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Abstract Instance matching, which aims at discovering the correspondences of instances between knowledge bases, is

a fundamental issue for the ontological data sharing and integration in Semantic Web. Although considerable instance

matching approaches have already been proposed, how to ensure both high accuracy and efficiency is still a big challenge

when dealing with large-scale knowledge bases. This paper proposes an iterative framework, RiMOM-IM (RiMOM-Instance

Matching). The key idea behind this framework is to fully utilize the distinctive and available matching information to

improve the efficiency and control the error propagation. We participated in the 2013 and 2014 competition of Ontology

Alignment Evaluation Initiative (OAEI), and our system was ranked the first. Furthermore, the experiments on previous

OAEI datasets also show that our system performs the best.
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1 Introduction

Recently, a number of ontological knowledge bases

have been built and published, such as DBpedia 1○,

YAGO 2○ and Xlore 3○. Some published knowledge

bases are domain-specific ones which contain facts

within one domain, such as movie, music and geog-

raphy; some others are cross-domain knowledge bases

that consist of various kinds of information in different

domains. Usually, the knowledge about one object can

be contained in different knowledge bases. For exam-

ple, both YAGO and elvisPedia contain the information

about a person named “Elvis Presley”. YAGO records

the birthdate of this person while elvisPedia has the

information about his wife. If we want to know more

about “Elvis Presley”, we have to search his informa-

tion in different knowledge bases. Therefore, there is a

growing need to align a knowledge base so that we can

easily get more complete understanding about things

that we are interested in.

A lot of work has already been done for aligning

ontological knowledge bases. Early research focuses on

aligning schema elements (i.e., concepts and properties)

in knowledge bases, which is called ontology matching.

Recently, the problem of matching instances in knowl-

edge bases has attracted increasing attention. Many in-

stance matching approaches have been proposed. How-

ever, most of them cannot deal with large-scale knowl-

edge bases nicely because they require traversing all

instance pairs between two knowledge bases[1-3]. Some

other approaches, such as CODI[4], Silk[5], PARIS[6],
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and SIGMa[7], are proposed for large-scale instance

matching. There are two major techniques in exist-

ing approaches to speed up the instance matching pro-

cess: blocking and iterative matching. Blocking in-

dexes the instances in two knowledge bases separately

and then selects the instances in multiple knowledge

bases but with the same key as candidate instance

pairs. Iterative matching finds the instance correspon-

dences in multiple loops; only a fraction of instances

are matched in each iteration, which are then used

as seeds for matching the remaining instances in the

next iterations. Although the two techniques above are

very helpful to large-scale instance matching, there are

still several challenging problems which are not well ad-

dressed. First, since only literal values in RDF triples

are used as the indexing keys for blocking usually, the

set of candidate instance pairs is still very large. Sec-

ond, iterative instance matching is likely to propagate

minor errors of mismatched instances in each iteration.

Traditional decision-making methods can hardly get rid

of mismatched instances since instances in two differ-

ent knowledge bases are usually described by different

numbers of RDF triples.

In order to solve the above challenges in large-scale

instance matching, we propose an iterative instance

matching framework RiMOM-IM (RiMOM-Instance

Matching), which is developed based on our ontology

matching system RiMOM[8]. The main idea behind

the framework is to maximize the utilization of distinc-

tive and available matching information. RiMOM-IM

presents a novel blocking method to improve the ef-

ficiency and employs a weighted exponential function

based similarity aggregation method to guarantee the

high accuracy of instance matching. Specifically, the

main contributions of our work are summarized as fol-

lows.

1) We propose and develop a customizable iterative

instance matching framework RiMOM-IM, which can

efficiently handle large-scale instance matching tasks.

RiMOM-IM matches instances in an iterative way,

which utilizes the aligned instances for matching the

remaining instances in each iteration.

2) In the proposed framework, a new blocking

method is proposed to select candidate instance pairs.

Our method uses predicates and their distinctive object

features as keys to index the instances, which is then

used to select candidate instance pairs. Our blocking

method can effectively reduce the running time without

decreasing the precision and recall.

3) A weighted exponential function based aggrega-

tion method ExpAgg for similarity aggregation is pro-

posed to draw the matching results from the similari-

ties between instances in terms of different predicates.

ExpAgg can produce accurate results even when the

aligned predicate numbers among different pairs vary

a lot.

4) Extensive experiments are conducted to evalu-

ate our proposed approach under the principled means

of evaluation. Results on benchmark datasets of

OAEI@IM 4○ demonstrate that our framework signifi-

cantly outperforms state-of-the-art approaches in both

accuracy and efficiency. Our system can match two

knowledge bases with over 6 million facts within 30

minutes on a desktop machine equipped with 3.3 Ghz

quad-core CPU and 4 GB memory.

The rest of the paper is organized as follows. In Sec-

tion 2, we formalize the problem definition with some

notation declarations. We describe the framework of

RiMOM-IM in detail in Section 3. Experiments and

analysis are given in Section 4. In Section 5, we review

related work. We conclude the paper in Section 6.

2 Preliminaries

In this section, we present some concepts that will

be used through the paper as follows.

Knowledge Base. A knowledge base KB is a tuple

(I, P, L, F ) where I, P , L are sets of instances, predi-

cates and literals. F ⊆ I × P × (I ∪ L), denotes a set

of facts, {(s, p, o) | s ∈ I, p ∈ P, o ∈ I ∪ L}, stored in

RDF triple set.

Instance Matching. Given two knowledge bases

KBS and KBT, the instance matching from KBS to

KBT is to find owl: sameAs relation between instances

in the source knowledge base instance set IS and the

target knowledge base instance set IT, where KBS and

KBT are the source and the target knowledge bases

respectively. In this work, we suppose each instance

in KBT can match at most one instance of KBS, and

every instance in KBS may be aligned with many in-

stances in KBT.

In fact, KBS and KBT can be cast into two knowl-

edge base graphs, G and G′, as shown in Fig.1. The

circles represent subjects or objects, and the triangles

denote predicates. The predicates with the same name

in different knowledge bases can be considered to be

aligned.

4○http://oaei.ontologymatching.org/, Nov. 2015.
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Fig.1. Graph representation of knowledge base. (a) Source knowledge base G. (b) Target knowledge base G′.

Instance Representation. An instance i can be rep-

resented as a set of facts corresponding to the same

subject, i.e.,

Ri = {(i, p, o)|p ∈ P, o ∈ I ∪ L}.

Given two knowledge bases to be aligned, if instance i

aligns with j, then

i = arg maxk∈IS
sim(k, j | G,G′,B−(k,j)),

where B = {B(i,j)}, i ∈ IS, j ∈ IT is the alignment ma-

trix between IS and IT. When instances i and j are

aligned, B(i,j) = 1; otherwise, B(i,j) = 0. B−(i,j) is

the alignment matrix B excluding the value of B(i,j).

sim(k, j | G,G′,B−(k,j)) is the similarity between k

and j. We compute it based on the knowledge base

graphs G and G′ and the alignment matrix B−(i,j),

and we will discuss it in detail in Subsection 3.3. We

now transform the problem of matching to the following

optimization problem.

maxBΣi∈IS,j∈ITB(i,j) × sim(i, j | G,G′,B−(i,j))

s.t. ΣiB(i,j) 6 1, B(i,j) ∈ {0, 1}.

By the reduction from the CLIQUE problem, one

can show that this problem is NP-hard[9].

Observing the instances of knowledge bases, we find

two characteristics of an instance.

Characteristic 1. An instance may have some in-

formation which most (even all) other instances do not

have, which we call distinctive (unique) information.

Characteristic 2. An instance is related to some

other instances. For example, an instance has some

objects which are also instances and it can also be an

object of some other instances.

Considering the two characteristics, the intuitive so-

lutions for the above optimization problem are gener-

ating a set of candidate pairs using indexing with the

distinctive information to avoid the similarity compu-

tation for all instance pairs and iteratively computing

the similarities for the candidate pairs by incorporating

new aligned instance pairs. The detail of our framework

will be illustrated in Section 3. Before we go to the de-

tails, we first present two definitions which will be used

in the next section according to the two characteristics.

Unique Instance Set. Unique instance set UI

is a collection of instances containing tuples of

(predicate, object) which occur only once in a knowl-

edge base, formally, UI = {i|∃(i, p′, o′′), ∀j 6=

i, (j, p′, o′′) /∈ F}.

Compatible Neighbors[7]. According to the second

characteristic that an instance has relation with some

other instances. If two instances are aligned, then the

instances related to them may be aligned. We define

the correlated instances as compatible neighbors, CN.

Formally,

CN(i, j) = {(k, l)|(i, r, k) ∈ KBS, (j, s, l) ∈ KBT} ∪

{(k, l)|(k, r, i) ∈ KBS, (l, s, j) ∈ KBT},

where r and s are aligned predicates. For example, in

Fig.1, (e, f) ∈ CN(s, t), (s, t) ∈ CN(e, f).

3 RiMOM-IM Framework

This section describes the detail of RiMOM-IM

framework. The overview of the instance matching sys-

tem is shown in Fig.2. The system includes five mod-

ules including initial interactive configuration, candi-

date pair generation, matching score calculation, in-

stance alignment, and validation. The annotated num-
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bers in the module are the sequential procedures. In

the following, we illustrate its workflow and dataflow.

1) The system begins with initial interactive con-

figuration, which allows users to input the data and

configure the needed modules in the following process

with their parameters.

2) We conduct data preprocessing, such as unifying

data formats for the values of some predicates.

3) We proceed with the blocking which consists of

using inverted indexing to generate candidate set and

unique instance sets.

4) For each pair in the candidate set, we compute

the similarities over all aligned predicates with “similar-

ities over predicates” and then through “aggregation”,

we aggregate them to get the final matching score of

two instances. By ordering the scores from high to low,

we generate a priority queue.

5) For unique instance sets, we iteratively use

“unique subject matching” and “one-left object match-

ing” to generate aligned set until no new aligned in-

stances are generated. These aligned instances will then

be used to add new candidate pairs and find new unique

instances, thus updating candidate set and unique in-

stance sets. Correspondingly, the matching scores for

related instance pairs and the priority queue will be

updated.

6) For the priority queue, we use “score matching”

to generate only one aligned pair with the highest score

above the threshold. If there is a new aligned instance

pair, we will generate new unique instances, which will

be taken as the input in step 5. If there is no new

aligned pair, we continue to step 7.

7) If “validation” module is chosen in step 1, we will

conduct the validation on all aligned pairs; otherwise,

we terminate. All the aligned instance pairs will be

added into the aligned set.

The overview of the instance matching framework

is summarized as follows:

• initial interactive configuration

• candidate pair generation

• matching score calculation

• do

− do

∗ unique subject matching

∗ one-left object matching

− until (no new matching pairs are generated)

− score matching

• until (no new matching pairs are generated)

• validation

• return AlignedSet

We further illustrate each module in following sub-

sections.

1. Configuration
2. Data

Preprocessing
3. Blocking

7. Validation

6. Socre Matching 5. One-Left Object
Matching

5. Unique Subject
Matching

4. Similarity over
Predicates

Matching Score Calculation

4. Similarity
Aggregation

Candidate Pair Generation

(Intermediate) Result

Instance Alignment

Candidate
Set

Aligned Set
(Output)

Priority Queue

Unique
Instance Sets
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Fig.2. Framework of RiMOM-IM. We use boxes to represent processes (steps) and ellipses to represent data. The black narrow arrows
are used to denote the data flow, while the grey wide arrows are used to indicate the process flow.
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3.1 Initial Interactive Configuration

In terms of configuration, we can input the aligned

predicates, and choose whether to use the Google trans-

lator for cross-lingual instance matching task. For each

pair of aligned predicates, we select one or more pre-

defined similarity functions. To aggregate the similar-

ities of different predicates, we choose an aggregation

function to get a final matching score. In this paper,

we choose the proposed aggregation function, ExpAgg.

The threshold used in “score matching” is also defined.

3.2 Candidate Pair Generation

Data Preprocessing. We remove special symbols like

“♯”, “*”, “!” and stop words such as “a”, “of”, and

“the”. Afterwards, we calculate the TF-IDF values of

words in each knowledge base. Note that the objects

associated with a particular subject and predicate con-

sist of a pseudo-document. In addition, since the data

formats of different knowledge bases are inconsistent,

we uniform some of the data formats. For example,

some represent a date as “2014, 05, 01”, some denote

as “May 1st, 2014”, and we unify them as “05-01-2014”.

Blocking. Blocking aims to pick a relatively small

set of candidate pairs from all pairs. Due to the large

scale of knowledge bases, it is impossible to calculate

the matching scores of all instance pairs. Most tra-

ditional methods use all the words except stop words

in the vocabulary as the keys for indexing. For ex-

ample, Diallo and Ba[10] used the words in the direct

virtual document of an entity as the keys for index-

ing, where the direct virtual document of an entity is

constituted by the combination of its uniform resources

identifier, the URI, the local name, the labels in dif-

ferent languages extracted by a function and the set of

annotations associated with it. Li et al.[11] built the in-

verted indexes for name vectors and virtual documents

of an entity respectively. Nevertheless, they ignored

the predicates and failed to choose the distinctive ob-

ject features which are vital in pruning instance pairs

for large-scale knowledge bases.

In our blocking method, we take the predicate as

well as the top five words of the object (ordered by

TF-IDF values in the knowledge base) as an index key

to index instances. It should be noticed that if the

object is an instance, the entire URI is considered as

a word. Owing to the novel blocking method which

restricts the candidate pairs with identical distinctive

information (predicate and distinctive object features),

we greatly reduce the similarity comparisons and im-

prove the efficiency. The blocking can be divided into

three phases. The detail of the algorithm is shown in

Algorithm 1. The first phase (from line 2 to line 12) in-

dexes every instance in each data source extracted from

its RDF objects. The second phase (from line 13 to line

16) traverses the index table and generates candidate

Algorithm 1:1. Blocking

Input: KBS, KBT

Output: candidate set C, unique instances sets US, UT

1 C ← ∅, U ← ∅, A← ∅, B ← ∅
2 foreach KB ∈ {KBS,KBT} do
3 foreach triple (s, p, o) ∈ KB do

4 if not A.ContainsKey(p+ o) then

5 A.addKey(p+ o)
6 A.addV alue(p + o,KB, s);
7 Split o into words(o) and then sort the words(o) by the TF-IDF values from high to low;
8 Extract 5 words from words(o) with the top 5 TF-IDF values and appearing in the other knowledge base for at least

one time.
9 foreach word wi ∈ top 5 TF-IDF words do

10 if not B.ContainsKey(p +wi) then

11 B.addKey(p +wi);
12 B.add(p +wi, KB, s);

13 foreach key ∈ A.AllKeys() do
14 foreach subject si ∈ A.getV alues(key,KBS) do

15 foreach sj ∈ A.getV alues(key,KBT) do

16 C.add((si, sj));

17 foreach key ∈ B.AllKeys() do

18 if B.getV alues(key,KBS).size() == 1 then

19 US.add(key,KBS, B.getV alues(key,KBS));
20 if B.getV alues(key,KBT).size() == 1 then

21 UT.add(key,KBT, B.getV alues(key,KBT));

22 Return C,US, UT;
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set C. The third phase (from line 17 to line 21) gener-

ates two unique instance sets US and UT, one for KBS

and the other for KBT, which will be used in instance

alignment.

3.3 Matching Score Calculation

In this module, we aim to get the matching scores

of instance pairs in candidate set. We obtain it by ag-

gregating the similarities over aligned predicates.

Similarity over Predicates. We use different sim-

ilarity functions for different aligned predicate pairs.

Specifically, when the predicate pair’s objects are a set

of instances, we use Jaccard similarity to calculate the

similarity between the instances of the predicate pair.

When the predicate pair’s objects are texts, we cal-

culate the cosine similarity based on the bag-of-words

representation of the texts as the similarity between the

instances of the predicate pair. We implement a lot of

these classical similarity functions as discussed in [12],

thus users can specify the functions according to their

specific cases in the system configuration step.

Similarity Aggregation. For each instance pair, after

getting similarities over multiple aligned predicates, we

need to aggregate the similarities to get the final match-

ing score. AVG aggregates the similarities by comput-

ing the average value[13]. SIGMOID (SIG) aggregates

the similarities by computing the average similarities

transformed by a sigmoid function[13]. These methods

do not adapt to the case when different instance pairs

have different numbers of aligned predicates.

In this work, we propose a weighted exponential ag-

gregation function, ExpAgg, to aggregate the similari-

ties S, which is a set of similarities of all aligned predi-

cates. The function is as follows:

ExpAgg(S) =
Σsi∈Sw

′

i × exp(w′′

i × si)

Σsi∈Sw′

i × exp(w′′

i × 1)
.

Among them, si is the similarity over the i-th aligned

predicate. The larger the value of si is, the more in-

formation the predicate carries. The parameter w′ re-

flects the importance of a predicate, and w′′ controls

the importance of informative predicates. If w′′ is too

large, then the matching score will ignore the influ-

ence of much less informative predicates. If w′′ is too

small, much noise will be introduced by these pred-

icates. In this paper, we set the parameters experi-

mentally. Specifically, for each parameter, we vary the

value from 1 to 10 with an interval 1, with the other

parameter fixed. Finally, we use the best parameters

w′

i = 1 and w′′

i = 5 that result in the best performance

on our training data. As presented in Proposition 1,

we show the proposed aggregation function puts more

weight on more informative predicates, and it is more

accurate than traditional aggregation methods. The

experiment in Subsection 4.5 also indicates our aggre-

gation method outperforms traditional methods. Fur-

thermore, we prove it theoretically as following.

Proposition 1 (ExpAgg Favors More Informa-

tive Predicates). When si > δ, sj − si > δ, and

sj > Σi=1,...,msi,m < 100, it is possible to choose an

appropriate value k to let ek×sj > k × Σi=1,...,mek×si .

Proof. There is a k that makes ek×(si−sj) 6 e−δ×k <

1/100 × k, thus, Σi=1,...,mek×si−sj < 1/k, that is,

ek×sj > k × Σi=1,...,mek×si . Therefore ExpAgg favors

more informative predicates. �

Aggregation function favoring more informative

predicates will tend to get the right matching re-

sults. Suppose we have three instances a, b and c, if

sim(a, b) = (1, 1, 0), sim(a, c) = (1, 0.7, 0.5), after the

aggregation with AVG[13], AV G(sim(a, b)) = 0.667,

AV G(sim(a, c)) = 0.733; while with the method of

SIG[13], SIG(sim((a, b)) = 0.661, SIG(sim(a, c)) =

0.675 5; with our proposed method of ExpAgg,

ExpAgg(sim(a, b)) = 0.668 9, ExpAgg(sim(a, c)) =

0.435 1. Then AVG and SIG will choose (a, c)

as the aligned one, while our aggregation function

will choose (a, b) as aligned, which is as expected.

When sim(a, c) = (1, 0.9, 0.9), our method will get

ExpAgg(sim(a, c)) = 0.737 7, and our aggregation will

choose (a, c) to be aligned as expected. Therefore,

our aggregation function tends to believe the predicate

which carries more information. Since the aligned pairs

always have some precise information, our aggregation

function can work well when the numbers of aligned

predicates of different instance pairs are unbalanced.

3.4 Instance Alignment: Three Strategies

Most traditional methods of instance matching will

determine the alignment of instance pairs based on the

matching scores. However, since a matching score of an

instance pair will be influenced by the alignment situ-

ation of the compatible neighbors of the two instances

of the pair and we do not know the alignment situation

initially, the matching score is likely to be unreliable.

In this work, we propose three different strategies

for instance matching. We use “unique subject match-

ing” and “one-left object matching” to determine some

aligned pairs at the very beginning. Afterwards, based

on the aligned instances, we update related matching
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scores. By ordering matching scores from high to low,

we extract one pair with the highest score above the

threshold as one aligned pair, which is called “score

matching”. The three strategies work in an iterative

way.

Unique Subject Matching. Owing to the large scale

of knowledge bases, if an indexing key is contained in

both unique instance sets US and UT, then the corre-

sponding instance pair will be aligned. Therefore, we

can avoid aligning instances via their matching scores

when the scores are incorrect initially. As the aligned

pairs will generate new aligned pairs (for example, if we

know (a, b) is aligned now, and c ∈ US is indexed with

p+a, d ∈ UT is indexed with p+b, then (c, d) is aligned

now), we iteratively generate new aligned pairs based

on the already aligned pairs until no new aligned pairs

are generated. The aligned pairs will be used to update

candidate set and matching scores correspondingly.

“Unique subject matching” can align instances via

unique instance set which dose not need much over-

lapping information. Thus if two knowledge bases have

little overlapping information, our system can still work

well.

One-Left Object Matching. We use characteristic 2

of an instance to generate aligned pairs. In detail, if

two aligned instances have the same predicate with m

objects, of which m− 1 are aligned, then the “one-left”

objects are aligned. For example, in the knowledge base

graph as shown in Fig.1, if subject (t, s) is aligned, con-

sidering the predicate P2, the left one object pair (u, c)

can be concluded as aligned. Similarly, we iteratively

use the aligned object pair to generate more aligned

objects until no new object pairs are aligned. Then we

use the aligned object pairs to update the unique in-

stance sets, the candidate set and the matching scores

correspondingly.

One-left object matching relies on aligned instance

pairs and their compatible neighbors, thus if a knowl-

edge base has little overlapping information but has

rich information of correlations among instances, our

system can work as well.

Score Matching. Since previous processes have gen-

erated some reliable aligned pairs which can be uti-

lized for the similarity score computation of instance

pairs, we can consider the instance pair with the high-

est matching score above a predefined threshold δ as

aligned. Note that to guarantee accuracy, each time

we get only one aligned instance pair with the highest

score. Then we add its compatible neighbors to candi-

date set, and update unique instance sets and related

matching scores correspondingly.

With the greedy algorithm of extracting only the

most matching pair every time, we control the error

propagation to some extent. As we cannot guarantee a

global optimization with the greedy algorithm, we add

the process of validation.

3.5 Validation

Since many objects of instances are URIs referring

to other instances, there still exists some nondetermi-

nacy in aligning two instances due to the uncertainty in

the alignment situation of their compatible neighbors.

We add validation module to correct some mistakes by

recomputing the final matching scores of aligned in-

stance pairs. If the recomputed score of a pair is lower

than the threshold δ, we remove it. In our experiment,

we set δ = e0.5.

4 Experiment

In this section, we present experimental results to

demonstrate the effectiveness of the proposed approach.

The source code of our proposed framework, RiMOM-

IM in the paper, is publicly available 5○.

4.1 Datasets and Experimental Setup

We evaluate our approach using the OAEI@IM

datasets, and compare our system with the other OAEI

participants’. OAEI 6○ is an annual ontology matching

competition that provides authoritative tests and eval-

uations of ontology matching technologies. All datasets

can be downloaded from the corresponding OAEI web-

pages. The dataset statistics are given in Table 1.

Table 1. Datasets Statistics

Dataset Number of Number of Number of Cross-Lingual

Concepts Properties Instances

IM@2014 04 06 01 330 Yes

IM@2013 00 11 12 430 Yes

IIMB@2011 29 22 12 333 No

IIMB@2010 29 22 01 416 No

Competition Datasets. The dataset of IM@2014

contains two sub-datasets, namely, the id-rec dataset

5○http://keg.cs.tsinghua.edu.cn/project/RiMOM/, Nov. 2015.
6○http://http://oaei.ontologymatching.org, Nov. 2015.
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and the sim-rec dataset. The datasets contain the in-

stances describing famous books with different genres

and topics. The id-rec dataset is a typical evaluation

task of instance matching tools where the goal is to

determine when two OWL instances describe the same

real-world entity. The sim-rec task focuses on the eval-

uation of the similarity degree between two OWL in-

stances, even when the two instances describe different

real-world entities. The source Abox contains 173 book

instances and the target Abox contains 172 book in-

stances. Then we need to provide 173 × 172 = 29 756

mappings, each one featured by a degree of similar-

ity in the range [0, 1]. Given a mapping m, we need

compare the similarity degree assigned to m by the

matching tool against the corresponding similarity de-

gree assigned by more than 250 workers[14]. The evalu-

ation will be performed through the Euclidean distance,

which means the smaller, the better. The datasets

of IM@2013 are called RDFT test cases. The RDFT

test cases have been generated from an initial RDF

dataset, which is about well-known computer scien-

tists extracted from DBpedia. Starting from the ini-

tial dataset, different transformations have been imple-

mented. OAEI organizer provides the participants with

five test cases. The RDFT test cases provide trans-

formation techniques supporting value transformation,

structure transformation, language transformation, and

cardinality transformation.

Large-Scale Datasets. We choose the IIMB datasets

of IM@2011 and IM@2010. We have also considered

IM@2012, but it is not available for downloading now.

Both the 2011 and the 2010 edition of IIMB are cre-

ated by extracting data from Freebase, and each dataset

consists of 29 concepts, 22 properties and thousands

of instances divided into 80 test cases. The num-

bers of instances of datasets IM@2010 and IM@2011

are 1 416 and 12 333 respectively. For the IIMB@2011

dataset, it is not suitable to calculate the similarities

of every possible instance correspondence any more be-

cause this will result in approximative 12 333×12 333 =

152 102 889 similarity comparisons. Thus, IIMB@2011

dataset is large enough to be used for large-scale align-

ment task.

Same as previous studies, to evaluate the blocking

step, we use pair reduction ratio (RR) and pair com-

pleteness (PC). For interlinking results, we use presi-

cion (Pre), recall (Rec), and F1-measure (F1). Since

the last three measures are well-known, we only give

formulas of RR and PC:

RR = 1−
number of candidates

number of all pairs
,

PC =
number of correct candidates

number of actually aligned pairs
.

Over these benchmark datasets, we test our framework

on the tasks of both competition datasets and large-

scale knowledge base alignment. Afterwards, we evalu-

ate the performance of proposed blocking for candidate

pair generation. Finally, we present a system analy-

sis to evaluate our proposed novel strategies for direct

instance matching and similarity aggregation method.

4.2 Experiments on Competition Datasets

In this subsection, we test the performance of

RiMOM-IM on the dataset of IM@2014 and IM@2013

and compare it with other systems[15] (see Fig.3, Fig.4

and Table 2 for details). We can see that RiMOM-

IM significantly outperforms the other methods on all

datasets, especially on the id-rec dataset and the sim-

rec dataset of IM@2014. On the id-rec dataset, we

achieve the F1 value of 0.558 1, and the runner-up sys-

tem gets only 0.099 1. On the sim-rec dataset, the car-

dinality of the reference alignment is 4 104 mappings. In

the analysis, we are interested in comparing the similar-

ity degree σ of mappingmc against the similarity degree

calculated by the matching tools of participates’. The

result of this mapping analysis shows that RiMOM-IM

has a similarity degree close to the expected value.
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We can see RiMOM-IM performs the best on al-

most all the five cases of IM@2013, with an average

F1 value of 0.974 (+18% significant improvement com-

pared with LilyIOM and +3.6% improvement compared

with SLINT+). On the first two cases, which do not

contain any cross-lingual properties, the performance is

equal to SLINT+. While on test cases 3, 4 and 5, which

contain cross-lingual properties, we use Google transla-

tor to bridge the multi-lingual gap, our system is much

better with respect to both precision (Pre) and recall

(Rec). In addition, the F1 values of our system in all
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Table 2. Results for IM@2013

System Test Case 01 Test Case 02 Test Case 03 Test Case 04 Test Case 05

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

LilyIOM 1.00 0.99 1.00 0.74 0.74 0.74 0.94 0.92 0.93 0.71 0.73 0.72 0.71 0.49 0.58

LogMap 0.97 0.69 0.80 0.79 0.99 0.88 0.98 0.73 0.84 0.95 0.70 0.80 0.92 0.62 0.74

SLINT+ 0.98 0.98 0.98 1.00 1.00 1.00 0.94 0.91 0.92 0.91 0.91 0.91 0.87 0.88 0.88

RiMOM-IM 1.00 1.00 1.00 0.95 0.99 0.97 0.96 0.99 0.98 0.94 0.98 0.96 0.93 0.99 0.96

datasets are all greater than 0.96. As for the relatively

poor performance of other systems on the last three

test cases, as mentioned by the OAEI organizers[15],

working in the direction of improving the combination

and balancing of different matching techniques in a sin-

gle, general-purpose, configuration scheme is a possi-

ble challenge for instance matching tools. We think

that the reason why our system behaves much better

is probably because we propose the aggregation func-

tion, ExpAgg, which addresses the imbalance of aligned

predicate numbers among different instance pairs.

4.3 Experiments on Large-Scale Datasets

In this subsection, we test the performance of

RiMOM-IM on the datasets of IM@2011[16] and

IM@2010[17] and compare it with other systems. In the

dataset of IIMB of IM@2011, many alignment results

cannot be found even by human. We have asked the

manager of the dataset about the problem. Unfortu-

nately, we are told that the cooperators of the dataset

have left the team, thus they cannot tell the reason ei-

ther. As a result, we only list the data results that

can be validated by human, namely, the test cases of

1∼20 and 41∼60, and we also give the results of all

the datasets in IM@2010 (see Fig.5). We can see from

Fig.5, on the dataset of IIMB of IM@2010, our sys-

tem outperforms all the other systems under all mea-

sures especially in recall. It attributes to our strategy

of candidate pair selection. Our system can pick a rela-

tively small set of candidate pairs in order to avoid the
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similarity computation for all pairs, while it ensures a

high pair completeness and avoids losing many instance

pairs which may be aligned. Compared with existing

RiMOM system[8], our RiMOM-IM achieves significant

improvement in terms of both F1 measure and time

efficiency (more than 200 times faster)

On datasets of 2011, our system behaves signif-

icantly better than the only successful participant,

CODI, both in precision and recall, with F1 value of

each test case exceeding 0.9. On the 41∼60 test cases,

our F1 value reaches almost 1.0, while CODI’s value is

only 0.72. On test cases 01∼20, CODI only achieves

similar precision as our system, while their F1 value is

much less than ours. On all the above test cases, our

average F1 value reaches 0.95, which means our sys-

tem can be put into practical usage. All the 40 test

cases contain about 6 million triples, and the execu-

tion time of RiMOM-IM when running on a desktop

machine equipped with 3.30 Ghz dual-core CPU and

4 GB of memory is 29.1 minutes, which proves that our

framework is fast and efficient on large-scale datasets.

4.4 Evaluation of Candidate Pair Generation

In our system, we generate initial candidate instance

pairs via blocking. Each time when we find a new

matching pair, we will add their compatible neighbors

into the candidate set. We use pair reduction ratio

(RR), pair completeness (PC) and recall to evaluate

the candidate pair generation, as shown in Table 3.

Table 3. Evaluation of Candidate Pair Generation

Dataset # Instance # Candidate RR PC Recall

Pairs Pairs

IM@2013 629 924 500 1 425 605 0.970 0.92 0.99

IM@2011 629 106 720 1 462 804 0.998 0.91 0.94

IM@2010 190 221 120 1 387 840 0.998 0.82 0.85

Note: # means “Number of”.

Observing Table 3, we can easily find out why our

framewrok is so efficient. As we can see from the latter

two rows, on large-scale datasets, our RR values all ex-

ceed 0.998. On the dataset of IM@2010, the number of

instance pairs is 490 times greater than that of our se-

lected candidate pairs. On the dataset of IM@2011, it

is about 430 times. By reducing so many instance pairs,

there is no doubt that our framework works efficiently.

Specially, on a personal computer with 4 GB mem-

ory and 3.3 GHZ frequency, the datasets of IM@2010,

IM@2011 and IM@2013 only take 5.3 minutes, 29.1

minutes and 9 seconds respectively.

From the values of recall and pair completeness

(PC) of the table, we may be confused why recall value

can be greater than PC values. It is because every

time when we find aligned pairs, we will add com-

patible neighbors to the collection of candidate pairs.

Thus, the instance pairs that have not been found in

the blocking step can enter into the candidate set. The

discovery of aligned pairs would not be limited to the

candidate pairs found by the blocking procedure.

In summary, without blocking procedure, we can-

not efficiently find the candidate pairs, while without

compatible neighbors as complement, we may leave out

many aligned pairs. With both steps, we successfully

generate candidate pairs with high RR, PC and recall.

4.5 System Analysis

In this experiment, we explore the influence of our

new strategies which directly align instances and the

proposed aggregation method compared with simple

average aggregation (AVG). The results are presented

in Fig.6. “All+ExpAgg” means that we use all the

modules mentioned in this paper with our proposed

ExpAgg as similarity aggregation function. “All-UO”

represents the system without the matching modules of

“unique subject matching” and “one-left object match-

ing”, using ExpAgg. “All+AVG” denotes using aver-

age aggregation instead of the proposed ExpAgg.

Fig.6 indicates that using all modules achieves the

best result. The baseline method “All-UO” has the

lowest performance due to the removal of the mod-

ules of “unique subject matching” and “one-left object

matching”. The reason is that the aligned pairs gen-

erated by these two strategies are highly reliable and

cannot be acquired by traditional methods of similar-

ity calculation. Through the comparison between the

results of “All+ExAgg” and “All+AVG”, we can see

that our method “all” has a significant improvement on

the dataset of IM@2013. By looking into the datasets,

we find that the reason is due to the serious imbal-

ance of predicates in the knowledge base of IM@2013.

Therefore, our aggregation method, ExpAgg, which is

designed to address the problem of imbalance, achieves

outstanding performance.

5 Related Work

Recently, a lot of inspiring knowledge base match-

ing algorithms and tools have been proposed. From
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the view of purposes, some of them focus on schema

matching[13,18], some focus on instance matching[7,19]

and the others can solve both schema and instance

matching problems[4,6,8]. In terms of methods, there

are heuristic methods[20-21], probabilistic methods[6,22],

graph-based methods[23], learning-based methods[24-25]

and reasoning-based methods[4,13,26]. A comprehensive

survey is given by [1]. In this paper, due to the limi-

tation of space, we only describe some closely related

systems and their methods. The first work is reasoning-

based and the others are all similarity-based.

Combinatorial optimization for data integration

(CODI)[4] uses the terminological structure for knowl-

edge base matching. It is based on the syntax and se-

mantics of Markov logic and transforms the alignment

problem to an optimization problem. Therefore, it re-

lies on the schema of knowledge base and may not work

efficiently when dealing with knowledge bases with lit-

tle schema information. ASMOV[13] is an automated

ontology matching system that uses a weighted sum to

combine a comprehensive measure of similarity with a

validation technique. ASMOV computes four types of

similarities, including a lexical similarity, two structural

similarities and an external similarity. Nevertheless,

when ontologies have no information of property types,

their similarity measures may perform poor. SLINT[19]

is an instance matching system that does not need man-

ually aligned predicates. When computing the similari-

ties between instances, it first computes the similarities

between all predicates and then incorporates the pred-

icate similarities into instance similarities. SLINT may

perform well when aligning knowledge bases contain-

ing many predicates, but its performance will be influ-

enced by the noise of predicates when predicates can be

easily aligned manually. SiGMa[7] is an iterative prop-

agation algorithm which leverages both the structural

information from the relationship graph and the flexi-

ble similarity measures between entity properties in a

greedy local search. As we also use the correlation be-

tween instances and have different similarity measures

for different aligned predicates, our approach is close to

SiGMa.

Overall, all the related approaches except SiGMa do

not utilize the iterative framework and fail to make the

best use of aligned instances. Though all the meth-

ods use the blocking technique to select candidates,

only our blocking method takes both predicates and

distinctive object features as indexing keys, which is

more efficient. All the above approaches do not con-

sider the case when the number of aligned predicates

between instances varis largely, which results in the loss

of the accuracy of similarities between instances. We

propose a weighted exponential similarity aggregation

method to successfully address it. Finally, we propose

the strategies for direct instance matching without sim-

ilarity computation and it can advance similarity-based

strategy, especially at the beginning (cold start).

6 Conclusions

In this paper, we investigated instance matching

which is a critical problem in knowledge sharing and
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integration. We presented an iterative matching frame-

work RiMOM-IM which achieves substantial improve-

ment compared with competitive state-of-the-art in-

stance matching systems. In the proposed framework,

we proposed a distinctive information based blocking

method to greatly reduce the number of candidate

instance pairs, which greatly improves efficiency and

adapts our framework to large-scale datasets. We also

presented a weighted exponential function based simi-

larity aggregation function, which addresses the prob-

lem of unbalanced aligned predicate numbers among

different instance pairs. In addition, two strategies,

“unique subject matching” and “one-left object match-

ing” for direct instance matching without computing

the similarities, were put forward to advance similarity-

based alignment module, which ensures a high relia-

bility of the similarities. With the iterative matching

scheme and an additional validation process, we made

best use of existing aligned instance pairs and achieved

an impressing performance.

In future work, first, we will improve our work by

configuring the parameters for different tasks automat-

ically instead of manually. Second, as in this work,

we assumed the predicates which can be aligned have

already been aligned, we will incorporate the process

of aligning predicates into our framework to make our

system more powerful.
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