, with an
evaluation function evalP : GS → GT from the set of all typed graphs with respect to S (i.e., GS), to the set of all
typed graphs with respect to T (i.e., GT). We say a production system is sound if, after its evaluation, the resulting
graph is typed with respect to T . Formally, ∀GS ∈ GS we have that evalP(GS) is typed with respect to T . Likewise,
we say a production system is complete if, after its evaluation, all candidate nodes in GS are present in GT .

3.1.2. Integrating bootstrapped graphs and generating the schema integration constructs
Here, we present the formal definitions that are concerned with phases 2 , 3 and 4 as depicted in Figure 2.

Alignments. An alignment between two graphs GA,GB is a triple of the form a = 〈va, vb, `〉, where va and vb

are nodes, respectively in VGA and VGB , and ` is a user-provided label for the aligned node. An alignment a is
M-compliant (i.e., compliant with the metamodel M) if the aligned elements are typed to the same node in M.
Formally, ∃〈va,rdf:type,m〉 ∈ EGA and ∃〈vb,rdf:type,m〉 ∈ EGB , where m ∈ VM.

Graph integration algorithm. A graph integration algorithm is a function I : A → G from the set of all sets of
alignments to the set of all graphs. We also consider the notion ofM-compliant graph integration algorithms, which
entails that any graph generated by evaluating I is typed with respect toM. This is formally defined as ∀A ∈ A we
have that I(A) is typed with respect toM.

Schema integration constructs and their generation. We follow Lenzerini’s general framework for schema inte-
gration8 [12]. Hence, a schema integration system K is defined as a triple 〈G,S, ϕ〉, where G is the global schema,
S the source schemata and ϕ the mappings between S and G. Then, following the previous idea, an algorithm to
generate the schema integration constructs is a function Q : G → K from the set of all graphs to the set of all
schema integration systems.

Overview of our approach. Figure 3, summarizes the formal background introduced above and overviews our
approach to automate the generation of schema integration constructs from a set of heterogeneous datasets.Shortly,
for each dataset Dm compliant with the data model m, we use the bootstrap algorithm Bm to generate a typed graph of
D’s schema (i.e., Gm). Such graph is later transformed into another graph Gc, now typed with respect to a canonical
metamodel of choice c. Next, and once all graphs have been generated and typed with respect to c, we can execute
the graph integration algorithm I in a pairwise and incremental fashion. Each of the resulting integrated graphs is a
candidate to be used to generate the constructs K for a schema integration system.

8Note that virtual data integration systems just consider schema integration and disregard record linkage and data fusion. Thus, in the original
framework it talks about data integration, which is used as a synonym of schema integration.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Dm1

D′m2

..
.

D′′mi

Gm1

Bm1

G′m2

Bm2
..
.

G′′mi

Bmi

Gmc

Pm1→mc

G′mc

Pm2→mc

..
.

G′′mc

Pmi→mc

G1
mc

I

G2
mc

I
K = 〈G,S, ϕ〉

Q

Metadata Datasets
Typed graphs

(source metamodel)
Typed graphs (canonical metamodel mc)

Schema integration
system

Algorithms Bootstrapping Prod. rules Graph integration Gen. of constructs

Fig. 3. Formal overview of our approach

3.2. Running Example

We consider a data analyst interested in wrangling two different sources about artworks from the Carnegie Mu-
seum of Art (CMOA)9 and Cooper Hewitt Museum (Cooperhewitt)10. The former contains information such as the
title, creator, and location for all artworks in the museum, such as fine arts, decorative arts, photography, and con-
temporary art. The latter contains similar information about artworks exposed in the Cooper Hewitt museum such as
painted architecture, decorative arts, sculpture and pottery. Figure 4, depicts a fragment of the data in JSON format.
Throughout the following sections, we will use this running example to showcase how our approach yields, from
these semi-structured data sources, a schema integration system grounded on the previously introduced definitions.

Source: CMOA.json
{

"title": "Keith Haring",
"web_url": "http://collection.cmoa.org/

CollectionDetail.aspx?item=1",↪→
"creator": [

{
"full_name": "Robert Mapplethorpe",
"nationality": "American"

}
]

}

Source: Cooperhewitt.json
{
"title": "Design for Portion of Stairway",
"url":

"collection.cooperhewitt.org/objects/68730511/",↪→
"description": "Drawing, Design for Portion of

Stairway",↪→
"Participants": [
{
"person_name": "Charles Salagnad",
"person_url":

"collection.cooperhewitt.org/people/18062563/"↪→
}

]
}

Fig. 4. Running example excerpts.

4. Data source bootstrapping

As previously described, our approach is generic to any data source, as long as specific algorithms are imple-
mented and shown to satisfy soundness and completeness. In this section, we describe phase 1 in Figure 2 and
showcase a specific instantiation of the framework for JSON. Following Figure 3, we introduce a bootstrapping algo-
rithm that takes as input a JSON dataset and produces a typed graph-based representation of its schema. Then, such
graph is translated into a graph typed with respect to a canonical data model by applying a sound set of production
rules. Next, we present the metamodels required for our bootstrapping approach and the production rules.

9https://github.com/cmoa/collection
10https://github.com/cooperhewitt/collection

10 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.1. Data source metamodeling

In order to guarantee a standardized process, the first step requires the definition of a metamodel for each data
model considered (note that several sources might share the same data model). Figure 5 depicts the metamodel to
represent graph-based JSON schemata (i.e.,MJSON). Such metamodel (whose elements we prefix as J) describes
the basic constructs and the relationships between them. As shown, a J:Document consists of one root J:Object , which in
turn contains at least one J:Key instance. Each J:Key is associated with one J:DataType value which is either a J:Primitive ,
a J:Array or a J:Object . We also assume elements of a J:Array to be homogeneous, and thus it is composed of J:DataType

elements. Last, we consider three kinds of primitives: these are J:Number , J:Boolean and J:String . In Appendix A, we
present the complete set of constraints that guarantee that any typed graph with respect toMJSON is consistent.

MJSON

J:Document J:ObjectJ:hasValue J:KeyJ:hasKey J:DataTypeJ:hasValue

rdfs:subClassOf

J:Array

rdfs:subClassOf
J:hasValue

J:Primitive

rdfs:subClassOf

Fig. 5. Metamodel to represent graph-based schemata of JSON datasets (i.e.,MJSON) inspired from [53]

4.2. The canonical metamodel

In order to enable interoperability among graphs typed w.r.t. source-specific metamodels, we choose RDFS as
the canonical data model for the integration process. A significant advantage of RDFS is its built-in capabilities for
meta-modeling, which supports different abstraction levels. Figure 6, depicts the fragment of the RDFS metamodel
(MRDFS)11 we adopt. Considering that we aim to represent the schema of the underlying data sources, we only need
to instantiate rdfs:Class and their rdf:Property . Additionally, in order to model arrays and under the assumption that there
exists a single type of container, we make use of the rdfs:ContainerMembershipProperty property. In Appendix B, we present
the complete set of constraints that guarantee that any typed graph with respect toMRDFS is consistent.

MRDFS rdfs:Resource

rdf:Property

rdfs:subClassOf

rdfs:ContainerMembershipProperty

rdfs:subClassOf

rdfs:Class

rdfs:subClassOf

rdfs:domain
rdfs:range

rdfs:datatype

rdfs:subClassOf

Fig. 6. Fragment of the RDFS metamodel (i.e.,MRDFS) considered in this paper

4.3. Bootstrapping JSON data

We next present a bootstrapping algorithm to generate graph-based representations of JSON datasets. The gen-
eration of wrappers that retrieve data using such graph representation has already been studied (e.g., see [19]), and
here we reuse such efforts. Here, we focus on the construction of the required data structure. As depicted in Algo-
rithm 1, the method DOCUMENT returns, for a given dataset, a graph typed with respect to the metamodelMJSON.

11https://www.omg.org/spec/ODM/1.1/PDF

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

It contains a set of functions, one per element of the metamodel, with a shared signature consisting of a) the graph
G where to populate the triples, which is passed by reference; b) the JSON dataset or some of its children (e.g.,
embedded objects or arrays) D; and c) D’s parent p (e.g., the key of an embedded object). For simplicity, we make
use of a function IRI(s), that, given a string s, generates a unique IRI from s. Additionally, we use FRESH() to define
fresh identifiers (i.e., synthetic strings that do not exist in G), and READFILE(D) to read from disk the content of a
dataset D.

The goal of this algorithm is to instantiate the J:Document and J:Object elements using the document’s root. Then,
the method OBJECT recursively instantiates MJSON with D’s content. Precisely, for each key-value pair 〈k, v〉,
which instantiate J:Key , we define its corresponding J:DataType vt and distinguish the cases of complex (i.e., objects
and arrays) and simple (i.e., primitive) elements. Dealing with complex objects requires instantiating J:Object or
J:Array with fresh IRIs (i.e., object or array identifiers). This is not the case for primitive elements, which are either
connected to the three possible instances of J:Primitive (i.e., J:Number , J:Boolean , or J:String). The presence of such
three possible instances in G is guaranteed by function INSTANTIATEMETAMODEL. We, additionally, annotate the
elements contained in arrays. Assuming that array elements are homogeneous, we relate the instance of J:Array to an
instance of J:DataType using the J:hasValue labeled edge.

Algorithm 1 Bootstrap a JSON dataset
Input: D is the name/path to the JSON dataset
Output: G is a typed graph with respect toMJSON (i.e., GMJSON)
1: function DOCUMENT(D)
2: G ← ∅
3: INSTANTIATEMETAMODEL(G)
4: G ∪= 〈IRI(D), rdf:type, J:Document〉
5: OBJECT(G, READFILE(D), D)
6: return G
1: function DATATYPE(G, D, p)
2: if ISOBJECT(D) then OBJECT(G, D, p)
3: else if ISARRAY(D) then ARRAY(G, D, p)
4: else PRIMITIVE(G, D, p)

1: function OBJECT(G, D, p)
2: u′ ← FRESH()
3: G ∪= 〈IRI(u′), rdf:type, J:Object〉
4: for all (k, v) ∈ D do
5: G ∪= 〈IRI(k), rdf:type, J:Key〉
6: G ∪= 〈IRI(u′), J:hasKey, IRI(k)〉}
7: DATATYPE(G, v, k)
8: G ∪= 〈IRI(p), J:hasValue, IRI(u′)〉
1: function ARRAY(G, D, p)
2: u′ ← FRESH()
3: G ∪= 〈IRI(u′), rdf:type, J:Array〉
4: DATATYPE(G, D[0], u′)
5: G ∪= 〈IRI(p), J:hasValue, IRI(u′)〉
1: function PRIMITIVE(G, D, p)
2: if NUMBER(D) then G ∪= 〈IRI(p), J:hasValue, J:Number〉
3: else if BOOL(D) then G∪=〈IRI(p), J:hasValue, J:Boolean〉
4: else G ∪= 〈IRI(p), J:hasValue, J:String〉
1: function INSTANTIATEMETAMODEL(G)
2: G ∪=MJSON
3: G ∪= 〈J:Number, rdf:type, J:Primitive〉
4: G ∪= 〈J:Boolean, rdf:type, J:Primitive〉
5: G ∪= 〈J:String, rdf:type, J:Primitive〉

DOCUMENT(CMOA. json) { 〈CMOA. json,rdf:type,J:Document〉

INSTANTIATEMETAMODEL(G)

 〈J:String,rdf:type,J:Primitive〉
〈J:Number,rdf:type,J:Primitive〉
〈J:Boolean,rdf:type,J:Primitive〉

OBJECT(G, {. . .},CMOA. json)



〈o1,rdf:type,J:Object〉
〈title,rdf:type,J:Key〉
〈o1,J:hasKey, title〉
〈creator,rdf:type,J:Key〉
〈o1,J:hasKey, creator〉
〈CMOA. json,J:hasValue, o1〉

PRIMITIVE(G,String, title) { 〈title,J:hasValue,J:String〉

ARRAY(G, [. . .], creator)
{
〈a1,rdf:type,J:Array〉
〈creator,J:hasValue, a1〉

OBJECT(G, {. . .}, a1)


〈o2,rdf:type,J:Object〉
〈 f ull_name,rdf:type,J:Key〉
〈o2,J:hasKey, f ull_name〉
〈a1,J:hasValue, o2〉

PRIMITIVE(G,String, f _name) { 〈 f ull_name,J:hasValue,J:String〉

Fig. 7. Set of triples generated by Algorithm 1. In the left-hand side we
depict the function that generates each corresponding set of triples

Example 1. Retaking the running example introduced in Section 3.2, Figure 7 depicts the set of triples that are
generated by Algorithm 1 on a simplified version of the CMOA.json dataset. Note that, for the sake of simplicity, the
keys web_url and nationality have been omitted.

Proof of soundness. We show that Algorithm 1 isMJSON-sound. This is, for any input JSON dataset, the graph
it generates is typed with respect to MJSON and consistent with respect to the set of boolean constraints PMJSON .
By construction we can see that for every node v ∈ VG (where G is the output of Algorithm 1) there exists an
edge 〈v,rdf:type,mi〉 where mi ∈ VMJSON . Indeed, all instances of J:Document are declared in line 4 of function
DOCUMENT, while all instances of J:Object and J:Key are declared, respectively, in lines 3 and 5 of function OBJECT.

12 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Instances of J:Array are declared in line 3 of function ARRAY. Regarding primitive data types, they are all declared
once when instantiating the metamodel.

Proof of completeness. We show that Algorithm 1 is complete with respect to the JSON dataset. That is, for any
JSON key k, there exists a resource R in the generated graph. This is guaranteed since for every element inMJSON

there exists a function generating a resource R in the graph. Indeed, for J:Document , J:Object , J:Primitive , J:Array and
J:DataType there exists a method named likewise. Regarding J:Key , the resource R is created in the method OBJECT.
Note that we assume keys in a JSON dataset contain schema values and not data values (i.e., they are well-formed).
We also assume that all elements in an array are homogeneous.

4.4. Production rules

We next present the second step of our bootstrapping approach (see Fig. 3), which is the translation of graphs
typed with respect to a specific source data model (e.g., MJSON) into graphs typed with respect to a canonical
metamodel (i.e., MRDFS). Following the idea in [16], we present the production system used to translate graphs
typed with respect to JSON to RDFS. The production system PJSON→RDFS consists of five production rules which can
be evaluated in no particular order. The remainder of this subsection is devoted to formally present the production
rules that compose PJSON→RDFS. It is worth noting the usage of the Kleene closure operator in Rules #4 and #5,
which allows to represent multidimensional arrays in the generated graph.

Rule 1. Instances of J:Object are translated to instances of rdfs:Class .

∀o
(
〈o,rdf:type,J:Object〉(G)

)
=⇒ ∃c

(
〈c,rdf:type,rdfs:Class〉(G′) ∧ c = o

)
(R1)

Rule 2. Instances of J:Key are translated to instances of rdf:Property . Additionally, this requires defining the rdfs:domain

of such newly defined instance of rdf:Property .

∀o, k
(
〈o,J:hasKey, k〉(G)

)
=⇒ ∃c, p(〈p,rdf:type,rdf:Property〉(G′)∧

〈p,rdfs:domain, c〉(G′) ∧ p = k ∧ c = o)
(R2)

Rule 3. Instances of J:Key which have a value an instance of J:Array are also instance of rdfs:ContainerMembershipProperty .

∀o, k
(
〈o,J:hasKey, k〉(G)∧

〈k,J:hasValue, a〉(G)∧
〈a,rdf:type,J:Array〉(G)

) =⇒ ∃p(〈p,rdf:type,rdfs:ContMembProperty〉(G′) ∧ p = k) (R3)

Rule 4. The rdfs:range of an instance of J:Primitive is its corresponding counterpart in the xsd vocabulary. Below we
show the case for instances of J:String whose counterpart is xsd:string . The procedure for instances of J:Number and
J:Boolean is similar using their pertaining type.

∀k, v
(
〈k,J:hasValue+, v〉(G)∧

〈k,rdf:type,J:Key〉(G)∧
〈v,rdf:type,J:String〉(G)

) =⇒ ∃p
(
〈p,rdf:type,rdf:Property〉(G′)∧

〈p,rdfs:range,xsd:string〉(G′) ∧ p = k
) (R4)

Rule 5. The rdfs:range of an instance of J:Object is the value itself.

∀k, v
(
〈k,J:hasValue+, v〉(G)∧

〈k,rdf:type,J:Key〉(G)∧
〈v,rdf:type,J:Object〉(G)

) =⇒ ∃p, r
(
〈p,rdfs:range, r〉(G′) ∧ p = k ∧ r = v

)
(R5)

Example 2. Here, we take as input the graph generated by our bootstrapping algorithm depicted in Figure 7. Then,
Figure 8 shows the resulting graph typed w.r.t. the RDFs metamodel after applying the production rules. Each node
and edge is annotated with the rule index that produced it.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

o1 titlerdfs:domain xsd:stringrdfs:range

creator

rdfs:domain

o2rdfs:range full_namerdfs:domain

rdfs:range

R1

R2
R2

R2

R2 ,R3

R4

R1

R2

R2

R4

R5

Fig. 8. Graph typed w.r.t. the RDFS metamodel resulting from evaluating the production rules

5. Incremental schema integration

This section describes phase 3 in Figure 2, which addresses the problem of generating the integrated graph
(IG) from a pair of typed graphs, as illustrated in Figure 3. To facilitate the schema integration process, we extend
the fragment of the RDFS metamodel (See Section 4.2) to include two new resources, namely :IntegratedResource

and :JoinProperty (see Figure 9). These resources are essential to annotate how the underlying data sources must
be integrated (e.g., union or join). The integration is accomplished through a set of invariants (see Section 5.1)
that guarantee the completeness and incrementality of the IG. Importantly, our proposal is sound and complete
with regard to the bootstrapping method described in Section 4 and it can only guarantee these properties if its
input is typed graphs (see Figure 3). The algorithm we propose in this phase takes as input two typed graphs
and a list of semantic correspondences (i.e., alignments) between them. The integration algorithm is guided by
semantic correspondences when generating the IG, keeping track of used and unused alignments in the process.
Unused alignments identify those semantic correspondences not yet integrated due to conditions imposed by the
integration algorithm, but to be integrated once the conditions are met in further executions. To obtain the semantic
correspondences, we rely on existing schema matching techniques (e.g., LogMap [54] or NextiaJD[17]) to produce
alignments.

All in all, the IG is a rich set of metadata containing all relevant information to perform schema integration and,
as such, it traces all information from the sources as well as that of integrated resources to support their incremental
construction. In Appendix B.1, we present the complete set of constraints that guarantee that any IG is consistent.

MRDFS

rdfs:Resource :IntegratedResourcerdfs:subClassOfrdf:Property rdfs:subClassOf:JoinProperty rdfs:subPropertyOf

Fig. 9. Extension of the rdfs metamodel for the integration annotation

Example 3. Continuing the running example, Figure 10 illustrates the result of the bootstrapping step to generate
the typed graph representation of the data sources CMOA.json and Cooperhewitt.json. Note that the range properties
are omitted due to space reasons. Also, we distinguish Datatype property and Object property . Since this information is not
available in the input typed graphs, we use rdf:Property and distinguish them by checking their range. Hereinafter,
as shown in Figure 10, we use the following color schemes to represent rdfs:Class , Datatype property and Object property .
We use dark colors to represent integrated resources: :IntegratedResource of type class, :IntegratedResource of type datatype
property and :IntegratedResource of type object property.

14 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

d = rdfs:domain
r = rdfs:range

GCMOA

o1title d web_urld

creator

d

o2

r

fullName
d

Nationality
d

GCooperhewitt

o1title d

url
d

descriptiond

participants

d

o2

r

person_name
d

person_url
d

Fig. 10. The extracted canonical RDF representations for the CMOA and Cooperhewitt sources

5.1. Integration of resources

We here present an implementation for the graph integration algorithm (see Section 3.1.2). This algorithm,
system-agnostic (i.e., not tied to any specific system) and incremental by definition, generates an integrated graph
GI for the input typed graphs. Our algorithm requires as input two typed graphs GA and GB and a list of alignments
A (see Section 3 for a precise definition of the typed graph and the kind of alignments 〈RA,RB, l〉 considered). In-
tuitively, we generate GI as the union of GA and GB plus a set of integrated resources generated from the input
alignments. As shown in Figure 3, the integration is performed pairwise and the result of executing our algorithm
is always an IG. Importantly, an IG is, by definition, a typed graph and therefore it guarantees the closure of our
algorithm: i.e., it can take as input a previously generated GI and a typed graph produced from a new data source
and generate a new IG, G′I , that integrates both inputs. The integration of N data sources requires the execution of
this algorithm N−1 times and generates N−2 intermediate IGs prior generating the final IG integrating all sources.
In the following, we present the invariants that guarantee the creation and propagation of the integrated resources
into the final IG, which hereinafter we will refer to as G′I . We first present the invariants for class resources.

I1. If RA and RB are not :IntegratedResource , then RA and RB become subclass of a new :IntegratedResource Rl defined as
the URI representation of l (i.e., Rl = generateURI(l)). Formally:

∀〈RA,RB, l〉 ∈ A :
〈RA,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RA,rdf:type,rdfs:Class〉 ∈ GI ∧
〈RB,rdf:type,rdfs:Class〉 ∈ GI

=⇒

∃Rl = generateURI(l) :
〈Rl,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈Rl,rdf:type,rdfs:Class〉 ∈ GI′ ∧
〈RA,rdfs:subClassOf,Rl〉 ∈ GI′ ∧
〈RB,rdfs:subClassOf,Rl〉 ∈ GI′

I2. If RA is not an :IntegratedResource and RB is an :IntegratedResource , then RA becomes a subclass of RB. Formally:

∀〈RA,RB, l〉 ∈ A :
〈RA,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 ∈ GI ∧
〈RA,rdf:type,rdfs:Class〉 ∈ GI ∧
〈RB,rdf:type,rdfs:Class〉 ∈ GI

=⇒

〈RA,rdf:type,:IntegratedResource〉 /∈ GI′ ∧
〈RB,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈RB,rdf:type,rdfs:Class〉 ∈ GI′ ∧
〈RA,rdfs:subClassOf,RB〉 ∈ GI′

I3. If RA is an :IntegratedResource and RB is not an :IntegratedResource , then RB is a subclass of RA. Formally:

∀〈RA,RB, l〉 ∈ A :
〈RA,rdf:type,:IntegratedResource〉 ∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RA,rdf:type,rdfs:Class〉 ∈ GI ∧
〈RB,rdf:type,rdfs:Class〉 ∈ GI

=⇒

〈RA,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈RA,rdf:type,rdfs:Class〉 ∈ GI′ ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI′ ∧
〈RB,rdfs:subClassOf,RA〉 ∈ GI′

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

I4. If RA and RB are :IntegratedResource , then the new integrated resource Cl defined as the URI representation of l
(i.e., Cl = generateURI(l)) replaces RA and RB. Formally:

∀〈RA,RB, l〉 ∈ A :
〈RA,rdf:type,:IntegratedResource〉 ∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 ∈ GI ∧
〈RA,rdf:type,rdfs:Class〉 ∈ GI ∧
〈RB,rdf:type,rdfs:Class〉 ∈ GI ∧
〈r,rdfs:subClassOf,RA〉 ∈ GI ∧
〈r′,rdfs:subClassOf,RB〉 ∈ GI ∧ r 6= r′

=⇒

∃Rl = generateURI(l) ∧ ∀r, r′ :
〈Rl,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈RI ,rdf:type,rdfs:Class〉 ∈ GI′ ∧
〈RA,rdf:type,:IntegratedResource〉 /∈ GI′ ∧
〈RA,rdf:type,rdfs:Class〉 /∈ GI′ ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI′ ∧
〈RB,rdf:type,rdfs:Class〉 /∈ GI′ ∧
〈r,rdfs:subClassOf,RA〉 /∈ GI′ ∧
〈r′,rdfs:subClassOf,RB〉 /∈ GI′ ∧
〈r,rdfs:subClassOf,Cl〉 ∈ GI′ ∧
〈r′,rdfs:subClassOf,Cl〉 ∈ GI′

Intuitively, the presented invariants guarantee the soundness and completeness of our approach, since it covers all
potential cases derived from one-to-one mappings: non-previously integrated resources, either one or another previ-
ously integrated or both already integrated. Grounded on these invariants, algorithm 2 generates the corresponding
integrated metadata and supports their incremental construction and propagation. Note that invariant I1 creates a
new :IntegratedResource of type class, invariants I2 and I3 reuse an existing :IntegratedResource and invariant I4 replace an
:IntegratedResource . To accomplish I4, our algorithm uses the method replaceIntegratedResource depicted in Algorithm
3, which provides the necessary functionality to replace the resources that were integrated by an :IntegratedResourceold

with :IntegratedResourcenew . When integrating classes, all resources (e.g., properties) connected to :IntegratedResourceold must
be connected to :IntegratedResourcenew For example, replacing an :IntegratedResourceold of type class requires updating all
properties referencing :IntegratedResourceold by rdfs:range or rdfs:domain to reference :IntegratedResourcenew . Therefore, we
introduce the method concordanceRelations to redirect the relations from an old resource to a new resource.

Algorithm 2 Integration of resources – Classes
Input: Two typed graphs GA and GB with a set of class alignments A = {a1, ..., an} and a set of unused alignments Aunused from previous integrations (For the first

iteration, this parameter is an empty set)
Output: Generates the integrated graph GI′ and the set of alignments not used Aunused′

1: function INTEGRATERESOURCES(GA, GB, A, Aunused)
2: GI ← GA ∪ GB
3: GI′ ← GI
4: Aunused′ = Aunused
5: for all 〈RA, RB, l〉 in A do
6: Rl ← generateURI(l)
7: if any condition then
8: if 〈RA, rdf:type, :IntegratedResource〉 ∈ GI′ ∧ 〈RB, rdf:type, :IntegratedResource〉 ∈ GI′ then . Invariant I4
9: GI′ \= replaceIntegratedResource(GI′ , RA, Rl) . see Algorithm 3

10: GI′ \= replaceIntegratedResource(GI′ , RB, Rl)
11: else if 〈RA, rdf:type, :IntegratedResource〉 ∈ GI′ then . Invariant I3
12: GI′ ∪= 〈RB, rdfs:subClassOf, RA〉
13: else if 〈RB, rdf:type, :IntegratedResource〉 ∈ GI′ then . Invariant I2
14: GI′ ∪= 〈RA, rdfs:subClassOf, RB〉
15: else . Invariant I1
16: GI′ ∪= 〈Rl, rdf:type, :IntegratedResource〉
17: GI′ ∪= 〈Rl, rdf:type, rdfs:Class〉
18: GI′ ∪= 〈RA, rdfs:subClassOf, Rl〉
19: GI′ ∪= 〈RB, rdfs:subClassOf, Rl〉
20: else
21: Aunused′ ∪= (RA, RB, l)
22: return 〈GI , Aunused′ 〉

Algorithm 4 is the main integration algorithm to generate G′I . It expects sets of alignments to integrate
resources pertaining to the same type and implements the methods IntegrateClasses for class resources,
IntegrateDataTypeProperties for datatype properties and IntegrateOb jectProperties for object properties follow-
ing the rationale previously presented and guaranteeing the class and property invariants.

16 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 3 Replace integrated resource – Classes
Input: GI is the integrated graph, Rold is the old integrated resource to be replaced , Rnew is the new integrated resource
Output: Generates the integrated graph GI′ containing the new triples with Rnew

1: function REPLACEINTEGRATEDRESOURCE(GI , Rold , Rnew)
2: GI′ ← GI
3: GI′ ∪= 〈Rnew, rdf:type, :IntegratedResource〉
4: GI′ \= 〈Rold , rdf:type, :IntegratedResource〉
5: for all c in 〈?r, rdfs:subClassOf, Rold〉(GI′) do
6: GI′ \= 〈r, rdfs:subClassOf, Rold〉
7: GI′ ∪= 〈r, rdfs:subClassOf, Rnew〉
8: GI′ ∪= concordanceRelations(GI′ , Rold , Rnew)

9: return GI′

Algorithm 4 Incremental schema integration

Input: Two typed graphs GA and GB with a set of class alignments AC , data
type property alignments ADT P, object property alignments AOP and any
property alignments Aunused not used in previous integrations (For the
first iteration, this parameter is an empty set)

Output: Generates the integrated graph GI and a set of property alignments
Aunused′

1: function I(GA, GB, AC , ADT P, AOP, Aunused)
2: GI ← GA ∪ GB
3: 〈GI , Aunused′ 〉 = IntegrateClasses(GI , AC , Aunused)
4: 〈GI , Aunused′ 〉 = IntegrateDataTypeProperties(GI , ADT P, Aunused′)
5: 〈GI , Aunused′ 〉 = IntegrateOb jectProperties(GI , AOP, Aunused′)

return 〈GI , Aunused′ 〉

Algorithm 5 ConcordanceRelations – Classes

Input: GI is the integrated graph, Cold is the old integrated class to be re-
placed, Cnew is the new integrated class

Output: Generates the integrated graph GI′ containing the new triples with
Cnew

1: function CONCORDANCERELATIONS(GI , Cold , Cnew)
2: for all p in 〈?p, rdfs:domain,Cold〉(GI′) do
3: GI′ \= 〈p, rdfs:domain,Cold〉
4: GI′ ∪= 〈p, rdfs:domain,Cnew〉
5: for all p in 〈?p, rdfs:range,Cold〉(GI′) do
6: GI′ \= 〈p, rdfs:range,Cold〉
7: GI′ ∪= 〈p, rdfs:range,Cnew〉
8: return GI′

GCMOA GCooperhewit t user-provided label l

o1 o1 Artworks

title title Title

web_url url URL

o2 o2 Creator

fullName personName Name

creator participants Contributors
Table 4

Discovered correspondences for GCMOA and GCooperhewitt

GCMOA

o1
GCooperhewitt

o1

I(GCMOA,GCooperhewitt)

Artworks

o1CMOA

subClassOf

o1Cooperhewitt

subClassOf

Fig. 11. Integration of two classes from GCMOA and GCooperhewitt

5.1.1. Integration of classes
We have introduced the IntegrateClasses method implementing the class invariants presented in Algorithm 2.

Note that, for invariant 4, Algorithm 5 illustrates the method concordanceRelations to ensure that all rdf:Property

axioms are coherent when replacing an :IntegratedResource .

Example 4. Retaking the running example, consider the alignments depicted in Table 4 between GCMOA and
GCooperhewitt. Let us consider the alignment o1 and o1 . For this case, invariant I1 is applied as illustrated in Fig-
ure 11. Thus, both classes are connected to a newly defined instance of class :IntegratedResource and rdfs:Class , namely
Artworks . For this example, two :IntegratedResource were generated: Artworks and Creator . Note, the set Aunused is empty
since this is the first integration performed.

5.1.2. Integration of properties
The invariants for properties are very similar to those presented for classes. Thus, we will use the IntegrateClasses

method as a baseline to discuss the integration of properties. Importantly, we follow a class-oriented integration
for properties, that is, properties can only be integrated once their corresponding domain and range classes have

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 6 Integration of Data type properties — adapted from
Algorithm 2

7: CdomainA ← GetIntegratedClass(GI′ ,RA,rdfs:domain)
8: CdomainB ← GetIntegratedClass(GI′ ,RB,rdfs:domain)
9: if 〈CdomainA,rdf:type, : IntegrationClass〉 ∈ GI′ ∧

CdomainA = CdomainB then
10: Invariants I4, I3, I2
16: Start of Invariant I1
17: CrangeA ← GetIntegratedClass(GI′ ,RA,rdfs:range)
18: GI′ ∪= 〈Rl,rdfs:range,CrangeA〉
19: GI′ ∪= 〈Rl,rdfs:domain,CdomainA〉
20: End of Invariant I1
21: else
22: Aunused′ ∪= (RA,RB, l)

23: return 〈GI′ , Aunused′ 〉

Algorithm 7 ConcordanceRelations — Properties

Input: GI is the integrated graph, Pold is the old integrated prop-
erty to be replaced, Pnew is the new integrated property

Output: Generates the integrated graph GI′ containing the new
triples with Pnew

1: function CONCORDANCERELATIONS(GI , Pold , Pnew)
2: for all c in 〈Pold ,rdfs:domain, ?c〉(GI′) do
3: GI′ \= 〈Pold ,rdfs:domain, c〉
4: GI′ ∪= 〈Pnew,rdfs:domain, c〉
5: . The following loop only applies to object properties
6: for all c in 〈Pold ,rdfs:range, ?c〉(GI′) do
7: GI′ \= 〈Pold ,rdfs:range, c〉
8: GI′ ∪= 〈Pnew,rdfs:range, c〉,
9: return GI′

been integrated into the same integration class. Doing so, we guarantee that integrated properties are semantically
equivalent as to performing a union operation. Next, we describe how property integration happens and exemplify
it by using Example 3. We distinguish two main integration cases for properties: Datatype property and Object property .

Let us start with datatype properties. Following the class-oriented integration idea introduced, we only integrate
datatypes if they are part of the same entity, that is, if their domains (e.g., rdfs:Class) have already been integrated
into the same :IntegratedResource of type class. Therefore, the invariants for Datatype property integration must reflect this
condition. In the following, we present invariant I1 for Datatype property . Note that the remaining invariants should be
updated accordingly.

∀〈RA,RB, l〉 ∈ AR :
〈RA,rdfs:domain,CA〉 ∈ GI ∧ 〈CA,rdfs:subClassOf,CIA〉 ∈ GI∧
〈RB,rdfs:domain,CB〉 ∈ GI ∧ 〈CB,rdfs:subClassOf,CIB〉 ∈ GI∧
〈CIA,rdf:type,IntegratedResource〉 ∈ GI ∧ CIA = CIB∧
〈RA,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RA,rdf:type,rdf:Property〉 ∈ GI ∧
〈RB,rdf:type,rdf:Property〉 ∈ GI

=⇒

∃Rl = generateURI(l) :
〈Rl,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈Rl,rdf:type,rdf:Property〉 ∈ GI′ ∧
〈RA,rdfs:subPropertyOf,Rl〉 ∈ GI′ ∧
〈RB,rdfs:subPropertyOf,Rl〉 ∈ GI′

Algorithm 6 implements the IntegrateDataTypeProperties method in Algorithm 4. The implementation of Inte-
grateDataTypeProperties method is similar to Algorithm 2 except for the additional conditions and the manipulation
of the domain and range axioms. If the conditions are not fulfilled, the algorithm does not integrate the alignment
and preserves it in the set of Aunused until their domains are integrated into the same :IntegratedResource in further inte-
grations. Thus, whether this integration will take place depends on the discovered set of alignments from the schema
matching approaches. Further, the domain of the :IntegratedResource of type property is an :IntegratedResource of type class.
And for the range, we assign the more flexible xsd type (e.g., xsd:string). Algorithm 7 implements the method
concordanceRelations to ensure all axioms are coherent when replacing an :IntegratedResource or an :IntegratedResource of
type property.

For the integration of Object property , we follow a similar approach and only integrate object properties if their do-
main and range have already been integrated. Accordingly, the object property invariants should reflect this condi-
tion and we showcase it for invariant I1 as follows:

18 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 8 Join integration
Input: GI is the integrated graph, PA and PB are two data type proper-

ties, l is a user-provided label for the aligned resource, and S is a user-
provided label for the join representation.

Output: Generates the integrated graph GI′
1: function JOININTEGRATION(GI , PA, PB, l, S)
2: GI′ ← GI
3: Aunused′ ← Aunused
4: Pl ← generateURI(l)
5: PS ← generateURI(S)
6: Invariants I4, I3, I2
7: Start of Invariant I1
8: GI′ ∪= 〈Pl, rdf:type, :IntegratedResource〉
9: GI′ ∪= 〈Pl, rdf:type, rdf:Property〉

10: GI′ ∪= 〈PA, rdfs:subPropertyOf, Pl〉
11: GI′ ∪= 〈PB, rdfs:subPropertyOf, Pl〉
12: CrangeA ← GetIntegratedClass(GI′ , PA, rdfs:range)
13: GI′ ∪= 〈Pl, rdfs:range,CrangeA〉
14: GI′ ∪= 〈PS , rdf:type, rdf:Property〉
15: GI′ ∪= 〈Pl, :JoinProperty, PS 〉
16: End of Invariant I1
17: return GI′

GDemography

Location

city_name

domain

xsd:string

range

GS ales

Sales

city

domain

xsd:string

range

I(GDemography,GS ales)

has_demographic

ICity

joinProperty

xsd:string

range

Location

range

city_name

domain
subPropertyOf

range

Sales

domain

city

domain
subPropertyOf

range

Fig. 12. Example of a Join integration

∀〈RA,RB, l〉 ∈ AR :
〈RA,rdfs:domain,CAD〉 ∈ GI ∧ 〈CAD,rdfs:subClassOf,CIAD〉 ∈ GI∧
〈RB,rdfs:domain,CBD〉 ∈ GI ∧ 〈CBD,rdfs:subClassOf,CIBD〉 ∈ GI∧
〈CIAD,rdf:type,IntegratedResource〉 ∈ GI ∧ CIAD = CIBD∧
〈RA,rdfs:range,CAR〉 ∈ GI ∧ 〈CAR,rdfs:subClassOf,CIAR〉 ∈ GI∧
〈RB,rdfs:range,CBR〉 ∈ GI ∧ 〈CBR,rdfs:subClassOf,CIBR〉 ∈ GI∧
〈CIAR,rdf:type,IntegratedResource〉 ∈ GI ∧ CIAR = CIBR∧
〈RA,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RB,rdf:type,:IntegratedResource〉 /∈ GI ∧
〈RA,rdf:type,rdf:Property〉 ∈ GI ∧
〈RB,rdf:type,rdf:Property〉 ∈ GI

=⇒

∃Rl = generateURI(l) :
〈Rl,rdf:type,:IntegratedResource〉 ∈ GI′ ∧
〈Rl,rdf:type,rdf:Property〉 ∈ GI′ ∧
〈RA,rdfs:subPropertyOf,Rl〉 ∈ GI′ ∧
〈RB,rdfs:subPropertyOf,Rl〉 ∈ GI′

The implementation of the Object property integration is very similar to Algorithm 6. We should accordingly add
the proper conditions set by the invariants and consider the manipulation of the axioms as we performed for
Datatype property . We illustrate the integration of properties in Example 5.

Example 5. Continuing the Example 4, the algorithm will integrate all Datatype property using invariant I1 since their
domains were already integrated. If their domains are not integrated, the properties will be preserved in the set of
unused alignments Aunused. Figure 13 illustrates the integration process of integrating web_url and url . The integration
algorithm uses rdfs:subPropertyOf to connect both Datatype property to the :IntegratedResource of type property, that is, URL .
For this example, the following :IntegratedResource were generated: URL , Title and Name . Then, we proceed to integrate
Object property as we can note that the domain and range of creator and participants have already been integrated, fulfilling
the object property requirement. Finally, Figure 14 depicts the complete integrated graph generated from Example 4
and 5. The result of this schema integration generates one :IntegratedResource of type class, three :IntegratedResource of type
datatype property and one :integratedResource of type object property. Note that the set Aunused contains the alignments
not used during this integration, allowing them to be used in further integrations.

As discussed, our property integration is class-oriented and we only automate the process if the integrated prop-
erties are equivalent and can be integrated via a union operator. However, in real practice, this is very restrictive
and we allow to integrate two datatype properties whose classes have not been previously integrated in what we
call a :JoinProperty . This integration must be performed by a post-process task triggered by a user request. This type
of property integration occurs when the domains are not semantically related, but the properties have a semantic
correspondence in an input alignment. We thus consider this case as a join operation. Algorithm 8 depicts this inte-
gration type. Having no conditions allows us to integrate properties from completely distinct entities. To allow this
integration, we must express the join relationship by creating an object property that connects both domain rdfs:Class of

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

GCMOA

o1

web_url

domain

xsd:string

range

GCooperhewitt

o1

url

domain

xsd:string

range

I(GCMOA,GCooperhewitt)

Artworks

URL

domain

xsd:string

range

o1

subClassOf

web_url

domainsubPropertyOf

range

o1

subClassOf

url

domainsubPropertyOf

range

Fig. 13. Result of integrating two classes and two data type prop-
erties from GCMOA and GCooperhewittInt

d = rdfs:domain
r = rdfs:range

sc = rdfs:subClassOf
sp = rdfs:subPropertyOfI(GCMOA,GCooperhewitt)

Artworks

Title

d

URL

d

Name

Creator

d

Contributors

d

r

o1CMOA sc

title

d

sp

web_url

d

sp

creator
d

sp

o2

r

sc

fullNamed sp

Nationality

d

CMOA

o1Cooperhewittsc

title

d

sp

url

d

sp

description

d

participantsd

sp

o2

r

sc

person_name dsp

person_url

d

Cooperhewitt

Fig. 14. Final Integration graph from Examples 4 and 5

GArtists

Artist

Full_name

d

Citizenship

d

designer sc

Display_Name

d

sp

country

d

sp

producersc

name

d

sp

Nationality

d

sp

Fig. 15. New data source

I(GCMOA,GCooperhewit t) GArtists User-provided label l

Creator Artist Artist

Nationality Citizenship Nationality

Name Full_name Name
Table 5

Alignments discovered for I(GCMOA,GCooperhewitt) and GArtists

I(GCMOA,GCooperhewitt)

Creator

Creator

sc

Participants

sc

Gds

Artist

producer

sc

designer

sc

I(I(GCMOA,GCooperhewitt),GArtists)

IArtist

Creator

sc

designer

sc

producer

sc

Participants

sc

Fig. 16. Result of integrating two integrated classes from I(GCMOA,GCooperhewitt) and GArtistsi

the Datatype properties to integrate, as illustrated in Figure 12. This object property aims to add semantic meaning to the
implicit relation of the properties domain. Thus, this Object property connects to the :IntegratedResource using :JoinProperty

to identify that this is an on-demand datatype property integration not meeting the regular integration algorithms.

5.2. Incremental example

We will use the final result of Example 5 to perform an incremental integration. For this case, consider the data
analyst wants to integrate the typed graph I(GCMOA,GCooperhewitt) in Figure 14 with the typed graph Gartists in
Figure 15. In this iteration, the schema matching approach proposed the alignments depicted in Table 5. First, we
integrate rdfs:Class . Let us consider the alignment Creator and Artist . Note that we have two :IntegratedResource of type
class in this alignment resulting in the use of invariant I4 from Algorithm 2. Figure 16 illustrates the integration
process for this alignment in which Creator and Artist are replaced by the new :IntegratedResource of type class, namely
IArtist . Now, the algorithm proceeds to integrate Datatype property . Let us consider the alignment Nationality and Citizenship

representing invariant I2. The integration process is illustrated in Figure 17. For this case, instead of creating a new
:IntegratedResource of type property, we reuse Citizenship . Therefore, Nationality will be a rdfs:subPropertyOf Citizenship . For the
last alignment, Name and Full_Name , we replace both :IntegratedResource of type property by Name . In summary, our
approach creates one :IntegratedResource of type class and two :IntegratedResource of type property. The resulting integrated
graph is depicted in Figure 18.

20 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

I(GCMOA,GCooperhewitt)

Nationality

GArtists

Citizenship

country

sp

Nationality

sp

I(I(GCMOA,GCooperhewitt),GArtists)

Nationality

Citizenship

sp

country

sp

Nationality

sp

Fig. 17. Result of integrating one integrated data type property from I(GCMOA,GCooperhewitt) and GArtists

d = rdfs:domain
r = rdfs:range
sc = rdfs:subClassOf
sp = rdfs:subPropertyOfI(I(GCMOA,GCooperhewitt),GArtists)

Artworks

Title

d

URL

d

Contributors

IName

Artist

d

Nationality

d

o1 sc

title

d

sp

web_url

d

sp

creator d

sp

fullName sp

o2

r

d

sc

d

r

Nationality
sp

d

CMOA

o1sc

title

d

sp

url

d

sp

description

d

participantsd

sp

o2

r

sc

person_name dsp

person_url

d

Cooperhewitt

Display_Name

sp

designerd

sc

countryd

sp

name

sp

producer

d
sc

Nationality d

sp

Artists

Fig. 18. Integration graph from a second integration

Gds1

Project

title

domain

hasCountrydomain

Country

range

namedomain

Gds2

ProjectEntity

title

domain

hasLocationdomain Locationrange

hasAddress

domain
PostalAddress

range

country

domain

address

domain

Fig. 19. Example of two different data models

5.3. Limitations

The integration algorithm is our incremental proposal to integrate the typed graphs. However, this algorithm
assumes one-to-one input alignments, a limitation all schema alignment techniques have. Our integration algorithm
integrates equivalent resources, but it is not able to deal with other complex semantic relationships. To illustrate this,
consider the example presented in Figure 19. Let us consider a data analyst interested in retrieving the country’s
name related to a project. For the Gds1 graph, this information can be obtained by using the hasCountry property to
retrieve the Country entity. However, the Gds2 graph has a different way to represent the country information from a
project requiring to retrieve the Location entity, using the hasLocation property, and then using the hasAddress property
to retrieve the PostalAddress entity, which contains the country information. The main problem in this case is that the
alignment is not one-to-one, instead, the alignment matches a subgraph to one resource. As far as we know, there is
no schema alignment technique that considers such case and we for now do not either and leave it for future work.
Last, but not least, we would like to stress that even if largely automated, schema integration must be a user-in-the-
loop process, since this is the only way to guarantee the input alignments generated by a schema alignment tool are
correct.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6. Generation of schema integration constructs

In this section, we show how our approach can be generalized and reused to derive the schema integration con-
structs of specific virtual data integration systems. We, precisely, instantiate phase 4 in Figure 2. The integrated
graph generated in Section 5 contains all relevant metadata about the sources and their integration, which can be
used to derive these constructs. Regardless of the virtual data integration system chosen, once the system-specific
constructs are created, the user can load them into the system and start wrangling the sources via queries over the
global schema. This way, we free the end-user from manually creating such constructs. In the following subsections,
we present two methods to generate the schema integration constructs of two representative virtual data integration
approaches: mediator-based and ontology-based data access systems

6.1. Mediator-based systems

We consider ODIN as a representative mediator-based data integration system [55]. ODIN relies on knowledge
graphs to represent all the necessary constructs for query answering (i.e., the global graph, source graphs and
local-as-view mappings). However, all its constructs must be manually created. Thus, we show how to generate its
constructs automatically from the integrated graph generated in our approach.

Algorithm 9 shows how to generate the global graph required by ODIN from our integrated graph. In ODIN, the
global graph is the integrated view where end-users can pose queries. Hence, this algorithm first merges the sub-
classes and sub-properties of integrated resources. As a result, we represent the taxonomy of integrated resources
with a single integrated resource and properly modify the domain and range of the affected properties. In the case of
non-integrated resources, their original definition remains. Figure 20, illustrates the output provided by Algorithm
9 for the generated integration graph in Figure 18. The source schemata and wrappers representing the sources and
required by ODIN are immediate to retrieve, since our integration schema preserves the original graph representation
bootstrapped per source, and the wrappers remain the same. Finally, since the integration graph was built bottom-
up, the local-as-view mappings required by ODIN are generated via the sub-class or sub-property relationships
created during schema integration between source schemata elements and integrated elements. All ODIN constructs
are therefore straightforwardly generated from the integration graph automatically. Once done, and after loading
these constructs into ODIN, the user can query the data sources by querying the global graph of ODIN, which will
rewrite the user query over the global graph into a set of queries over the wrappers via its built-in query rewriting
algorithm. We have implemented the method here described to generate the constructs and integrated it in ODIN.
This implementation is available on this paper’s companion website.

6.2. Ontology-based data access systems

Ontology-based data access systems provide a unified view over a set of heterogeneous datasets through an
ontology, usually expressed in the OWL 2 QL profile, and global-as-view mappings, often specified using languages
such as R2RML and RML. The integrated graph is able to derive an OWL ontology by converting RDFS resources
into OWL resources. To this aim, Algorithm 9 requires a post-process step to perform this task. Note that, by
definition, the integrated graph contains a small subset of RDFS resources. Thus, we only require to map rdfs:Class

to owl:Class and rdf:Property to the corresponding owl:DatatypeProperty or owl:ObjectProperty . Concerning mappings, as long as
appropriate algorithms are defined to extract and translate the metadata from the integrated graph, we can derive
mappings for any dedicated syntax. Here, we will explain the derivation of RML mappings. Each RML mapping
consists of three main components: (i) the Logical Source (rml:logicalSource) to specify the data source, (ii) the Subject
Map (rml:subjectMap) to define the class of the RDF instances generated and that will serve as subjects for all RDF
triples generated, and (iii) a set of Predicate-Object maps (rml:predicateObjectMap) that define the creation of predicates
and its object value for the RDF subjects generated by the Subject Map. Algorithm 10 shows how to generate RML
mappings from the integrated graph. The process is as follows.

The algorithm creates RML mappings for each entity defined in a data source schema. Therefore, it iterates
over all resources of type rdfs:Class from the integrated graph that are not :IntegratedResource , since those resources
were generated from a data source during the bootstrapping phase. For each resource c of type rdfs:Class , we gen-

22 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 9 Global schema
Input: An integration graph GI
Output: A global schema GI′

1: function GLOBALSCHEMA(GI)
2: for all r in 〈?R, rdf:type, :IntegrationResource〉(GI′)

do
3: if 〈r, rdf:type, rdf:Property〉(GI′) then
4: for all s in 〈?s, rdfs:subPropertyOf, p〉(GI′) do
5: GI′ \= 〈s, rdfs:domain, ?domain〉(GI′)
6: GI′ \= 〈s, rdfs:range, ?range〉(GI′)
7: GI′ \= 〈s, rdf:type, rdf:Property〉
8: GI′ \= 〈s, rdfs:subPropertyOf, p〉
9: else if 〈r, rdf:type, rdfs:Class〉(GI′) then

10: for all s in 〈?s, rdfs:subClassOf, c〉(GI′) do
11: for all p in 〈?p, rdfs:domain, s〉(GI′) do
12: GI′ \= 〈p, rdfs:domain, s〉
13: GI′ ∪= 〈p, rdfs:domain, c〉
14: for all p in 〈?p, rdfs:range, s〉(GI′) do
15: GI′ \= 〈p, rdfs:range, s〉
16: GI′ ∪= 〈p, rdfs:range, c〉
17: GI′ \= 〈s, rdf:type, rdfs:Class〉
18: GI′ \= 〈s, rdfs:subClassOf, c〉
19: return GI′

d = rdfs:domain
r = rdfs:rangeGlobalSchema(I(I(GCMOA,GCooperhewitt),GArtists))

ArtworksTitle d

URL

d

ArtistContributorsd r

Nationality

d

IName

d

description

d

person_urld

Fig. 20. Generated global schema

erate a unique URI, namely mc, to represent the RML mapping and create the three RML components. First, we
specify the rml:logicalSource for the mapping mc. Here, we created the required metadata by the Logical Source: (i)
the rml:source to specify the data source location, which is obtained from the source wrapper through the method
GetDataS ourcePath(c), (ii) the rml:referenceFormulation to express the data source format, which is assigned dynami-
cally depending on the data source type by using the method GetDataS ourceType(c) (e.g., for CSV and JSON it
generates ql:CSV or ql:JSONPath), and (iii) the rml:iterator to define the iteration pattern to retrieve each data instance to
be mapped, obtained from the wrapper definition using the method GetIterator(c).

The next step is to specify the rml:subjectMap for the mapping mc. Here, we define the variable ctargetType using the
URI from c to define the subject type of all RDF instances produced. If resource c is a subclass of an :IntegratedResource ,
we define ctargetType as the integrated URI. Then, we created the required metadata for the rml:subjectMap : (i) the
rr:template to define the URIs of the instances, for which we use the URI from ctargetType and append a unique identifier
from the data source, and (ii) the rr:class to specify the class of the subjects produced. Then, we create of the set of
rml:predicateObjectMap . To that end, we iterate over all rdf:Property that has as domain the class c. Then, for each property
p, we define the variable ppredicate as the URI from p. If p is a subproperty of an :IntegratedResource or p is a subproperty
of an :IntegratedResource that represents a :JoinProperty , we define ppredicate as the integrated URI or as the JoinProperty
URI, respectively. Then, we generate the rml:predicateObjectMap metadata. Here, we distinguish two cases: properties
that are not part of a :JoinProperty and those that are. In the first case, we will generate the metadata as follows: (i)
the rr:predicate to indicate that property ppredicate is used to map the subject with the object, and (jj) the rr:objectMap as
well as rml:reference to indicate which element of the data source schema should be used to generate the RDF objects
instances. Here, we use the method GetS ourceRe f erence(p) to retrieve the reference of the data source (e.g, a
column or JSON key) from a given property, which is obtained from the wrapper metadata. Finally, if the property
is part of a :JoinProperty , we will create a rml:predicateObjectMap for all properties that are part of the :JoinProperty . Then, the
following metadata is generated for each rml:predicateObjectMap : (i) the rr:predicate where we use the join property URI
to connect two entities from different sources, and (ii) the rr:objectMap along with a rml:parentTriplesMap , which is used to
link the mappings of two different entities. We use the method GetClassMapping(p′) to get the mapping URI of
a given property. Finally, we proceed to create the metadata for the rml:parentTriplesMap : (i) the rr:joinCondition containing
the rr:child and the rr:parent , which require a reference of an element from the data source to create the join. We used
the method GetS ourceRe f erence to obtain the references of each property p and p′.

As a result, the provided algorithm generates the RML mappings for all entities and data sources contained in
an integrated graph and uses the annotations with regard to unions and joins to construct global-as-view mappings
according to the global schema (e.g., ontology). Last but not least, this algorithm showcases the feasibility of gen-

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 10 RML mappings generation
Input: An integration graph GI
Output: RML mappings
1: function GENERATE RML_MAPPINGS(GI)
2: GM ← ∅
3: for all c in 〈?C, rdf:type, rdfs:Class〉 ∈ (GI) ∧ 〈?C, rdf:type, :IntegratedResource〉 /∈ (GI) do
4: mc ← generateURI(c)
5: GM ∪= 〈mc, rdf:type, rr:TriplesMap〉
6: b1 ← BLANKNODE()
7: GM ∪= 〈mc, rml:logicalSource, b1〉
8: GM ∪= 〈b1, rml:source,GetDataS ourcePath(c)〉
9: GM ∪= 〈b1, rml:referenceFormulation,GetDataS ourceType(d)〉

10: GM ∪= 〈b1, rml:iterator,GetIterator(d)〉
11: ctargetType ← c
12: if 〈c, rdfs:subClassOf, RI〉 ∈ (GI) ∧ 〈RI , rdf:type, :IntegratedResource〉 ∈ (GI) then
13: ctargetType ← RI

14: b2 ← BLANKNODE()
15: GM ∪= 〈mc, rr:subjectMap, b2〉
16: cID ← GenerateID(c)
17: GM ∪= 〈b2, rr:template, ctargetType + ”/” + cID〉
18: GM ∪= 〈b2, rr:class, ctargetType〉
19: for all p in 〈?P, rdf:type, rdf:Property〉 ∈ (GI) ∧ 〈?P, a, :IntegratedResource /∈ (GI) ∧ 〈?P, rdfs:domain, c〉 ∈ (GI) do
20: ppredicate ← p
21: if 〈p, rdfs:subPropertyOf, RI〉 ∈ (GI) ∧ 〈RI , a, :IntegratedResource〉 ∈ (GI) ∧〈RI , :JoinProperty, R join〉 /∈ (GI) then
22: ppredicate ← RI
23: else if 〈p, rdfs:subPropertyOf, RI〉 ∈ (GI) ∧ 〈RI , a, :IntegratedResource〉 ∈ (GI) ∧〈RI , :JoinProperty, R join〉 ∈ (GI) then
24: ppredicate ← R join

25: if 〈p, :JoinProperty, ppredicate〉 /∈ (GI) then
26: b3 ← BLANKNODE()
27: GM ∪= 〈mc, rr:predicateObjectMap, b3〉
28: GM ∪= 〈b3, rr:predicate, ppredicate〉
29: b4 ← BLANKNODE()
30: GM ∪= 〈b3, rr:objectMap, b4〉
31: GM ∪= 〈b4, rml:reference,GetS ourceRe f erence(p)〉
32: else
33: for all 〈p′, rdfs:subPropertyOf, RI〉 ∈ (GI) ∧ 〈RI , :JoinProperty, ppredicate〉 /∈ (GI) ∧ p 6= p′ do
34: b3 ← BLANKNODE()
35: GM ∪= 〈mc, rr:predicateObjectMap, b3〉
36: GM ∪= 〈b3, rr:predicate, ppredicate〉
37: b4 ← BLANKNODE()
38: GM ∪= 〈b3, rr:objectMap, b4〉
39: GM ∪= 〈b4, rr:parentTriplesMap,GetClassMapping(p′)〉
40: b5 ← BLANKNODE()
41: GM ∪= 〈b4, rr:joinCondition, b5〉
42: GM ∪= 〈b5, rr:child,GetS ourceRe f erence(p)〉
43: GM ∪= 〈b5, rr:parent,GetS ourceRe f erence(p′)〉
44: return GI′

erating RML mappings from the integrated graph. Note that the generated RML mappings can be used for any
RML compliant engines (virtual or materialized) such as Morph-RDB [56], RDFizer [57] and RMLStreamer [58].
Importantly, note that our objective is not to generate optimized RML mappings, which should be part of the future
work.

7. Evaluation

In this section, we evaluate the implementation of our approach. To that end, we have developed a Java library
named NextiaDI, which incorporates the algorithms described in previous sections. In order to scrutinize the added
value of our approach and guide the evaluation activities, we have compiled the following set of research questions:

– (Q1) Does the usage of NextiaDI reduce the effort devoted to schema integration?
– (Q2) Does the usage of NextiaDI reduce the time devoted to schema integration?
– (Q3) Does the quality of the generated integrated schema improve using NextiaDI?
– (Q4) Does the runtime of NextiaDI scale with an increasing volume of data?

24 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

To address questions Q1, Q2, and Q3, we conducted a user study. Note we distinguish between Q1 and Q2,
since the first is meant to report on the qualitative perception (according to the feedback received), while Q2 is a
quantitative metric independent of the participant feelings during the activity. Regarding Q4, we carried out scala-
bility experiments. NextiaDI, as well as all details and reproducibility instructions are available on the companion
website12.

7.1. User study

This user study aims at evaluating the efficiency and quality of NextiaDI in automatically supporting the task of
schema integration compared to a conventional schema integration pipeline. The study is, hence, divided into three
tasks: (i) generation of source schemata, (ii) generation of an integrated schema, and (iii) generation of mappings.
Participants were asked to perform each task using both pipelines: the conventional approach and supported by
NextiaDI. In the following, we describe our process:

Data sources We selected four data sources collected from the Tate collection13 and CMOA collection14. All data
sources are modeled using JSON and contain distinct entities related to artworks and artists. The number of schema
elements in each data source, are, respectively, 48, 30, 30, and 13.

Definition of the data collection methods. As discussed in Section 2, no tool from the state-of-the-art covers the
same end-to-end process as our approach does. Thus, as a baseline representation of the conventional schema in-
tegration pipeline, we designed a set of notebooks to support each of the tasks described above15. Such notebooks
contain detailed instructions on how to use the RDFLib Python library for the generation of RDF data. We lever-
aged on our industrial partners to generate a realistic baseline. It is important to observe that CoMerger[39] could
be used as part of the pipeline for schema integration, yet the lack of proper documentation and the large num-
ber of issues at execution time hindered its use. In order to evaluate NextiaDI, we integrated its functionalities into
the previously described virtual data integration tool ODIN (see Section 6). Thus, providing an intuitive user in-
terface to use NextiaDI functionalities: bootstrapping, incremental schema integration and derivation of constructs.
To prevent any bias, the study is conducted in two formats: v1) participants used first NextiaDI followed by the
conventional approach; and v2) first performing the conventional approach and followed by NextiaDI. At the end
of each task, a post-questionnaire is provided. Overall, participants were given at most 2 hours to implement each
of the pipelines, although as described later, this was not sufficient for some participants when implementing the
conventional pipeline.

Selection of participants. A set of 16 practitioners was selected to participate in the user study. Care was taken
in selecting participants both from academia (researchers at UPC) and industry with different backgrounds and
expertise (e.g., a broad range of skills, different seniority levels). All of them have participated in at least one
Data Science project. Figure 21 summarizes how participants describe themselves with regard to the relevant skills
required to perform the study. Specifically, we asked them to rate how skilled they felt in data integration (and
specifically in the sub-domains of schema integration and virtual data integration systems), data modeling and
knowledge graphs. All these skills were needed during the study and, as shown later, provide value when interpreting
the results obtained. Participants were divided into two equally sized groups and assigned either v1 or v2.

Evaluation of collected results. In order to evaluate the results of each survey, we compare the aggregated answers
for each non free-form question distinguishing between the conventional approach and NextiaDI. Additionally, in
order to compare the answers to questions with different scales, we have normalized all aggregated values to the
range [0, 1] using the MinMax normalization technique. For all surveys, we measure the time spent on the task,
and whether participants managed to finish it or not. We also surveyed participants with questions related to their
perceived effort in completing each task. Furthermore, for each task, we also compute the soundness and complete-

12https://www.essi.upc.edu/dtim/nextiadi/
13https://github.com/tategallery/collection
14https://github.com/cmoa/collection
15The notebooks and all experiments data are available on the companion website of this paper

https://www.essi.upc.edu/dtim/nextiadi/
https://github.com/tategallery/collection
https://github.com/cmoa/collection

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 21. Distribution of level across skills for all participants

ness of the produced results. Soundness is computed by manually checking the correctness of the generated results
(e.g., typing and domain and ranges are correctly defined), while completeness is computed using the expression
C = 1 − ii/it, where ii is the number of incomplete items and it the number of total items, as defined in [59]. This
way, we avoid any kind of bias by selecting external metrics defined in the literature.

7.2. Analysis of results

Fig. 22. Aggregated results for the bootstrapping phase. Completed specifies whether participants finished the task within the available time
(higher is better). # of source schemas denotes how many schema elements participants managed to bootstrap in the available time (higher is
better). Relevance of exploration denotes the need a participant perceived to explore the structure of the sources to conduct the activity (lower is
better). Effort and Time specifies, respectively, the perceived effort and time to complete the task (lower is better). Feasibility is used to quantify
the perceived feasibility of running the task with the approach at hand (higher is better). Completeness and Soundness refer to the quality metrics
previously introduced.

Results on bootstrapping. Figure 22 shows the aggregated results from the bootstrapping survey, where partici-
pants were required to define a graph-based schema for each data source with the two approaches. In the conven-
tional approach, only 12.5% of the participants generated the four schemata, while using NextiaDI all participants
completed the task. We observe that the main challenge in the conventional approach is the required domain knowl-
edge in data modeling and knowledge graphs. Participants P2 and P9 said: "It is really hard and requires knowl-
edge of specific syntax and technologies such as Semantic Web, Knowledge Graph, Data Modeling." and "You need
expertise in Knowledge Graphs and Modeling (e.g., in RDF) to come up with sound schemas/models." Regardless
of their background, all participants in the conventional approach reported a high level of effort. The main reason
is the need to explore the data sources, as reported by 81.3% of the participants who reported they were constantly
exploring the content of the data sources to understand the structure to design the schema. With NextiaDI, the efforts
reported were smoother and 87.5% said no effort is needed. Regarding the time, participants spent an average of

26 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

53.44 mins bootstrapping the sources in the conventional approach, while using NextiaDI, participants completed
the task in an average of 5.9 mins. As participant P5 pointed out, "It provided a great automation of the process,
reducing the time spent to generate the source schema." When asked how feasible is to bootstrap the schema of data
sources using the conventional approach, all participants reported it as unfeasible. With NextiaDI, 93.8% reported
it as feasible. The only person not assessing NextiaDIpositively commented "Actually I would like to know how
NextiaDIbehaves when importing large schemas." However, this is a laborious task we could not cover in the study,
which we had to keep reasonable (below 2h of effort) to involve as many practitioners as possible. We report on this
aspect when discussing Q4 later. In this sense, as P3 and P4 reported: "In the context of big data, automation is much
required. NextiaDI provides this." and "Having an automatic way of generating those schemas without even having
to look at the underlying data, is a very good solution when huge amounts of data coming from different structures
are present." Concerning the quality of the bootstrapped source schemata, overall by means of the conventional
approach they yielded 23 schemas, yet only 21.74% completely represent the data source schema and 47.82% of
the schemas only represent less than 31% of the data source content. Additionally, with regard to soundness, only
43.48% of the schemas were compliant with the metamodel. Most common mistakes were the lack of typing (e.g.,
class or properties) and incorrect usage of axioms. The schemata with the best soundness and completeness were
produced by participants who are proficient in knowledge graphs and competent to experts in data modeling. In the
case of NextiaDI, all their schemata are complete with regard to the data source content and are compliant with the
metamodel.

Fig. 23. Aggregated results for the schema integration phase. Completed specifies whether participants finished the task within the available time
(higher is better). # of integrated schemas denotes how many schema elements participants managed to integrate in the available time (higher is
better). Effort specifies perceived effort to complete the task (lower is better). Satisfaction is used to quantify the perceived satisfaction of running
the task with each approach (higher is better). Completeness and Soundness refer to the quality metrics previously introduced.

Results on schema integration. Figure 23 depicts the aggregated results for the schema integration survey, where
participants were required to integrate the schemas generated in the previous task. In order to accomplish it, three
main integrated schemata had to be created (i.e., DS1-DS2, DS1-DS2-DS3, and DS1-DS2-DS3-DS4). On the con-
ventional approach, only 6.25% of the participants managed to generate the three integrated schemas. In contrast,
using NextiaDI the task completion rates are significantly higher, although one participant did not finish the task
either. In terms of effort, 87.5% of the participants stress that this task needed considerable effort. As highlighted by
participants P5 and P11 A lot of different classes, properties, sequences... from different schemas have to be taken
into account, and it is difficult to see the big picture when there is a lot of data and integrate without making mis-
takes.; and it is hard to ensure everything makes sense to merge elements, respectively. Compared to NextiaDI, 81.3%
of the participants said no effort was required. Concerning the time, participants spent an average of 30.06 minutes
in the conventional approach. Some participants reported frustration with this task: P1 spent 45 minutes generating
one integrated schema, while P15 spent 50 minutes and yet could not complete it. In contrast, participants spent an
average of 6.94 minutes with NextiaDI. As participant P1 discusses As the number of class or properties increases,
it becomes harder and harder to manually check every possible pair of properties. When asked if the conventional
approach for schema integration is feasible, 31.3% of participants reported not feasible. In this line, participants P8
and P10 argument that On top of having to develop the base schemas, having to manually integrate all the elements
that are needed to is impossible in a big data context, as the amount of time needed is very large. Additionally, the

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

chances of making a mistake are considerable and The complexity of real datasets makes the integration process
not trivial and not accurate. Alternatively, using NextiaDI, 75% of participants reported that schema integration is
feasible. As P1 commented since the process is done automatically from the beginning, there is a coherence between
how the sources are constructed, making it easy to maintain the elements pointing from the source to the global
schema. Concerning quality only 22.22% of the integrated schemata using the conventional approach represent all
integrated concepts. Regarding soundness, only 33.33% are compliant with the metamodel. When asked about the
participants’ satisfaction, 87.5% are very satisfied and 12.5% satisfied with the results provided by NextiaDI. Some
of the comments included it seems to use best practices in modeling, for modeling the global schema; Effortless pro-
cess. Semantically sound schemas; and it is so easy and it completely merge the entities while keeping the connection
to the original schemas. Relevantly, one data modeling expert realized NextiaDI is not able to integrate elements at
different granularity (as discussed in Section 5.3). Yet, the participant acknowledged the value of NextiaDI’s output
as a baseline to build a better solution.

Fig. 24. Aggregated results for the mapping generation phase. Completed specifies whether participants finished the task within the available
time (higher is better). Effort and Time indicate, respectively, the perceived effort and time to complete the task (lower is better). Feasible is used
to quantify the perceived feasibility of the task in Big Data settings (higher is better). Completeness and Soundness refer to the quality metrics
previously introduced.

Results on generation of mappings. Figure 24 shows the aggregated results for the mapping generation survey,
where participants were asked to generate the mappings between the source schemata generated in step 1 and the
integrated schema generated in step 2. In the conventional approach, only 37.5% of the participants managed to
generate the mappings. Indeed, most participants reported a high level of effort required, while all participants
generated the mappings using NextiaDI with 93.8% of them reporting no effort was required. Concerning time, the
conventional approach required an average of 20.81 mins for this task. As participant P2 discusses "mapppings as
same as schema integration requires a lot of time to verify everything is correct." In contrast, using NextiaDI the
process is immediate due to its bottom-up nature (see Section 6). When asked how feasible is to generate mappings
using the conventional approach all participants reported its unfeasibility. Oppositely, using NextiaDI 81.3% and
18.8% said it is very feasible or feasible. Participants emphasize that automation is crucial, precisely P5 commented
NextiaDI has a great potential to make Data Integration feasible in Big Data scenarios, as it generates the mappings
automatically. and "The system creates the mappings automatically and keeps track of them. In addition it allows
to modify/remove the incorrect ones. So, it is quite feasible in a Big Data context", respectively. Regarding quality,
with the conventional approach, 6 mappings files were generated among all participants, being only 33.33% fully
complete and sound.

Conclusion. We confirmed that NextiaDI reduced the effort perceived to bootstrap, integrate the data sources and
generate mappings (Q1), which is also confirmed by the time reported in all three tasks (Q2). The study also shows
that the effort/time required correlates with the size of the schemata to be produced and therefore the number of
elements to check. The larger the number of comparisons, the higher the frustration and perceived effort by the
participants, which confirms the need for automating such processes. About the quality of the results produced (Q3),
NextiaDI automates bootstrapping based on rules at the metamodel level, which guarantees the correctness of the
bootstrapped schema from a data modeling point of view. Similarly, the schema integration is based on solid data
modeling principles (e.g., based on taxonomies of concepts) that guarantee good quality outputs. This is confirmed

28 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

by all participants (specially relevant to the positive answer from all data modeling experts in both tasks). Finally,
generating mappings is completely transparent in NextiaDI, which is highly appreciated, while the conventional
approach requires expertise on data integration to properly conduct the task. All participants were satisfied with the
quality of the outputs of NextiaDI and uncertain about the quality of the output they generated in the conventional
approach. Importantly, their answers are sound with the qualitative metrics (completeness and soundness) computed
and shown in the three figures.

Another relevant conclusion of the experiment, raised by most of the participants, is the difficulty of the tasks at
hand due to the required combined skills. In the conventional approach, they spent a considerable amount of time
exploring the sources, modeling and expressing schemata and mappings in RDFS. This combined profile is difficult
to find in the field of Data Science, specially, knowledge graph experts as shown in Figure 21. This fact confirms
our claim that is not feasible to make the users responsible for generating the schema integration constructs of
virtual data integration systems, even for small scenarios. This can explain the low impact of such tools in industry.
Fortunately, all participants believe NextiaDI is an improvement to existing approaches.

7.3. Scalability experiments

In order to address research question Q4, we evaluate our two technical contributions (i.e., bootstrapping and
schema integration) to assess their computational complexity and runtime performance. All experiments were car-
ried out on a Mac Intel core 2.3 GHz i5 processor with 16GB RAM and Java compiler 11.

7.3.1. Evaluation of Bootstrapping
We evaluated the bootstrapping of JSON and CSV data sources by measuring the impact of the schema size.

Therefore, we increase the size of the schema elements. This experiment was executed 10 times. We describe the
dataset preparation and the results obtained in the following.

Dataset preparation. We generated 100 datasets in JSON and CSV format. The initial JSON dataset contains a
schema of 100 keys (9 objects and 91 attributes). We incrementally increased the number of schema elements by
appending 50 new keys (1 object with 49 attributes) in the schema. For example, the second and third datasets will
contain 150 keys (10 objects and 140 attributes) and 200 keys (11 objects and 189 attributes), respectively. For the
initial CSV dataset, the schema contains 91 headers, and we incrementally appended 49 new headers.

Results. Figure 25 depicts the correlation between time in milliseconds and the number of keys/headers. Note
that in both data sources, the time to generate a typed graph schema depends on the size of the schema. JSON
bootstrapping requires more time than CSV bootstrapping, since the algorithm will parse one instance of the JSON
to extract the JSON schema and apply the production rules. The initial dataset took 27 milliseconds to produce
a typed graph, while the last dataset, with a schema of 108 objects and 4942 attributes, took 71 milliseconds. In
contrast, CSV bootstrapping only requires the header information to produce a typed graph schema. The initial
dataset took 3 milliseconds to produce the typed graph, and the last dataset, with a schema of 4942 headers, took
17 milliseconds. Overall, we can observe some peeks in the trend. However, we consider these peaks are anomalies
produced due to the java garbage collector performance, since all results are constant within milliseconds. The
performance obtained by the JSON and CSV shows we can rapidly bootstrap the schema in data wrangling tasks.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of keys/headers

JSON
CSV

Time vs Schema elements

Fig. 25. Performance evaluation when the number of schema elements increased

7.3.2. Evaluation of schema integration
We evaluate the schema integration under three scenarios: i) increasing the number of alignments in an incremen-

tal integration and ii) integrate a constant number of alignments with a growing number of elements in the schemata
and iii) perform integration using real data.

Experiment 1 — increased alignments Here, the algorithm requires the generation of schemas and alignments
that will be integrated incrementally. For the schemata, we reuse the typed graph generated by the initial JSON
dataset generated in Section 7.3.1 to generate 100 typed graph schemata. All the resulting schema contain 9 classes,
90 data type properties and 1 object property. We generated the alignments between each pair of typed graph
by increasing in one the number of alignments with regard to the previous pair. Therefore, the first integration
generates 1 alignment and the last iteration 100 alignments. Figure 26 depicts the correlation between time in
milliseconds and the number of alignments. We can observe that the time to integrate schemata depends on the
number of alignments. The time to integrate one alignment took two milliseconds, while the integration of 100
alignments took 112 milliseconds. Moreover, in iteration 13, the number of integrated classes converged. Then,
the remaining iteration reuses all integrated classes by applying invariant I3 from Algorithm 2. For datatype and
object properties, they converged in iterations 35 and 4, respectively. Then, the remaining iterations did not create
any new integrated properties. In addition, the final integrated graph contains 1000 classes, 9 integrated classes,
9000 datatype properties, 90 integrated datatype properties, 900 object properties, and 1 integrated object property.
Overall, the algorithm efficiently integrates schemas incrementally.

Experiment 2 — increased number of schema elements. Here, we generated 100 schemas using JSON datasets
where the number of elements in the schema were increased by 50 keys in each iteration. For the generation of
alignments, we produced 100 alignments in each iteration since the goal is to measure the impact of the schema size
in the integration. Figure 27 depicts the correlation between time in milliseconds and the total number of resources
(e.g., classes and properties) in the integrated graph. We observe that the size of the integrated graph impact the time
for integrating alignments. The final integrated graph contains 5950 classes, 9 integrated classes, 256500 datatype
properties, 90 integrated datatype properties, 5850 object properties and 1 integrated object property. In total 268400
resources. The impact on the time due to the graph size is largely due to how Jena manages the graph in memory
(the underlying triplestore used in the experiments). This demonstrates that NextiaDI can handle the integration and
propagation of changes faster, even when the integrated schema is large.

30 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Alignments

Time vs Number of alignments

Fig. 26. Performance evaluation when alignments increased incre-
mentally

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50000 100000 150000 200000 250000 300000

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Number of resources in the integrated graph

Time vs Number of resources in I

Fig. 27. Performance evaluation when the number of schema ele-
ments increased

Experiment 3 — real data. We have selected two tracks of the Ontology Alignment Evaluation Initiative: anatomy
and large biomed track. The former contains the Foundational Model of Anatomy (FMA) with 2744 classes and is
part of the National Cancer Institute Thesaurus (NCI) with 3304 classes. The alignments provided are 1516 class
alignments. The latter contains the FMA with 78998 classes and 15 properties, and NCI with 77269 classes and
186 properties. There are 2686 class alignments for this track. This integration was performed in one step. For the
anatomy track, all elements were integrated in 120 milliseconds. The final integrated graph contains 6048 classes
and 1516 integrated classes. For the large biomed track, all elements were integrated in 3043 milliseconds with
156267 classes, 2686 integrated classes, 78 data type properties and 123 object properties. Overall, our integration
approach is efficient when dealing with large schemas, such as the biomed track.

8. Conclusions and future work

This paper presents an approach for efficiently bootstrapping schemata of heterogeneous data sources and incre-
mentally integrating them to facilitate the generation of schema integration constructs in virtual data integration set-
tings. This process is specially thought to meet the requirements of data wrangling as required in Big Data scenarios:
i.e., highly heterogeneous data sources and dynamic environments. As such, our proposal deal with heterogeneous
data sources, follows an incremental approach to follow a pay-as-you-go integration approach and largely automates
the process. Relevantly, our approach is not specific for a given system and it generates system-agnostic metadata
that can be later used to generate the specific constructs of the most relevant virtual data integration systems. Last
but not least, we have presented NextiaDI, an open source tool implementing our approach. We have also shown the
added value of our proposal by conducting a user study with 16 practitioners and scalability experiments. Both the
user study and experiments show the value of our approach, which covers a gap not covered by any other approach
before.

This work opens many interesting research lines from it. For example, how to generalize the current approach
to integrate complex semantic relationships between schemas (beyond one-to-one mappings) or develop a hybrid
approach that, once the integrated schema is generated in a bottom-up approach, it allows the user to enrich the
automatically generated outputs in a top-down approach. The ultimate question we would like to address is how to
use these techniques to suggest refactoring techniques over the underlying data sources to facilitate their alignment
and integration.

Acknowledgements. This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio
de Ciencia e Innovación under project PID2020-117191RB-I00, and D3M project, funded by the Spanish Agencia
Estatal de Investigación (AEI) under project PDC2021-121195-I00. Javier Flores is supported by contract 2020-DI-

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

027 of the Industrial Doctorate Program of the Government of Catalonia and Consejo Nacional de Ciencia y Tec-
nología (CONACYT, Mexico). Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovación,
as well as the European Union - NextGenerationEU, under project FJC2020-045809-I.

References

[1] W.A. Günther, M.H.R. Mehrizi, M. Huysman and F. Feldberg, Debating big data: A literature review on realizing value from big data, J.
Strateg. Inf. Syst. 26(3) (2017), 191–209.

[2] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N.H. Riche, C.E. Weaver, B. Lee, D. Brodbeck and P. Buono, Research directions
in data wrangling: Visualizations and transformations for usable and credible data, Inf. Vis. 10(4) (2011), 271–288.

[3] P. Jovanovic, S. Nadal, O. Romero, A. Abelló and B. Bilalli, Quarry: A User-centered Big Data Integration Platform, Inf. Syst. Frontiers
23(1) (2021), 9–33. doi:10.1007/s10796-020-10001-y.

[4] A.Y. Halevy, A. Rajaraman and J.J. Ordille, Data Integration: The Teenage Years, in: VLDB, ACM, 2006, pp. 9–16.
[5] S. Kandel, A. Paepcke, J.M. Hellerstein and J. Heer, Enterprise Data Analysis and Visualization: An Interview Study, IEEE Trans. Vis.

Comput. Graph. 18(12) (2012), 2917–2926.
[6] P. Pereira, J. Cunha and J.P. Fernandes, On Understanding Data Scientists, in: VL/HCC, IEEE, 2020, pp. 1–5.
[7] B. Golshan, A.Y. Halevy, G.A. Mihaila and W. Tan, Data Integration: After the Teenage Years, in: PODS, ACM, 2017, pp. 101–106.
[8] D. Abadi, A. Ailamaki, D.G. Andersen, P. Bailis, M. Balazinska, P.A. Bernstein, P.A. Boncz, S. Chaudhuri, A. Cheung, A. Doan, L. Dong,

M.J. Franklin, J. Freire, A.Y. Halevy, J.M. Hellerstein, S. Idreos, D. Kossmann, T. Kraska, S. Krishnamurthy, V. Markl, S. Melnik, T. Milo,
C. Mohan, T. Neumann, B.C. Ooi, F. Ozcan, J.M. Patel, A. Pavlo, R.A. Popa, R. Ramakrishnan, C. Ré, M. Stonebraker and D. Suciu, The
Seattle report on database research, Commun. ACM 65(8) (2022), 72–79.

[9] M. Stonebraker and I.F. Ilyas, Data Integration: The Current Status and the Way Forward, IEEE Data Eng. Bull. 41(2) (2018), 3–9.
[10] X.L. Dong and D. Srivastava, Big Data Integration, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2015.
[11] P.A. Bernstein, J. Madhavan and E. Rahm, Generic Schema Matching, Ten Years Later, Proc. VLDB Endow. 4(11) (2011), 695–701.
[12] M. Lenzerini, Data Integration: A Theoretical Perspective, in: PODS, ACM, 2002, pp. 233–246.
[13] A. Halevy, M. Franklin and D. Maier, Principles of dataspace systems, in: Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, ACM, 2006, pp. 1–9.
[14] L.M. Haas, Beauty and the Beast: The Theory and Practice of Information Integration, in: ICDT, Lecture Notes in Computer Science,

Vol. 4353, Springer, 2007, pp. 28–43.
[15] N.W. Paton, K. Belhajjame, S.M. Embury, A.A.A. Fernandes and R. Maskat, Pay-as-you-go Data Integration: Experiences and Recurring

Themes, in: SOFSEM, Lecture Notes in Computer Science, Vol. 9587, Springer, 2016, pp. 81–92.
[16] P. Atzeni, P. Cappellari, R. Torlone, P.A. Bernstein and G. Gianforme, Model-independent schema translation, VLDB J. 17(6) (2008).
[17] J. Flores, S. Nadal and O. Romero, Towards Scalable Data Discovery, in: EDBT, OpenProceedings.org, 2021, pp. 433–438.
[18] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati and M. Zakharyaschev, Ontology-Based Data Access: A Survey,

in: IJCAI, ijcai.org, 2018, pp. 5511–5519.
[19] S. Nadal, A. Abello, O. Romero, S. Vansummeren and P. Vassiliadis, Graph-driven Federated Data Management, IEEE Transactions on

Knowledge and Data Engineering (2021), 1–1. doi:10.1109/TKDE.2021.3077044.
[20] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, A. Nikolov, A. Schwarte, C. Heupel and T. Kraska, IncMap: A Journey towards

Ontology-based Data Integration, in: BTW, LNI, Vol. P-265, GI, 2017, pp. 145–164.
[21] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M.G. Skjæveland, E. Thorstensen and J. Mora, BootOX: Practical

Mapping of RDBs to OWL 2, in: ISWC (2), Lecture Notes in Computer Science, Vol. 9367, Springer, 2015, pp. 113–132.
[22] I. Bedini, C.J. Matheus, P.F. Patel-Schneider, A. Boran and B. Nguyen, Transforming XML Schema to OWL Using Patterns, in: ICSC,

IEEE Computer Society, 2011, pp. 102–109.
[23] C. Tsinaraki and S. Christodoulakis, XS2OWL: A Formal Model and a System for Enabling XML Schema Applications to Interoperate

with OWL-DL Domain Knowledge and Semantic Web Tools, in: DELOS, Lecture Notes in Computer Science, Vol. 4877, Springer, 2007.
[24] P.T.T. Thuy, Y. Lee and S. Lee, DTD2OWL: automatic transforming XML documents into OWL ontology, in: ICIS, ACM International

Conference Proceeding Series, Vol. 403, ACM, 2009, pp. 125–131.
[25] K.M. Albarrak and E.H. Sibley, A survey of methods that transform data models into Ontology models, in: IRI, IEEE Systems, Man, and

Cybernetics Society, 2011, pp. 58–65.
[26] J.F. Sequeda, S.H. Tirmizi, Ó. Corcho and D.P. Miranker, Survey of directly mapping SQL databases to the Semantic Web, Knowl. Eng.

Rev. 26(4) (2011), 445–486.
[27] B.E. Idrissi, S. Baïna and K. Baïna, Automatic generation of ontology from data models: A practical evaluation of existing approaches, in:

RCIS, IEEE, 2013, pp. 1–12.
[28] M. Hacherouf, S.N. Bahloul and C. Cruz, Transforming XML documents to OWL ontologies: A survey, J. Inf. Sci. 41(2) (2015), 242–259.
[29] C. Bizer and R. Cyganiak, D2r server-publishing relational databases on the semantic web, in: Poster at the 5th international semantic web

conference, Vol. 175, 2006.
[30] L.F. de Medeiros, F. Priyatna and Ó. Corcho, MIRROR: Automatic R2RML Mapping Generation from Relational Databases, in: ICWE,

Lecture Notes in Computer Science, Vol. 9114, Springer, 2015, pp. 326–343.

32 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[31] C.A. Knoblock, P.A. Szekely, J.L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea, M. Taheriyan and P. Mallick, Semi-automatically
Mapping Structured Sources into the Semantic Web, in: ESWC, Lecture Notes in Computer Science, Vol. 7295, Springer, 2012.

[32] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö.L. Özçep and R. Rosati,
Optique: Zooming in on Big Data, Computer 48(3) (2015), 60–67.

[33] N.F. Noy and M.A. Musen, PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment, in: AAAI/IAAI, AAAI Press
/ The MIT Press, 2000, pp. 450–455.

[34] D.L. McGuinness, R. Fikes, J. Rice and S. Wilder, The Chimaera Ontology Environment, in: AAAI/IAAI, AAAI Press / The MIT Press,
2000, pp. 1123–1124.

[35] G. Stumme and A. Maedche, FCA-MERGE: Bottom-Up Merging of Ontologies, in: IJCAI, Morgan Kaufmann, 2001, pp. 225–234.
[36] P. Mitra, G. Wiederhold and S. Decker, A Scalable Framework for the Interoperation of Information Sources, in: SWWS, 2001, pp. 317–329.
[37] D. Dou, D.V. McDermott and P. Qi, Ontology Translation on the Semantic Web, J. Data Semant. 2 (2005), 35–57.
[38] S. Raunich and E. Rahm, Target-driven merging of taxonomies with Atom, Inf. Syst. 42 (2014), 1–14.
[39] S. Babalou and B. König-Ries, Towards Building Knowledge by Merging Multiple Ontologies with CoMerger: A Partitioning-based Ap-

proach, CoRR abs/2005.02659 (2020).
[40] B. Vidé, J. Marty, F. Ravat and M. Chevalier, Designing a Business View of Enterprise Data: An approach based on a Decentralised

Enterprise Knowledge Graph, in: IDEAS, ACM, 2021, pp. 184–193.
[41] I. Osman, S.B. Yahia and G. Diallo, Ontology Integration: Approaches and Challenging Issues, Inf. Fusion 71 (2021), 38–63.
[42] S. Babalou, E. Grygorova and B. König-Ries, What to Do When the Users of an Ontology Merging System Want the Impossible? Towards

Determining Compatibility of Generic Merge Requirements, in: EKAW, Lecture Notes in Computer Science, Vol. 12387, Springer, 2020.
[43] S. Nadal, A. Abelló, O. Romero, S. Vansummeren and P. Vassiliadis, MDM: Governing Evolution in Big Data Ecosystems, in: EDBT,

OpenProceedings.org, 2018, pp. 682–685.
[44] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop: Answering SPARQL

queries over relational databases, Semantic Web 8(3) (2017), 471–487.
[45] M. Solanki, C. Mader, H. Nagy, M. Mückstein, M. Hanfi, R. David and A. Koller, Ontology-Driven Unified Governance in Software

Engineering: The PoolParty Case Study, in: ESWC (2), Lecture Notes in Computer Science, Vol. 10250, 2017, pp. 109–124.
[46] C. Civili, M. Console, G.D. Giacomo, D. Lembo, M. Lenzerini, L. Lepore, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli and

D.F. Savo, MASTRO STUDIO: Managing Ontology-Based Data Access applications, Proc. VLDB Endow. 6(12) (2013), 1314–1317.
[47] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lamparter, C. Neuenstadt, Ö.L. Özçep, C. Pinkel, A. Soylu, D. Zheleznyakov,

M. Roshchin, S. Watson and I. Horrocks, Semantic Access to Siemens Streaming Data: the Optique Way, in: ISWC (Posters & Demos),
CEUR Workshop Proceedings, Vol. 1486, CEUR-WS.org, 2015.

[48] K.M. Endris, P.D. Rohde, M. Vidal and S. Auer, Ontario: Federated Query Processing Against a Semantic Data Lake, in: DEXA (1), Lecture
Notes in Computer Science, Vol. 11706, Springer, 2019, pp. 379–395.

[49] M. Buron, F. Goasdoué, I. Manolescu and M. Mugnier, Obi-Wan: Ontology-Based RDF Integration of Heterogeneous Data, Proc. VLDB
Endow. 13(12) (2020), 2933–2936.

[50] F. Priyatna, Ó. Corcho and J.F. Sequeda, Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph,
in: WWW, ACM, 2014, pp. 479–490.

[51] M.N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer and J. Lehmann, Squerall: Virtual Ontology-Based Access to Heterogeneous and Large
Data Sources, in: ISWC (2), Lecture Notes in Computer Science, Vol. 11779, Springer, 2019, pp. 229–245.

[52] A. Bonifati, G.H.L. Fletcher, H. Voigt and N. Yakovets, Querying Graphs, Synthesis Lectures on Data Management, Morgan & Claypool
Publishers, 2018.

[53] J.L.C. Izquierdo and J. Cabot, Discovering Implicit Schemas in JSON Data, in: ICWE, Lecture Notes in Computer Science, Vol. 7977,
Springer, 2013, pp. 68–83.

[54] E. Jiménez-Ruiz and B.C. Grau, LogMap: Logic-Based and Scalable Ontology Matching, in: ISWC (1), Lecture Notes in Computer Science,
Vol. 7031, Springer, 2011, pp. 273–288.

[55] S. Nadal, K. Rabbani, O. Romero and S. Tadesse, ODIN: A Dataspace Management System, in: ISWC (Satellites), CEUR Workshop
Proceedings, Vol. 2456, CEUR-WS.org, 2019, pp. 185–188.

[56] F. Priyatna, R. Alonso-Calvo, S. Paraiso-Medina, G. Padron-Sanchez and Ó. Corcho, R2RML-based Access and Querying to Relational
Clinical Data with Morph-RDB, in: SWAT4LS, CEUR Workshop Proceedings, Vol. 1546, CEUR-WS.org, 2015, pp. 142–151.

[57] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana and M. Vidal, SDM-RDFizer: An RML Interpreter for the Efficient Creation of
RDF Knowledge Graphs, in: CIKM, ACM, 2020, pp. 3039–3046.

[58] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh and A. Dimou, Parallel RDF generation from heterogeneous big data, in:
SBD@SIGMOD, ACM, 2019, pp. 1:1–1:6.

[59] M. da Conceição Moraes Batista and A.C. Salgado, Information Quality Measurement in Data Integration Schemas, in: QDB, 2007, pp. 61–
72.

Appendix A. JSON metamodel constraints

In this appendix, we present the constraints considered for the metamodel we adopt to represent the schemata of
JSON datasets (i.e.,MJSON), which is depicted in Section 4.1. Hereinafter, we assume all constraints are applied
over a graph G which is typed with respect toMJSON.

J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

IS-A relationships and constraints on generalizations. Rule 1 restricts instances of J:DataType to be instances of
either J:Primitive , J:Object or J:Array . Then, Rules 2, 3, and 4 constrain that for any of such subclass instances, the
instantiation of the superclass J:DataType also exists in G. Finally, Rules 5, 6 and 7 determine that the subclasses of
J:DataType are disjoint.

∀d
(
〈d,rdf:type,J:DataType〉(G)

)
⇒ ∃d′(〈d′,rdf:type,J:Primitive〉∨ (1)

〈d′,rdf:type,J:Object〉 ∨ 〈d′,rdf:type,J:Array〉(G)
)
|d = d′

∀o
(
〈o,rdf:type,J:Object〉(G)

)
⇒ ∃d

(
〈d,rdf:type,J:DataType〉(G)

)
|o = d (2)

∀p
(
〈p,rdf:type,J:Primitive〉(G)

)
⇒ ∃d

(
〈d,rdf:type,J:DataType〉(G)

)
|p = d (3)

∀a
(
〈a,rdf:type,J:Array〉(G)

)
⇒ ∃d

(
〈d,rdf:type,J:DataType〉(G)

)
|a = d (4)

∀o
(
〈o,rdf:type,J:Object〉(G)

)
⇒ @p

(
〈p,rdf:type,J:Primitive〉(G)

)
|o = p (5)

∀o
(
〈o,rdf:type,J:Object〉(G)

)
⇒ @a

(
〈a,rdf:type,J:Array〉(G)

)
|o = a (6)

∀p
(
〈p,rdf:type,J:Primitive〉(G)

)
⇒ @a

(
〈a,rdf:type,J:Array〉(G)

)
|p = a (7)

Referential integrity constraints. Rule 8 indicates that an edge labeled with J:hasValue will connect instances of
either J:Document and J:Object , or instances of J:Key and J:DataType . Similarly, Rule 9 applies the same strategy to
connect instances of J:Object and J:Key using edges labeled J:hasKey .

∀d, o
(
〈d,J:hasValue, o〉(G)

)
⇒ ∃d′, o′

((
〈d′,rdf:type,J:Document〉(G)∧ (8)

〈o′,rdf:type,J:Object〉(G)
)
∨
(
〈d′,rdf:type,J:Key〉(G)∧

〈o′,rdf:type,J:DataType〉(G)
))

|d = d′ ∧ o = o′

∀o, k
(
〈o,J:hasKey, k〉(G)

)
⇒ ∃o′, k′

(
〈o′,rdf:type,J:Object〉∧ (9)

〈k′,rdf:type,J:Key〉(G)
)
|o = o′ ∧ k = k′

Cardinality constraints. Rule 10 states that an instance of J:Document has a single instance of J:Object as root. Then,
Rule 11 models a many-to-one relationship between instances of J:Key and J:DataType .

∀d, o
(
〈d,J:hasValue, o〉(G)

)
⇒ @d′, o′, o′′(〈d′,J:hasValue, o′〉(G) ∧ 〈d′,J:hasValue, o′′〉(G)

)
| (10)

d = d′ ∧ o = o′ ∧ o = o′′

∀k, d
(
〈k,J:hasValue, d〉(G)

)
⇒ @k′, d′(〈k′,J:hasValue, d′〉(G)|k = k′ ∧ d = d′ (11)

Appendix B. RDFS metamodel constraints

In this appendix, we present the constraints considered for the fragment of RDFS that we consider in this paper
(i.e.,MRDFS), which is depicted in Section 4.2. All such constraints are based on the RDF Schema 1.1 standard16.
Hereinafter, we assume all constraints are applied over a graph G which is typed with respect toMRDFS.

IS-A relationships and constraints on generalizations. Rule 12 restricts instances of rdfs:Resource to be instances of
either rdf:Property or rdfs:Class . Then, Rules 13 and 14, constrain that for any of such subclass instances, the instantiation
of the superclass rdfs:Resource also exists in G. Next, Rule 15 denote that instances of rdfs:Datatype are also instances of
rdfs:Class .

∀r
(
〈r,rdf:type,rdfs:Resource〉(G)

)
⇒ ∃r′

(
〈r′,rdf:type,rdf:Property〉(G)∨ (12)

〈r′,rdf:type,rdfs:Class〉(G)
)
|r = r′

16https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf-schema/

34 J. Flores et al. / Incremental Schema Integration for Data Wrangling via Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

∀p
(
〈p,rdf:type,rdf:Property〉(G)

)
⇒ ∃r

(
〈r,rdf:type,rdfs:Resource〉(G)

)
|p = r (13)

∀c
(
〈c,rdf:type,rdfs:Class〉(G)

)
⇒ ∃r

(
〈r,rdf:type,rdfs:Resource〉(G)

)
|c = r (14)

∀d
(
〈d,rdf:type,rdfs:Datatype〉(G)

)
⇒ ∃c

(
〈c,rdf:type,rdfs:Class〉(G)

)
|d = c (15)

(16)

Referential integrity constraints. Rule 17 indicates that the rdfs:domain of an instance of rdf:Property is an instance of
rdfs:Class . Similarly, Rule 18, constraints that the rdfs:range of instances of rdf:Property are also instances of rdfs:Class .

∀p, c
(
〈p,rdfs:domain, c〉(G)

)
⇒ ∃p′, c′

(
〈p′,rdf:type,rdf:Property〉(G)∧ (17)

〈c′,rdf:type,rdfs:Class〉(G)
)
|p = p′ ∧ c = c′

∀p, c
(
〈p,rdfs:range, c〉(G)

)
⇒ ∃p′, c′

(
〈p′,rdf:type,rdf:Property〉(G)∧ (18)

〈c′,rdf:type,rdfs:Class〉(G)
)
|p = p′ ∧ c = c′

B.1. Schema integration constraints

Here we present the constraints for the RDFS metamodel extension we consider to support the annotated integra-
tion process depicted in Section 5.

IS-A relationships. Rule 19 states that any instance of :IntegratedResource is also an instance of rdfs:Resource . Similarly,
Rule 20, denotes that any instance of :JoinProperty is also an instance of rdf:Property .

∀p
(
〈p,rdf:type,:IntegratedResource〉(G)

)
⇒ ∃r

(
〈r,rdf:type,rdfs:Resource〉(G)

)
|p = r (19)

∀p
(
〈p,rdf:type,:JoinProperty〉(G)

)
⇒ ∃r

(
〈r,rdf:type,rdf:Property〉(G)

)
|p = r (20)

Referential integrity constraints. Rule 21 denotes that the rdfs:domain of a :JoinProperty instance is an :IntegratedResource .

∀p, c
(
〈p,rdfs:domain, c〉(G)

)
⇒ ∃p′, c′

(
〈p′,rdf:type,:JoinProperty〉(G)∧ (21)

〈c′,rdf:type,:IntegratedResource〉(G)
)
|p = p′ ∧ c = c′

	Introduction
	Related Work
	Related work on bootstrapping
	Related work on schema integration
	Related work on data integration systems supporting bootstrapping and / or schema integration

	Approach overview
	Formal definitions and approach overview
	Data source bootstrapping and production rules
	Integrating bootstrapped graphs and generating the schema integration constructs

	Running Example

	Data source bootstrapping
	Data source metamodeling
	The canonical metamodel
	Bootstrapping JSON data
	Production rules

	Incremental schema integration
	Integration of resources
	Integration of classes
	Integration of properties

	Incremental example
	Limitations

	Generation of schema integration constructs
	Mediator-based systems
	Ontology-based data access systems

	Evaluation
	User study
	Analysis of results
	Scalability experiments
	Evaluation of Bootstrapping
	Evaluation of schema integration

	Conclusions and future work
	References
	Appendix A. JSON metamodel constraints
	Appendix B. RDFS metamodel constraints
	Schema integration constraints

