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Abstract. The iterative user interaction approach for data integration proposed
by Falconer and Noy can be generalized to consider interactions between inte-
gration tools (generators) that generate potential schema mappings and users or
analysis tools (analyzers) that select the best mapping. Each such selection then
provides high-confidence guidance for the next iteration of the integration tool.
We have implemented this generalized approach in COGMAP, a matching sys-
tem for both property and instance alignments between heterogeneous data. The
generator in COGMAP uses the instance alignment from the previous iteration to
create high-quality property alignments and presents these alignments and their
consequences to the analyzer. Our experiments show that multiple iterations as
well as the interplay between instance and property alignment serve to improve
the final alignments.

1 Introduction

In recent years, companies have spent more and more effort in building knowledge
graphs based on light-weight ontologies, which incorporate data from multiple hetero-
geneous sources (which we will henceforth call “information stores”). A key challenge
of these efforts is determining the best alignment of the schema of a new store to the
ontology of the knowledge graph, while minimizing the “manual” analytical effort re-
quired of a human knowledge engineer.

Most of the current ontology alignment systems, such as those evaluated recently in
the annual ontology alignment evaluation initiative [1], have several limitations. Most of
these alignment algorithms solve one integration problem (deriving a mapping between
two ontologies) using a fully-automated, “one-shot” approach. Thus, they are often not
able to improve by iterating over previous alignments. Partly for this reason, the results
of fully automated algorithms are often error prone [33] and cannot be reliably used for
high-quality data integration.

Currently much information to be integrated is obtained from non-ontological sources
such as relational databases or XML documents. Classical ontology alignment systems
are often not able to process this data [1]. To address this need, systems like ON-
TODB [21] and standards like D2RQ [4] have emerged. However, these solutions do
not include semi-automated alignment algorithms which take instance information into
account.

Our approach, implemented in the COGMAP system, follows a cognitively-inspired,
iterative approach. With multiple iterations the system is able to improve over time,



since it builds on the results of previous iterations (or, in the case of the first iteration,
seed queries given by the user). At each iteration, the results are augmented with new
information that has been verified by a user or automated verification capability.

COGMAP uses instance information to perform property alignment. While most
state-of-the-art schema alignment algorithms do not take instance information into ac-
count, focusing exclusively on the alignment of classes and properties and mainly con-
sidering their labels or structural information [8, 30], using instance matching has at-
tended more and more attention over the last years [17].

COGMAP explores instances by not only focusing on data properties but also taking
object properties into account. In the case of databases, it follows foreign keys; with
RDF information stores it explores sub-tags. To the best of our knowledge, there exists
no other approach which explores the space of potential mappings between information
stores as we do.

COGMAP is not restricted to the alignment of information based on formal ontolo-
gies. It also supports relational databases and XML documents, which can serve either
as the source or the target of an alignment. In addition, COGMAP allows support for
other data formats to be added in a modular fashion.

2 Related Work

Many schema alignment systems have been developed in ontology matching. The de-
velopment of these systems has largely been driven by the available benchmark datasets
of the ontology alignment evaluation initiative. An overview of the current systems and
their evaluation is given by Grau et al. [15]. The most important datasets, however,
cover only a small problem space.

Although most ontology matching systems ignore instances, there exists a strand
of literature which combines schema alignment and instance alignment [17]. Bilke and
Naumann [3] developed an approach that first aligns instances and uses this information
for schema alignment. Their evaluation is based on artificially populated data whereas
we employ real-world data information stores like FREEBASE and DBPEDIA. Bilke et
al. [2, 27], Thor et al. [35], Gal [13], and Leme et al. [25] use instances to align schema
and resolve conflicts. Another fully automated system that integrates both schema and
instance alignment is PARIS [34]. Its algorithms are, however, resource intensive, in
some cases taking days to produce a solution. In contrast, the COGMAP algorithms
are much less resource intensive and can be run on a typical desktop computer. Wang
et al. investigates the problem of having only a few non-overlapping instances by ap-
proaching the mapping problem as a classification problem. However, this approach is
limited to mapping concepts and ignores properties. Duan et al. [6] use hashing tech-
niques to speed up instance-based matching. Nunes et al. [31] present an instance-based
algorithm for complex data property matching. A prominent example is the system RI-
MOM, which dynamically combines several alignment strategies including instance
alignment [26]. Due to its recent excellent achievements at the ontology alignment eval-
uation initiative, we chose this system for our evaluation.

To the best to our knowledge, none of these approaches is exploring object proper-
ties with an iterative cognitive support approach. QUICKMIG [5] is a migration tool for

2



database systems which follows a semi-automated approach. However, it considers only
exact value matches and their results are not used to improve the ongoing iterations.

A smaller number of systems utilize learning. A prominent example is SILK [20,
19, 18] which learns expressive linking rules by using genetic programming. However,
its target user is a technical expert who can, e.g., analyse complex matching trees while
COGMAP focuses on domain experts by hiding technical complexity. LIMES [28] fo-
cuses on runtime improvements by using the triangle inequality. However, it does not
allow a user-centric iterative approach. Furthermore, neither system is able to map data
properties to object properties, which is required by the real-world datasets we exam-
ined. (See the algorithm section for details.)

Recently, the ontology alignment evaluation initiative initiated an interactive track
which simulates interactive matching [32], where a human expert is involved to validate
mappings found by the matching system. The client was modified to allow interactive
matchers to ask an oracle, which emulates a perfect user. The interactive matcher can
present a correspondence to the oracle, which then tells the user whether the correspon-
dence is right or wrong. However, the initiative uses a dataset which does not contain
any instance data and thus is not suitable for evaluating our approach. The two most
successful participating systems 2014 were AML[12] with respect to gained f-measure
due to the interactive approach and LOGMAP [23] with respect to efficiency (number
of interactions required). We have included both systems in our evaluation.

Tools have been developed to support the alignment of databases to ontologies. One
example is ONTOP (ontop.inf.unibz.it), which provides a PROTÉGÉ plug-in to
facilitate the creation of integration rules. ONTOP focuses on fast execution of already
existing data integration rules, but not on the (semi-)automated construction of them.
Furthermore, its target ontology is assumed to be small and to contain only schema
information but no instance information. There have also been attempts to build graph-
ical tools for supporting the user in data integration. KARMA [24], for example, loads
data from different information stores and uses instance information for schema align-
ment. However, its approach is different from our algorithm. KARMA learns the general
structure of fields based on previous alignments made whereas COGMAP operates on
instance information. Two disadvantages of KARMA’s approach are that it generally
assumes that fields (e.g., ids) have similar structures in different datasets and its algo-
rithms require a large amount of training data.

3 The Cognitive Support Approach

Researchers in ontology and schema matching have recently recognized the need for
various types of cognitive support in aligning complex conceptual models [9, 11]. Most
approaches are based on advanced visualization of the models to be integrated and the
mappings created by the user [14]. While the appropriate use of visualizations is known
to be a key aspect for successful manual data integration, visualizations quickly reach
their limits in the presence of very complex or very large models.

As a result, recent work has tried to go beyond pure visualization support to in-
clude cognitively efficient interaction strategies to support the user [10]. Falconer [9]
proposed an interactive strategy for data integration where the integration task is dis-
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Fig. 1. The cognitive support model for data integration by Falconer [10].
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Fig. 2. Modified cognitive support Model as implemented in COGMAP.

tributed between the user and the tool (Figure 1). The MappingAssistant [33] project
used a modified cognitive support model for data integration, focusing on detecting and
correcting incorrect data integration rules.

In our implementation of the cognitive support model, which we call COGMAP,
we go one step further and allow the “user” to be either a human user or an intelligent
automated agent. Thus, in our implementation of the cognitive support model (Figure
2), we distinguish between an analyzer and a generator, instead of a user and a tool.1

1 As stated, the analyzer can be a human. As this paper is about the effectiveness of the overall
approach, we only use simple agents. Sophisticated automated agents or humans can utilize
world knowledge or judgements to select bettter alignments instead of just picking the highest-
scoring ones.
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In each iteration, COGMAP extracts data based on the results of previous iterations
(or, in the first iteration, based on given seed queries), generates property correspon-
dence suggestions, and computes the consequences for the top suggestions. These con-
sequences are the instances that would be aligned if the analyzer selects (verifies) this
property correspondence. Next, COGMAP sends the ranked correspondences and their
consequences to the analyzer. The analyzer then inspects this information and selects a
correspondence. The selected property correspondence, and the resulting instance align-
ment, are added to the evolving results sets, which allows the system to improve its sug-
gestions in subsequent iterations. The algorithm terminates when no properties remain
to generate new correspondences, or no correspondence is selected by the analyzer.

COGMAP is designed to cope with many different types of data stores, in many dif-
ferent formats. We currently have implemented support for RDF accessed via SPARQL,
relational databases, and general XML based files. This list is easily extended by im-
plementing our Connector interface.

4 Algorithm

The primary focus of the COGMAP algorithm (Algorithm 1) is to construct property
correspondences and instance alignments. An alignment (or mapping) consists of a
set of correspondences. According to Euzenat et al. [7], a correspondence is a 4-tuple
〈es, et, r, c〉, where es and et are source and target entities, r is a semantic relation, and
c is a confidence value (usually, c ∈ [0, 1]). Like most ontology alignment systems [1],
we focus on equivalent relations 〈es, et,≡, c〉.

The algorithm can be split into three phases. The data extraction (lines 4-6) and
data exploration (lines 13-16) phases are only executed in the first iteration (i = 0).
The alignment generation and selection (lines 7-12) phase is repeated until no more
correspondences are found. This phase includes the decision making of the analyzer.
The following subsections will explain the phases in more depth.

4.1 Data Extraction and Exploration

We adapt the terms data property, object property, and instances from the semantic web
literature, extending them to databases and XML documents in an obvious fashion. For
example, instances include database rows and XML nodes.

In the data extraction phase, we extract all data property names and their corre-
sponding values for M instances into a source table Ts and a target table Tt (line 5).
The left block (2nd column) of Table 1 illustrates the general form of Ts and Tt after
extraction.

In the data exploration phase, we explore the search space by following object prop-
erties. In other words, for each object property op of an instance i, we examine the object
which is the value of that property. Then, for each data property of that object, we add its
value to the row for i. Thus, the right blocks of Table 1 (opa, opb, · · · ) are added during
this phase. The reason this exploration happens at the end of the first iteration (i = 0,
line 13-16) is that there may exist many object properties to follow. This often leads to a
large amount of data. Thus, the idea is to restrict the exploration to the smaller instance
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Algorithm 1 High-level algorithm of COGMAP.
Input: Ss, St: Seed queries for source and target
Input: M : number of extracted instances of each information store (default: 5000)
Input: k: number of suggestions (default: 5)
Output: X ,Y: Set of user-verified property correspondences and instance correspondences

GETALIGNMENTS

1: X ,Y ← ∅
2: i← 0
3: repeat

B Data Extraction
4: if i=0 then
5: Ts, Tt ← Extract M instances and their data properties and values based on seeds Ss

and St.
6: end if

B Alignment Generation and Selection
7: Xi ← Compute top-k property correspondence suggestions based on Ts, Tt and Y (if not

empty).
8: for every x ∈ Xi do
9: Yx ← Compute instance alignment consequences for x based on Ts, Tt and Y (if not

empty).
10: end for
11: Analyzer selects the optimal x ∈ Xi based on Xi and {Yx| x ∈ Xi}.
12: add x to X , Y ← Yx.

B Data Exploration
13: if i=0 then
14: Is, It ← Extract source and target instance sets from instance alignment Y .
15: Ts, Tt ← Extend tables by following the object-property assertions of Is and It.
16: end if
17: i← i+ 1
18: until No more suggestions found

Table 1. General form of source and target table. Initially, the direct data properties and the
corresponding data are imported (left block). Second, and subsequent, steps further explore the
data by including object properties (right blocks). (dp=data property, op= object property, i =
instance, and v = value).

opa opb
dp1 · · · dpn dp1,a · · · dpn,a

i1 v1,1 · · · v1,n v1,1,a · · · v1,n,a · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
im vm,1 · · · vm,n vm,1,a · · · vm,n,a · · ·

sets Is and It. These instance sets are extracted from the first instance alignment Y
(line 15) such that Is = {es|〈es, et,≡, c〉 ∈ Y} and It = {et|〈es, et,≡, c〉 ∈ Y}. Then,
COGMAP only follows the object properties for the instance sets Is and It which are
usually much smaller.
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For RDF repositories we utilize SPARQL queries to access data. We do not rely
on the completeness of domain and range restrictions for extracting properties, since
they are often poorly defined (e.g., in DBPEDIA). Instead we take the distinct set of
all properties of the relevant instances (those retrieved by S for extraction or those
identified as values of object properties for expansion) as the relevant data properties.
For relational data extraction, we just add the limitM to the seed SQL query S, execute
the query, and store the result in table T . For exploration, we follow the foreign keys
according to the definitions in the database schema. For XML files, we extract every
attribute and every direct child node that has a primitive value from the initial XPath
expression S. We store both attribute and child node values as data properties in Table 1.
For the exploration phase, we inspect the children x of all non-primitive nodes. From
these nodes, we again store the values of every attribute and every direct child node that
has primitive values.

For some properties, a given instance may have multiple values. For simplicity, we
consider only single values in this presentation. In practice, we have found the con-
catenation of multiple values to be effective. More sophisticated strategies will be de-
veloped in future work. On the other hand, there may exist properties and/or instances
which have almost no assertions, especially in large RDF knowledge bases and XML
documents. To ensure the effectiveness of the approach, those assertions might need
to be ignored. To cope with that issue, COGMAP has an optional parameter φ to filter
instances and data properties with sparse value assertions.

4.2 Alignment Generation and Selection

The goal of COGMAP is to establish instance correspondences and correspondences be-
tween data and object properties. In doing so, the space of ontology elements (in RDF
stores) or schema elements (in relational and XML stores) that COGMAP considers is
constrained by the seed information S. In addition, instance alignments are constrained
by the domains and ranges of property alignments. For example, if we align a prop-
erty es =id to a property et =movieName, then the resulting instance alignment is
bounded by Ss =movie and St =film as domains. Thus, there is no need to consider
possible correspondences involving other instances in the information stores.

In addition to the standard data-property to data-property, object-property to object-
property, and instance to instance correspondences, we also support object- and data-
property to data-property correspondences (Example: et = film/country/./name/
and es = movie/language).

Line 7 of Algorithm 1 first computes the top-k property correspondence suggestions
Xi. In the first iteration (i = 0), COGMAP uses all available instance data since no
instance alignment exists yet (Y = ∅). For computational reasons, we use an implicit
cutoff at this initial stage. In the following iterations, we can improve the suggestions
by considering the instance correspondences from the previous iteration and comparing
the property values only for the instance pairs in Y . In these iterations, we do not apply
any threshold but rank the correspondences at the end.

Then, we compute the consequences Yx for the top-k suggestions Xi (line 8-10).
That is, for each of those suggested property correspondences, we compute the instance
alignment that will result if this correspondence is selected by the analyzer. Initially
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Table 2. Selected implemented components.

Aggregators
Unions or joins of sets of correspondences. Average, maximum, or multiples of confidence values
if correspondences share the same source entity es and target entity et.
Name Description Filters
TopKFilter Returns the top-k correspondences with the highest confidence

value c.
OneToOneFilter Returns a functional one-to-one alignment. We implemented a

greedy strategy. First, it orders the correspondences in descending
order. Then, it traverses through the list and drops all correspon-
dences whose entities es or et have been already matched.

Name Description Property Matchers
PropertyNameMatcher Matches properties according to their name.
ValueLengthMatcher Matches properties p1 and p2 with close average value length /

close percentages of distinct row entries l1 and l2. The similarity
is computed with Min(l1, l2)/(Max(l1, l2).

DistinctValueMatcher

InstanceBasedMatcher If instance alignments Y = ∅, we align properties by concate-
nating all values of all instances for each property and compute
the string similarity. If Y 6= ∅, we compute the property similar-
ities for every instance pair in Y separately and average over the
results.

Instance Matchers
Align instances by concatenating every value for every property and computing their string sim-
ilarity. If a specific property p is given, consider only values of that property. If an instance
alignment Y is given, traverse through that alignment and update the similarities based on the
string values of all the given property value(s).

(i = 0), all source instances are compared against all target instances. In following
iterations the instance alignment Y from the previous iteration is used to compute the
new alignment. The threshold applied for the instance alignment equals the confidence
value c of 〈e1, e2,≡, c〉 ∈ Xi.

The value of k is relatively unimportant here. As long as a correct correspondence
is in the top-k suggestions, the results of the approach will not be significantly affected.
We have found that k = 5 is generally adequate to achieve this condition, and results in
a reasonable load on human analysts. In an automated setting it would be easy to use a
larger k, which might produce slightly better results at the price of of somewhat longer
run times (to score the extra suggestions).

Finally, the analyzer selects the optimal x ∈ Xi based on the suggestions Xi and
the consequences {Yx| x ∈ Xi}. As noted above, this selection can either be made by
a human user or by an automated selection function that takes the confidence value and
the suggestions into account. In this paper, we use only a simple automated agent that
selects the best-scoring alignment. Employing humans or more-sophisticated agents
would presumably produce better results, but then any advantage of the approach might
only come from the intelligence in the human or agent—using a simple agent means that
the benefits come from the overall alignment philosophy. (We plan to address elsewhere
the user interface issues associated with supporting selections by a human.) After se-
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Table 3. Benchmark Statistics.

Benchmark (1) Benchmark (2)
DBPEDIA EPG FREEBASE FANDANGO

People Cast Film Movie
Format RDF RDB RDF XML
Data Properties 6 18 233 26
Object Properties 0 10 234 14
Instances 1,045,474 6,857 247,608 100,959

lection of x, we update the seed property alignment X and the seed instance alignment
Y for the next iteration.

COGMAP supports many different components to match instances and properties.
Every Filter, Aggregator, and Matcher is a component. Each component has
an execute() method, which returns a set of alignments.

The components are organized as a tree. The Matchers form the leaves. They
take a source table Ts, a target table Tt, a set of previously verified property align-
ments X and a set of instance alignments Y from the previous iteration as input. An
Aggregator executes every component in the list cs and aggregate the results. It
might, for example, just take the maximum confidence value c of all correspondences
with equal entities es and et. A Filter reduces the size of the alignment of its com-
ponent after executing it. A simple filter might, for example, only return the correspon-
dences for which confidence values c are above a certain threshold.

Table 2 lists a selection of implemented components and a short explanation of
their functionality. COGMAP incorporates mechanisms to deal with different date and
number formats, which are omitted here for brevity, and easy interfaces to facilitate new
component development. Figure 3 provides example trees built from these components.

5 Evaluation

We have selected two natural alignment tasks using real-world data, assessed the per-
formance of COGMAP on them benchmarks, and compared its performance with that
of AML, LOGMAP, and RIMOM.

5.1 Benchmarks

The first benchmark aligns all people from DBPEDIA in FOAF format (wiki.dbpedia.
org/Downloads39#persondata) with cast information of all programs play-
ing on TV in the U.S. over a two week window from a commercial Electronic Pro-
gram Guide (EPG) database. The second benchmark aligns FREEBASE films (www.
freebase.com/film/film) with movie data from FANDANGO (www.fandango.
com). Table 3 provides details on the number of instances and properties of each bench-
mark.

We designed and selected these benchmarks because existing state-of-the-art on-
tology alignment benchmarks, e.g., in the Ontology Alignment Evaluation Intiative
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Fig. 3. Experiment Configurations.

campaigns2, lack sufficient instance data, which are required by COGMAP. Because
of the size of these benchmarks, it was not possible to prepare in advance an official
gold-standard. Instead, a human judge was employed to grade the correctness of the
alignment results, which we discuss below.

5.2 Experiment Setup

We used the following experiment setup to answer three key questions:

– What is the impact of implementing a cognitive support model for alignment?
– What is the impact of using instance data for alignment?
– How general is our solution?

We first setup our solution, COGMAP, using configuration (A) in Figure 3. A de-
scription of each component used in configuration (A) can be found in Table 2. COGMAP
analyzes the property correspondences, and selects the one with the highest confidence
value to iterate on (see lines 11 and 12 of Algorithm 1).

We then created two variants of COGMAP to answer the first two experimental
questions above. We first created a variant—called INSTMAP—by ablating the cogni-
tive support model used by COGMAP. INSTMAP still uses instance data but does not
iterate on the results to further improve alignment.

We also created a second variant—called Baseline—by ablating both the cogni-
tive support model and the use of instance data. Baseline performs alignment using a
property name matcher, but the other configuration components are the same (see con-
figuration (B) in Figure 3).

Moreover, we selected three state-of-the-art ontology alignment systems [16] to
compare COGMAP against, in order to assess its practical impact. The three systems
are AML [12], LOGMAP [23], and RIMOM [26]. AML is focused on computational
efficiency and designed to handle very large ontologies. It is the leading system in the
conference and anatomy tracks of the 2014 ontology alignment evaluation, in terms of
f-measure. LOGMAP provides a scalable logical ontology alignment framework. RI-
MOM automatically combines multiple alignment strategies with the goal of finding
the optimal alignment results. We selected these systems because they are the most es-
tablished systems in the 2014 ontology alignment evaluation, and an executable version
is available to the public.

2 See oaei.ontologymatching.org.
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Table 4. Benchmark 1 results.

Baseline AML LOGMAP RIMOM INSTMAP COGMAP

nDCG@3 0.38 0.76 0.38 0.38 0.76 1.00
nDCG@6 0.35 0.51 0.25 0.48 0.74 0.89
P@3 0.33 0.67 0.33 0.33 0.67 1.00
P@6 0.33 0.33 0.17 0.50 0.67 0.83
Runtime in sec 0.4 2.7 9.1 5.8 1.9 3.0

Finally, we applied all systems above to both Benchmarks 1 and 2 to assess their
generality, and hence answer the third experimental question. Unless otherwise noted,
we set the number of instances to use from each benchmark to M = 5000, and the
fraction of non-null values required for each property to φ = 0.1. We also converted
each benchmark into the RDF OWL syntax because many of the ontology matching
systems compared cannot directly consume databases or XML files.

All experiments were run on a desktop PC with 4GB of RAM and an Intel i5
duo-core processor. We used FAST-JOIN [38] as the underlying matching algorithm
for instances. FAST-JOIN combines both token-based similarity (Jaccard, Cosine, or
Dice) and string edit distance. Moreover, it is currently the fastest matching algorithm
(see [22]), by implementing efficient pruning and hashing techniques, with soundness
and completeness guarantees. This efficiency is required because of our large bench-
marks, which make it infeasible to compare every source instance with every target
instance.

The output of each system was graded by a human judge familiar with the data
sources in each benchmark3 using the metrics of Precision at n (P@n) and the normal-
ized (logarithmic) Discounted Cumulative Gain at n (nDCG@n) [39] where n denotes
that the top-n results. Precision P is defined as:

P =
|correct correspondences|
|retrieved correspondences|

and nDCG is defined as:

nDCG =
rel1 +

∑n
i=2

reli
log2i

(1 +
∑n

i=2
1

log2i
)

where reli is 1 if the correspondence at position i is correct and 0 else. nDCG@n gives
more weight to correct correspondences that are ranked higher.

5.3 Results and Discussions

Tables 4 and 5 show the results for benchmarks 1 and 2, respectively. From these re-
sults, we observed that COGMAP outperformed INSTMAP in most cases. We attribute

3 Determining the correctness of the correspondences produced by each system was simple for
the human judge. We thus believe that the use of a human judge in this manner did not intro-
duce any biases and did not affect the comparison.
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Table 5. Benchmark 2 results.

Baseline AML LOGMAP RIMOM INSTMAP COGMAP

nDCG@3 0.38 0.76 0.38 0.38 1.00 1.00
nDCG@6 0.25 0.60 0.49 0.38 0.90 1.00
nDCG@9 0.20 0.68 0.39 0.30 0.79 1.00
nDCG@12 0.17 0.68 0.38 0.25 0.69 0.85
P@3 0.33 0.67 0.33 0.33 1.00 1.00
P@6 0.17 0.50 0.50 0.33 0.83 1.00
P@9 0.11 0.67 0.33 0.22 0.67 1.00
P@12 0.08 0.67 0.33 0.17 0.50 0.75
Runtime in sec 2.6 7.0 21.7 33.2 20.5 29.1

this improvement to the only difference between the two systems: COGMAP uses a cog-
nitive support model while INSTMAP does not. Hence, the use of a cognitive support
model has a positive impact on alignment results.

We also observed that INSTMAP outperformed Baseline in all cases. We attribute
this improvement to the only difference between the two systems: the use of instance
data. For example, Baseline could not correctly align the following data properties in
benchmark 1 by matching just the names of these properties.

first name ⇔ givenName
last name ⇔ surName
full name ⇔ name

However, INSTMAP correctly found these alignments because of the overlap between
the instances of these properties. Hence, these results show that the use of instance data
also has a positive impact on performance.

Finally, we observed that COGMAP out performed all three state-of-the-art ontol-
ogy matching systems compared, i.e. AML, LOGMAP, and RIMOM. We attribute this
improvement to the following factors:

– COGMAP uses instance data for alignment.
– COGMAP uses an iterative cognitive model for alignment.
– COGMAP can ignore rarely used properties by using the φ parameter.

Given the different characteristics of these two benchmark, the results above suggest
the general utility of an alignment system like COGMAP that combines a cognitive
support model with the use of instance data. Moreover, the additional computation does
not contribute to a significant increase in runtime. Across both benchmarks, COGMAP
had comparable (or better) runtime than the other state-of-the-art systems compared.

Figures 4 and 5 show the impact of varying φ (the fraction of non-null values re-
quired for each property) and M (the number of instances used) for COGMAP and
INSTMAP on both benchmarks. These results demonstrate the relative robustness of
COGMAP to these parameter settings compared to INSTMAP, and further demonstrate
the positive impact of using a cognitive support model. For example, we observed on
both benchmarks that the performance of COGMAP only became negatively impacted
for larger values of φ, which was in contrast to INSTMAP. Similarly, the performance
of COGMAP increased at a faster rate compared to INSTMAP as M was increased, and
plateaued sooner than INSTMAP.
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Fig. 4. Results for varying φ (number of non-null values) for COGMAP and INSTMAP for both
benchmarks. For high φ, nDGC and runtime decrease because fewer alignment candidates re-
main.

6 Conclusion and Future Work

This paper presents a cognitive based approach for aligning properties by taking in-
stance information into account. The approach is implemented in the system COGMAP
which iteratively suggests property correspondences and their consequences in terms
of instance alignments. In each round, the system is able to improve these alignments
based on the user verifications of the previous round. Experiments show that the cogni-
tive based approach outperforms both a baseline approach and the purely instance-based
approach.

Currently, the system is restricted to aligning instances and properties. In future
work, we will enable class alignments and complex matchings [37]. These complex
matchings will be described using the R2RML standard (www.w3.org/TR/r2rml).

We will extend exploration of the knowledge sources. First, we will integrate ob-
ject properties that are more than one hop away. This will require efficient pruning
techniques to avoid an intolerable blowup of both data size and processing require-
ments. Second, we will use the organization of the knowledge structure (ontologies and
schemas, when they are specified) to widen the search space by, e.g., exploring the data
of the superclasses.
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Fig. 5. Results for varyingM (number of instances) for COGMAP and INSTMAP for both bench-
marks. The more instances included, the higher the overlap and hence better results (nDCG).

The knowledge structures will also help to improve the alignment itself by including
ideas from [30, 29]). Additionally, tree structure learning algorithms, inspired by [36],
will be used to learn the optimal composition of matching trees.

Finally, we plan to explore the possibility of integration into KARMA [24], which
we believe would provide a suitable graphical user interface.
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