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Abstract. One of the current challenges in ontology alignment is scalability and
one technique to deal with this issue is to reduce the search space for the gener-
ation of mapping suggestions. In this paper we develop a method to prune that
search space by using clustering techniques and topic identification. Further, we
provide experiments showing that we are able to generate partitions that allow for
high quality alignments with a highly reduced effort for computation and valida-
tion of mapping suggestions for the parts of the ontologies in the partition. Other
techniques will still be needed for finding mappings that are not in the partition.
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1 Introduction

In recent years many ontologies have been developed and many of those contain over-
lapping information. Often we want to use multiple ontologies. For instance, companies
may want to use community standard ontologies in conjunction with company-specific
ontologies. Applications may need to use ontologies from different areas or from dif-
ferent views on one area. In each of these cases it is important to know the relationships
between the concepts (and relations) in the different ontologies. Further, the data in
different sources within the same domain may have been annotated with different but
similar ontologies. Knowledge of the inter-ontology relationships would in this case
lead to improvements in search, integration and analysis of data. To address this ma-
jor issue, much research has been recently devoted to ontology alignment (OA), i.e.,
to finding mappings between concepts and relations in different ontologies (e.g., [4]).
The research field of OA is very active with its own yearly workshop as well as a
yearly event, the Ontology Alignment Evaluation Initiative (OAEI, e.g., [5]), that fo-
cuses on evaluating systems that automatically generate mapping suggestions. Many



systems have been built and overviews can be found in e.g., [4, 15] and at the ontology
matching web site http://www.ontologymatching.org.

Some recent work (e.g., [15,9]) has defined challenges that need to be addressed
when dealing with large ontologies. Among those, scalibility is an important challenge
as shown by the fact that many participants in the OAEI have performance problems
when dealing with large ontologies. One technique to deal with scalabiblity is to re-
duce the search space for the generation of mapping suggestions. Instead of dealing
with all concept pairs (Cy, Cz), with C; belonging to the first ontology and C; to the
second ontology, only a subset of these pairs is considered. Each such subset is called
a mappable part. Reducing the search space leads to reduced computation during the
generation of mapping suggestions. Further, the expectation is that fewer mapping sug-
gestions are computed and therefore the validation effort for the domain experts, who
decide whether a mapping suggestion is correct or not, should be reduced.

Most of the previous approaches for reducing the search space focused on segment-
ing or partitioning the ontologies using an initial alignment. For instance, in [6] sub-
graphs of concepts with good coverage of the initial mappings are selected. In [11] the
initial alignment is used to partition the ontologies based on their structure. In [8] the
ontologies are partitioned using a variant of ROCK [7] exploiting a link measure based
on structural and linguistic similarities between concepts. In all these approaches the
selection of the mappable parts of the different ontologies is based on the existence of
mappings in these parts. Some approaches use the locality of anchors (concepts in map-
pings), i.e., descendants, ancestors and neighbors, to reduce the search space [14, 16].
In [1] the selection of concepts is based on (sub)schemas. The selection of the mappable
(sub)schemas is based on similarity of concepts (e.g., their names) in the (sub)schemas.

In this paper we describe a method to prune the search space for OA that does not
require an initial alignment. As in other approaches, we focus on aligning concepts.
We do this by using clustering techniques and topic identification before the actual
generation of mapping suggestions (Section 4). Further, the method was demonstrated
in a set of experiments (Section 5). We use different clustering techniques and OA
systems on the ontologies of the Anatomy track of the OAEI, and show that we are
able to generate partitions that allow for high quality alignments while highly reducing
the effort for computation and validation of mapping suggestions for the parts of the
ontologies in the partition. Other techniques will still be needed for finding mappings
that are not in the partition. Finally, a summary and future work are given in Section 6.

2 Data Mining

Within data mining, i.e. the process of extracting significant patterns from a raw data
set, cluster analysis aims at defining reliable subgroups from the starting data set, given
some notion of similarity between data items in the groups. Clustering Techniques. K-
means is a partitional clustering technique attempting to find a user-specified number of
clusters (K), represented by their centroids. The algorithm guesses the initial centroids
and populates the K clusters by assigning each data item to its closest centroid. Then,
each centroid is updated based on the items assigned to each cluster. The assignment and
update steps are repeated until there is no change in the cluster configuration. Predicting



a good value for K is not easy, but a parameter sensitivity analysis can help. A possible
measure of accuracy of the final clustering is the silhouette index [13], based on intra-
cluster cohesion and inter-cluster separation. For algorithms using Euclidean distance,
accuracy can be derived from the sum of the squared errors (SSE), which is based on
the distance between data items and their centroids. In the SSE-min approach, the value
for K that minimizes the SSE value is selected, while the SSE-max approach maximizes
the marginal decrease in the SSE curve.

On the contrary, DBSCAN [3] is a density-based algorithm where density is defined
by counting the number of data items within a specified radius of a data item. The
algorithm gathers data items that are density connected in the same cluster. Essentially,
two data items are density connected if they can both be reached from the same data
item by following chains of data items in dense regions.

3 Ontology Alignment

From a knowledge representation point of view, ontologies may contain concepts, rela-
tions, axioms and instances. Concepts and relations are often organized in hierarchies
using the is-a relation. The task of OA is to create an alignment between ontologies,
i.e., a set of mappings between entities from the different ontologies. The most common
kinds of mappings are equivalence mappings and mappings using is-a and its inverse.

A large number of OA systems have been developed: many are based on the compu-
tation of similarity values between entities in two input ontologies and can be described
as instantiations of the framework in Figure 1. Part I (computation of mapping sug-
gestions) contains different components. A preprocessing component can be used to
modify the original ontologies, e.g., to extract specific features of the concepts in the
ontologies, or to reduce search space for finding mapping suggestions. This specific
component is the focus of this paper. The matching component includes one or sev-
eral several matchers that calculate similarities between the entities from the different
ontologies. Mapping suggestions are then determined by combining and filtering the
results generated by one or more matchers. By using different preprocessing, match-
ing, combining and filtering techniques, we obtain different alignment strategies. The
result of part I is a set of mapping suggestions. In part II, the mapping suggestions are
presented to a domain expert, who accepts or rejects them. The accepted mapping sug-
gestions are part of the final alignment. Any sub-set of the final alignment is a partial
alignment (PA). The acceptance and rejection of suggestions may also influence fur-
ther suggestions. Further, a conflict checker or a mapping debugging system could be
used to avoid conflicts introduced by the mapping suggestions. There can be several
iterations of parts I and II.

4 Workflow

We present a general workflow for the generation of mappable parts in two ontologies.
The detailed algorithms are described in Section 5.

In the data collection and preprocessing phase, the ontologies are represented in
a suitable format for clustering. In the cluster analysis phase a clustering algorithm is
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Fig. 1. An existing framework (extension of [12]).

run on the output of the previous phase. A sensitivity analysis is used to select the best
parameter values for the clustering algorithms. In the text mining preprocessing phase
the clusters are treated as documents (using the labels of the concepts in the clusters)
and processed to obtain a suitable format for the next phase. In the topics identification
phase we identify the main topics for the cluster documents. Clusters from the same
ontology are merged into larger clusters based on their topics. Finally, in the mappable
parts generation phase clusters from different ontologies are connected into mappable
parts using the topics.

Table 1. Topics and mappable parts.

Topic |AMA clusters|NCI-A clusters Keywords
Arteries 1,12, 22, 12, 19,20, |AMA: Arteries, Blood, Vessel, Trunk, Dorsal, Digit, Common, Superior
48, 50 26, 58,80 |NCI-A: Arteries types, Arteries, Anterior, Circumflex,
Internal, External, Superior, Articular, Branch, Inferior
Bones 8, 36, 55, 66,70, |AMA: Joint, Bone, Vertebra, Digit, Foot, Cervical, Phalanx,
60, 63 81, 82 Lumbar, Metacarpe, Metatars, Carpal, Sacral, Rib, Thoracic, Hand
NCI-A: Vertebra, cartilage, Rib, Bone, Head, Phalanx, Foot, Digit, Hand
Hair parts - 14, 61 NCI-A: Follicles, Hair, Stratum

S Experiments

Setup. For the experiments we used the following setup. We used the ontologies of
the Anatomy track of the OAEI, which contains the ontologies Adult Mouse Anatomy
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Fig. 2. The proposed framework for search space reduction in OA.

(AMA) and the anatomy part of the NCI Thesaurus (NCI-A). AMA contains 2737 con-
cepts and NCI-A contains 3298 concepts, giving 9,026,626 potential concept pairings.
Further, a reference alignment with 1516 equivalence mappings is available.

We represented the ontologies as binary symmetric matrices where M; ; = 1 if
concept i and concept j are related via is-a (regardless of level), and 0 otherwise. For
clustering we used both K-means and DBSCAN. As similarity measures we used the
Jaccard similarity for K-means and the cosine similarity for DBSCAN. For the K-means
sensitivity analysis, we used several techniques (silhouette index, SSE-min and SSE-
max). In the text mining preprocessing phase we tokenized the concept labels in each
cluster, converted them into lower case, removed stop words, performed stemming and
truncated tokens longer than 25 characters. Finally, based on the resulting tokens the
cluster was represented using a tf-idf vector, each containing a list of tokens which we
consider keywords for the clusters. In the topics identification phase we define, based
on the keywords, a set of topics of appropriate granularity per ontology. In the current
experiment, this phase was performed manually. Clusters in the same ontology with
the same topic are merged. Then we relate the topics of the two ontologies to obtain
mappable parts.



For each approach we investigated its influence on the performance of existing
OA systems: SAMBO [12], a system that traditionally performed well in the OAEI
Anatomy track as well as all participating systems in the OAEI Anatomy track in 2014
[2]. We used the standard measures from the OAEI. Precision is the ratio of the number
of found correct mappings to the total number of mapping suggestions. Recall is the
ratio of the number of found correct mappings to the total number of correct mappings.
The F-measure is the harmonic mean of precision and recall. We also computed how
much the search space was pruned.

Results. Results are reported separately for 4 clustering techniques: DBSCAN and K-
means, where K was determined based on SSE-min (KM-SSE-min), SSE-max (KM-
SSE-max) and silhouette index (KM-sil). For each of these we generated clusters, key-
words, topics and mappable parts. Table 1 shows some topics and mappable parts gen-
erated using KM-sil. The topic ’Arteries’ consists of 5 original clusters from AMA and
6 from NCI-A. The most common keywords in these parts are also shown. The topic
"Hair parts’ only appears in NCI-A and thus is not contained in a mappable part. For
KM-sil 13 mappable parts are generated (Table 2), for SSE-min 7, for SSE-max 12 and
for DBSCAN 13.

Regarding the quality of the alignments, Table 2 shows the results for KM-sil com-
bined with SAMBO per topic-related mappable part with as reference the projection of
the full reference alignment on each mappable part. The projection contains only the
concept pairs in the full reference alignment for which both concepts are included in
the mappable part. Table 3 shows the results for all clustering algorithms combined with
all variants of each system when considering all topics. In the table, for each measure
a pair of values is given, where the first is computed with respect to the full reference
alignment, and the second with respect to the projection of the full reference alignment
on the mappable parts.

Table 4 shows in the first column how many concept comparisons need to be per-
formed by the OA systems for each clustering algorithm. The number of comparisons
is reduced to a small fraction (1.8% to 2.9%) of the potential pairings. The number of
mapping suggestions to be validated is reduced to a fraction which ranges from 11% to
43%, depending on the OA system and the specific clustering technique.

Discussion. The approaches allowed us to partition the ontologies and use mappable
parts of the ontologies for which the OA systems would perfom well. We found similar
behavior for the OA systems. In general, the precision and recall of the OA systems is
often better in the mappable parts than on whole ontology (see Table 3). An expected
disadvantage is that, as fewer suggestions are generated, the recall compared to the full
reference alignment is low. However, when compared to the computation and validation
effort, the proposed approaches found regions where the amount of effort leads to a
much improved return (Table 4). The computation effort when using the mappable parts
is reduced by at least 97% for all systems, while the validation effort is reduced by at
least 60%.

In our experiments KM-SSE-max always required the fewest comparisons and gen-
erated the fewest mapping suggestions. It also had the lowest recall compared to the
full reference alignment (between 16% and 18% of the recall for the systems). KM-sil
always required the most computation (264,536 pairs) and generated the most map-



Table 2. Results per topic-related mappable part for K-sil combined with SAMBO.

|Precision|F-Measure|Recall‘

SAMBO 0.89 0.875 ]0.861
Arteries 0.925 0.953 ]0.982
Bones 0.988 0.847 10.741
Digestive 0.8 0.889 1
Epithelium 1.0 1.0 1.0
Head - - 0
Heart 1.0 1.0 1.0
Lymphatic 1.0 1.0 1.0
Muscles 0.949 0.923 ]0.897
Nervous 0.9 0.947 1.0
Reproductive| 0.973 0.9 0.837
Respiratory 1.0 0.8 0.667
Tissues 0.727 0.842 1.0
Veins 0.886 0.929 ]0.975

ping suggestions for each system (between 28% and 43% of the suggestions originally
generated by the system). It also had the highest recall compared to the full reference
alignment (between 30% and 43% of the recall for the systems), although not always
with respect to the mappable parts only.

In general, DBSCAN led to higher convergence times compared to K-Means, since
according to the DBSCAN algorithm each point may be visited at least once. Even
though it does not require the a priori knowledge about the explored domain that is
otherwise necessary to set up the K parameter, it implies higher computational time
and this evidence is particularly critical when scaling to large, high-dimensional data.
Another element that significantly stretched the overall computational time, due to its
manual implementation, was the merging of different clusters once the topic they relate
to had been identified. However, we found evidence during the experimentation that
this step can contribute to the quality of results in a considerable way. In fact, when
evaluating the alignment performance, the analyzed sets have to be of enough relevant
size and this assumption has been validated by two main evidences:

After the cluster analysis, some very focused and small clusters can be identified
and treating those clusters as stand-alone sets (which we did during the preliminary
phases of our experimentation and modelling of the framework) leads to worse results
than the ones obtained when forming the mappable parts grouped by topic.

The NCI-A is a richer and more nested data set than the AMA, therefore the first
ontology allows to extract knowledge at an higher level of detail that in many specific
cases cannot be found when mining the mouse ontology as well. Hence the sets are
merged in order to make the mappable parts comparable in terms of both size and
granularity between the two input data sources.

In other words, a merging phase has been included in the framework for both quality
and accuracy purposes, although it is a time-consuming process. The automation of this
phase may be desirable in order to minimize the computational issues but it should be
designed accordingly in order to maintain, on the other hand, the benefits deriving from



Table 3. Results for all clustering algorithms combined with all variants of all systems.

SAMBO AML LogMap-Bio XMap
Precision Recall Precision Recall Precision Recall Precision Recall
0.89 0.861 0.956 0.932 0.888 0.906 0.94 0.85
KM-sil 0.931/0.929(0.322/0.897| 0.97/0.97 [0.346/0.963(0.924/0.924(0.339/0.945{0.938/0.938(0.322/0.897

KM-SSE-min | 0.942/0.94 |0.248/0.862|0.977/0.977|0.276/0.961|0.938/0.938(0.271/0.943|0.949/0.949|0.248/0.862

KM-SSE-max| 0.92/0.908

0.152/0.85 |0.981/0.981| 0.17/0.949 |0.947/0.947|0.166/0.923|0.953/0.953| 0.147/0.82

DBSCAN 0.936/0.936(0.239/0.899(0.971/0.971(0.265/0.948(0.947/0.947(0.261/0.968(0.921/0.921{0.238/0.885
MaasMtch RSDLWB AOT AOTL_ 2014
Precision Recall Precision Recall Precision Recall Precision [ Recall
0914 0.716 0.978 0.607 0.436 0.775
KM-sil 0.966/0.966(0.302/0.842(0.978/0.978(0.267/0.744|0.604/0.604{0.309/0.862(0.787/0.787{0.024/0.125

KM-SSE-min |0.975/0.975|0.232/0.807|0.975/0.975|0.206/0.718|0.596/0.596|0.238/0.828 0.800/0.800{0.018/0.064
KM-SSE-max|0.963/0.963|0.139/0.776|0.909/0.909|0.106/0.588|0.524/0.524| 0.142/0.79 {0.950/0.950{0.013/0.070

DBSCAN 0.968/0.968(0.218/0.809(0.944/0.944(0.179/0.667(0.662/0.662(0.226/0.841{0.905/0.905{0.013/0.047
LogMap LogMap-C LogMapLite
Precision Recall Precision Recall Precision Recall
KM-sil 0.945/0.945]0.318/0.886(0.984/0.984|0.281/0.783|0.955/0.955]0.296/0.824

KM-SSE-min |0.956/0.956|0.245/0.851|0.988/0.988|0.208/0.725|0.964/0.964|0.228/0.794
KM-SSE-max|0.961/0.961|0.146/0.816|0.995/0.995|0.125/0.699|0.985/0.985(0.129/0.717
DBSCAN 0.958/0.958(0.238/0.885(0.985/0.985(0.219/0.814(0.970/0.970{0.212/0.787

the integration of the analyst’s knowledge within the process. In fact, the application of
a manual merging step showed the advantage of allowing non-trivial associations when
identifying different concepts as belonging to the same topic. For instance, one of our
main prerequisites in this sense was relying on some a priori anatomical knowledge
while forming the mappable parts.

6 Conclusion

We have introduced approaches for reducing the search space in OA using clustering
and topic identification. By partitioning the ontologies, we generated mappable parts
for which the computation and validation time is much reduced while maintaining good
quality of the alignment for the parts. We do need other techniques for aligning the other
parts of the ontologies. However, we can use the proposed techniques to obtain an initial
alignment, which could be used as a basis for PA-based [11] and session-based [10]
approaches to complete the alignment. An issue for future work is to address a current
limitation, i.e., we want to investigate techniques to automate the topic identification
step. Further, other clustering techniques should be investigated.
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Tab

le 4. Number and percentage (truncated) of comparisons, and for all variants of each system

number and percentage (truncated) of the mapping suggestions.

| Comparisons |SAMBO| AML |LogMap—Bio| XMap | MaasMtch ‘

full

KM-sil 264,536 (2.9%)|524 (35%)| 540 (36%) | 556 (35%) |520 (37%)| 474 (39%)
KM-SSE-min [206,834 (2.2%)|399 (27%)| 429 (29%) | 438 (28%) |396 (28%)| 361 (30%)
KM-SSE-max|163,963 (1.8%)|250 (17%)| 263 (17%) | 265 (17%) |234 (17%)| 219 (18%)

9,026,626 1466 1478 1547 1370 1187

DB

DBSCAN 258,308 (2.8%)|388 (26%)| 414 (28%) | 417 (26%) (392 (28%)| 341 (28%)
RSDLWB AOT |AOTL_2014| LogMap |LogMap-C|LogMapLite

full 941 2698 167 1398 1061 1148

KM-sil 414 (43%) (777 (28%)| 47 (28%) | 510 (36%) |433 (40%)| 469 (40%)

KM-SSE-min| 321 (34%) [606 (22%)| 35 (20%) | 388 (27%) |320 (30%)| 359 (31%)
KM-SSE-max| 176 (18%) [410 (15%)| 20 (11%) | 231 (16%) |191 (18%)| 198 (17%)

SCAN 288 (30%) |518 (19%)| 21 (12%) | 377 (26%) |337 31%)| 331 (28%)
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