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ABSTRACT 

Training set is the key role player that can improve the performance of any classification task. Different 
techniques and methods are being applied to generate training set depending on its area of application. 
Researchers in data science and semantic web community use different kind of training sets generated to 
improve the performances of classifications and information retrieval capability. Operational Training Set 
Generator (TSG) should always solve a minimum of two issues; (1) it must address the computational cost 
in producing a reasonable outcome, thereby reducing the computational cost in the whole system. The run-
time of TSG is near linear as in blocking approach and (2) it must produce the qualitative training sets. We 
use LogTfIdf as the cosine similarity function of two given vectors to produce Bag of Words (BoW); the 
tokenizer is developed to specially take care of delimiters that often come across URIs and other RDF 
essentials. We evaluated our UTSG on nine cross-domain benchmark ontologies publically available in 
OAEI website. The results obtained shows that our UTSG outperforms the two baseline TSGs previously 
developed to address similar problem. 

Keywords: Semantic Web, Link Open Data, Semantic Heterogeneity, Ontology Matching, Instance-based 
Matching, Training Set  

1. INTRODUCTION 

Gradually, the importance of ontology based 
techniques in reading and processing semantic 
information is dominating the semantic web. 
Traditional search is being replaced by semantic 
search for effective presentations of query results 
to the user. For the information on the web to be 
shared and be interoperated, strategies to minimize 
if not totally eliminate the heterogeneities in the 
data became necessary. Even though, many 
techniques have been developed to solve semantic 
heterogeneity through ontology matching [1], [2] 
and [3] to mention a few. Yet, producing complete 
alignment remains competitive among many 
matching systems [4]. Most of these systems 
concentrate on the exploit of structures or schemas 
of the ontology while neglecting an important 
component of an ontology called instance or 
individual [5], [6]. Many approaches presented by 
different authors contribute significantly the naïve 
methods of matching ontology instances [7], [8] 

[9] and [10]. A recent survey on instance based 
matching reported that ontology matching will 
remain incomplete provided the ontology’s 
instances are not match in an unsupervised fashion 
[11]. Even though, some instance matching 
systems recorded high F-score in generating 
alignments, still some aspects of the systems 
requires global attention. 

Traditional instance matching method consists 
of two important steps (Figure 1), a blocking step 
and a similarity step [12]. A blocking involves 
grouping entities into paired and unpaired clusters, 
thereby making the paired group a candidate for a 
matching, this step can be replaced with machine 
learning clustering approach as in the work [13] 
where potential matching attributes are discovered 
using clustering method. A similarity step is 
characterized as classification stage where content 
of paired candidate group are classified and 
evaluated to produce the final output of the 
matching. In these systems, the specification 
function that specifies the mapping requires an 
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intervention from the domain expert to complete 
the matching process. In some approaches, the 
blocking has to consider manually trained 
examples for the mapping to take place. Therefore, 
these methods are completely supervised.  

 

Figure 1: Traditional Instance-based matching 
Method 

To address the supervision problem, [14] proposed 
an approach called training set generation to 
bootstrap the overall instance matching process. 
The idea suggested that as long as training set can 
be identified via suitable assumptions, the set 
would be appropriate to increase the adaptability 
of the whole matching process. However, this 
approach concentrated heavily on an assumption 
which does not often satisfy in most of the RDF 
graph data. In fact, this method is considered to be 
unsupervised and can only work effectively to 
domain-independence graph data. Most of the 
training set generation methods in the literature are 
experimentally weak when handling 
heterogeneous RDF data. [15], tries to bridge this 
gap in their work. In the work, they built a schema 
free instance matcher that aimed to be 
unsupervised but fails for some reasons. This 
system succeeded in matching RDF data that is 
made up of few properties but recorded low 
performance in mapping large-scale data. 
Therefore, designing and use of unsupervised 
training set generator in an instance matching 
system would address the above challenges. 
Training set is the key role player that can improve 
the performance of any classification task. 
Different techniques and methods are being 
applied to generate training set depending on its 
area of application. Researchers in data science 
and semantic web community use different kind of 

training sets to improve the performances of 
classifications and information retrieval capability. 
In the work on instance matching, [16] uses 
supervised learning approach to generate a training 
set in order to improve the performance of their 
instance matcher. In a similar work,  [17] 
generated a training set by constructing a novel 
hybrid method based on genetic algorithm for 
optimization. In [18], task-relevant training set was 
used in the object recognition task. It uses 
information that is in the language-based. In [15], 
generated training set is corporates for the first 
time to perform a property alignment in the input 
graph data. In this approach, semi-supervised 
approach is used to generate both negative and 
positive training sets to reduce too much 
comparison during matching. However, semi-
supervised approach requires little human 
intervention in generating a training set, therefore, 
achieving automation will in one way or the other 
affect the matching process as a result of inferred 
function being produced for every new mapping. 
As irregular data is always part of the RDF graph 
data, the desired output in supervised and semi-
supervised learning may contain noise due to the 
sensor or human errors, then the learning 
algorithm must be constrained to turn down the 
function that exactly maps the training samples. 
Therefore, we conducted this research to test the 
hypothesis that 
Generating a training sets or samples in an 
unsupervised way rather than traditional 
supervised methods can effectively bootstrap the 
ontology instance matching performance.  
In this paper, we design an unsupervised training 
set generator (UTSG) to produce training samples 
that can be fed to the property aligner in a 
complete unsupervised fashion. Avoiding human 
effort or sensor effort in generating a training 
sample will bootstrap the learning process, thereby 
making the whole process unsupervised. Thus, an 
important instance matching system requirement 
of automation can be guaranteed. In order to reject 
or fail to reject the hypothesis, this work addresses 
the following question: will unsupervised training 
samples generation improve the performance of 
classification task with regard to ontology instance 
matching when compared with traditional 
approaches? 
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1.1 Training Set Generation Intuition 
Let introduce a real-world scenario to get insight 
on the training set generator, ponder two faculty 
members, Hazlina Hamdan and Norwati 
Mustapha. Consider these persons to be present in 
two different ontologies O1 and O2 that belong to 
a similar type (person and people). These two 
people must be proved by an effective instance 
matching system based on the equivalence 

relationship that exists in both ontologies. If the 
sets of these two person’s information are 
represented as shown in Figure 2, for them to be 
declared equivalent with the approach that is 
solely token-based and ignored all other 
information (like that in property, phonetic and 
structure of the entities), the result of a mapping 
would be more precise (either similar or non-
similar). 

Figure 2: An Intuition that backs TSG Component 

Let assume a token-based matching of these two 
different ontologies as mentioned earlier. In the 
information of an entities Hazlina Hamdan and 
Norwati Mustapha, cannot be declared the using 
equivalent relation as most of the attributes have 
different structure. The degree of similarity within 
the attributes may like be very low, especially when 
the mapping is strictly 1:1. The in property (:age) 
for the entity Hazlina Hamdan in O1 and that of H. 
Bnt. Hamdan in O2 are completely different. 
Similarly in the property (:position) for the entity 
Norwati Mustapha where mapping between “Ass. 
Prof.” and “Deputy Dean” might not yield a 
reasonable result. This intuition may be more 
extreme if we can assume that the name Hazlina 
typed wrongly in ontology 1 as Hazrina which is 
inevitable in records that encompasses manual data 
input. The change in only one letter may 

completely prove the mapping as non-equivalent. If 
we assume the generated set by the TSG returned 
“Hazlina Hamdan” as the training sample, many 
features can be learned from it as well as its 
corresponding entity. These feature set may 
include, token, numeric, phonetic and string 
features. In the case of misspelling of the name 
Hazlina, phonetic feature in the set may be of great 
advantage. Therefore, generating training samples 
can bootstrap the generation of alignment between 
ontologies property. Thus, the generated training set 
would be an input to the property aligner (next 
component in the workflow diagram). 

Ontology integration is considered to be 
the general term used to describe different 
operations being conducted on the ontologies, such 
as features sharing, merging, unifying, mapping, 
aligning, and matching between different 
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ontologies belonging to either same or different 
domain of the ontologies. Ontology integration is 
the process which may be done in three levels 
[19]: 
i. Building a new ontology by reusing other 
available ontologies: this is the simplest case of 
ontology integration in which new ontology is 
built by adopting the existing ontologies. 

ii. Merging different ontologies about the 
same domain into a single one that unifies all 
ontologies: In this case, the ontology should be 
built by using knowledge from exactly the same 
domain of existing ontologies. 

iii. Introducing ontologies into the 
application: Here, several ontologies are 
introduced into an application, they are shared 
among different software applications which make 
it possible to use several ontologies to implement 
or identify knowledge-based applications on the 
basis of distributed resources. 

On one hand, [20] identified two general 
approaches for ontology integration process: (1) 
Merging several ontologies for developing one 
consistent ontology, and (2) Alignment of several 
ontologies to be identifying their references to 
determine the possibility of employing all the 
ontologies. Therefore, to determine the 
inconsistency or conflict among ontologies one has 
to define and analyze several ontologies as 
suggested in case one above. In the second case, in 
every two candidate’s ontology, it is required to 
find a mechanism which points out the relationship 
between the elements of both ontologies. In this 
case, it is possible to apply both ontologies for the 
set goal without unifying them to single ontology. 

There are many pieces of evidence on 
why the one real-world entity is described in 
different sources. In the case of instance 
mentioned above, in open and social data, anyone 
has ample right to published data and/or 
information, and simply adhere to representation 
and that best fits his application. Another 
difference may be due to different data acquisition 
approaches such as the processing of scientific 
data. In addition, entities are dynamic in nature, 
they may evolve and change over time, and this 
development has to be up-to-date in data sources 
which are often either impossible or found to be 
hard enough (especially when this happens in a 
synchronous way). Finally, when integrating data 
from multiple sources, the process itself may add 
(new) erroneous data [9] 

2. RELATED WORKS 
Instance-based matching compares two or more 
sets of individuals of objects or classes so as to 
decide whether or not they can represent areal-
world object figure 1.6. They combine items into a 
single form. Instance matching is an important 
aspect of ontology integration as it groups all 
important points of instances for better 
interoperability among different information 
sources [21]. 
There are many pieces of evidence on why one 
real-world entity is presented in different sources. 
In an open and social source of data, anyone has 
ample right to published data and/or information, 
and simply adheres to representation that suits his 
application. Another difference may be as a result 
of different data acquirement methods. 
Furthermore, entities are dynamic in nature; they 
change over time resulting in the frequent update 
which is often either impossible or found to be 
hard enough. Lastly, if data is being integrated 
from multiple sources, the integration process is 
bound to include noisy data [9]. In order to 
overcome such kind of problems, there is a global 
need for a standard benchmark for instance 
matching, for most instance matching techniques 
requires evaluation for them to suit the context of 
their applications. The benchmark will assist in 
determining the scope of existing techniques and 
identify the strength and weaknesses of these 
systems as well as support the advancement of 
instance matching research [9]. SEM+ implements 
a novel semantic similarity computation model 
called the Information Entropy and Weighted 
Similarity Model (IEWS Model) to suggest 
similarity measures between instances of distinct 
ontologies and vocabularies concepts [22]. Based 
on the similarity measures, SEM+ creates "same 
as" links among those concepts. SEM+ also 
implements a new prefix-based blocking 
algorithm, which groups possible matching pairs 
into one block. This blocking algorithm lessens the 
number of concept pairs that are needed for 
similarity calculation, which is important if 
mapping between two large domain ontologies is 
required 

A. General Indexing Functions (GIFs) Used 

In this work, we use 28 General Indexing 
Functions (GIFs) to construct our feature space. A 
GIF takes a string as input and returns a set of 
strings as output. We can think of a GIF as an 
'atom' that we use to construct more complicated 
feature and hypothesis spaces. For the sake of 
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completeness, we describe them in more detail 
here, complete with examples. 
1. Identity: Returns a singleton set containing the 
string. 
Example: The string "abcde" would simply be 
returned as {"abcde"} 
2. Tokens: Tokenizes the string based on a set of 
delimiters specifically designed for RDF elements 
(see below), and outputs the set of tokens. 
Example: Consider the string "7850 Avenue C; 
Apt. 103". The output would be {"7850", 
"Avenue", "C", "Apt.", "103"}. Note that the 
output depends strongly on a good tokenizer.  In 
this example, it was assumed that whitespace and; 
are in the tokenizer set. The tokenizer that we 
uniformly use throughout the project is encoded by 
the Java statement, this tokenizer is also used in 
the training set generator.  
3. Integers: Similar to Tokens but discards all 
strings in the output that cannot be parsed as 
integers. 
Example: Continuing from the previous example, 
this GIF would return {"7850", "103"}. Note that 
the output is always guaranteed to be a subset of 
the output of Tokens. The goal of such 'specialized' 
GIFs is to provide better discriminative ability for 
applicable cases.  
4. ManipulateIntegersByOne:  Same as Integers, 
except that for every integer a, integers a-
1 and a+1 are converted to strings and added to 
the output set along with a.  
Example: Again continuing from the previous 
example, this GIF would return {"7850", "7851", 
"7849", "103", "102", "104"}. Note that Integers is 
again a subset of this GIF, but this GIF is not 
necessarily a subset of Tokens, unlike Integers. 
5-7. ExtractNCharPrefixes: Same 
as Tokens except that each token is further 
truncated to its first N characters. If the token has 
fewer than N characters, it is left intact. Three 
GIFs were implemented, with N set to 3, 5 and 7 
respectively.  
Example: Continuing from the example started 
in Tokens, Extract3CharPrefixes yields {"785", 
"Ave", "C", "Apt", 
"103"}, Extract5CharPrefixes yields {"7850", 
"Avenu", "C", "Apt.", "103"} 
and Extract7CharPrefixes yields the same output 
as Tokens. Unless there are very long words in the 
string, the last observation almost always holds. In 
general, as N increases, the feature gains more 
discriminative ability. The choices of the odd 
numbers for N are arbitrary, but found in previous 
studies (and our own experiment) to work quite 
well. 

8-10. ExtractTokenNGrams:  Tokenizes the string 
as an ordered list and extracts length-N contiguous 
subsequence of tokens. If the list of tokens 
contains fewer than N tokens, the list becomes its 
own only subsequence. Each subsequence is added 
to the output set. Implemented for N=2,4,6. 
Example: Assuming the string "7850 Avenue C; 
Apt. 103" as input, the output 
for ExtractToken2Grams would be {"7850 
Avenue", "Avenue C", "C Apt.", "Apt. 103"}, and 
similarly for N= 4,6. Notice how the delimiter; is 
not used, since the string is first tokenized and then 
converted to subsequence. Also, similar to GIFs 5-
7, the choices of N are arbitrary but have been 
found to work well experimentally. 
11-
17.  ExtractNonSoundexPhoneticFeatures: Toke
nizes the string and adds the phonetic encoding of 
each token to the output set. The phonetic 
functions used for implementing seven GIFs in 
total are Caverphone1 (Encodes a string into a 
Caverphone 1.0 value), Caverphone2 (Encodes a 
string into a Caverphone 2.0 value), 
ColognePhonetic I (Encodes a string into a 
Cologne Phonetic value), DoubleMetaphone 
(Encodes a string into a double metaphone value), 
MatchRatingApproachEncoder, 
Metaphone and NYSIIS. A library implementing 
all these encoding functions efficiently exists in an 
Apache open-
source package (https://www.apache.org/) and is 
adapted for this project.  
18-
27. ExtractSoundexPhoneticFeatures: Tokenizes 
the string and adds the Soundex encoding of each 
token to the output set. We consider the original 
Soundex encoding algorithm (implemented in the 
Apache open-source package), a refined version 
(also implemented in the package) as well as eight 
variations implemented in the open-
source FEBRL package [14]. An example of a 
variation is to truncate each Soundex encoding to 
only the first four characters.  
28. ExtractAlphaNumeric: Extracts all tokens 
from the string such that a token contains at least 
one alphabet as well as a numerical digit (in 
addition to other optional characters). This GIF is 
used in the work of [23] 
Example: Consider an input string "Sony Camera 
HD678941". The output of this GIF would be 
{"HD678941"}. Notice how the GIF concisely 
provides discriminative information when 
identifying strings are present. For example, if in 
another database, the same product was described 
in a slightly different manner (e.g. "Sony High-
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Definition Camera, ID HD678941") the output of 
this GIF would be identical. Again, we note that 
the output is a subset of Tokens. 
Most of these GIFs are empirically tested in the 
previous research. For example, GIFs 18 to 27, 
although the examples above show the utility and 
limitations of the GIFs, we have also provided a 
brief rationale for using them. An interesting area 
of future work is to conduct feature-specific 
research to ascertain how correlated each of these 
GIFs are with the output of an instance matching 
system. Such a study would obviously hang on 
more to the datasets and on the types of noise in 
the datasets. We believe that such a study would 
also help in gaining insight into the nature of the 
instance matching task, and why it's proving to be 
such a stubbornly difficult AI task. 
  
3. PROPOSED UNSUPERVISED TRAINING 
SET GENERATOR (UTSG) 
Achieving automation is one of the primary 
objectives of any instance matching system. The 
lower the level of supervision in the instance 
matching system the higher the level of 
automation the system can achieve. In this work, 
we aim to improve the efficiency of instance 
matching technique by introducing important 
technique to the traditional matching method, 
termed, Unsupervised Training Set Generator 
(UTSG), shown in Figure 3. 

This technique is aimed to bootstrap the 
general matching process. The primary objective 
of UTSG is to provide input to the Property 
Aligner (PA) which is also a component to the 
traditional matching system. Both positive and 
negative training sets will be automatically 
generated with UTSG in linearly time frame. With 
UTSG, the training set to be produced are 
expected to contain minimum number of unpaired 
samples that can easy be accommodated by one 

the remaining components. Figure 3 describes the 
process flow of the proposed UTSG. 

The pairs of record in D’ list are measured with 
Jaccard similarity score [24]. If two bags of tokens 
t1 and t2 are given as input, their Jaccard similarity 
is defined as: 

  (1) 

One important characteristic of Jaccard similarity 
is that it is similarity function is local, meaning it 
depend not on external information set (like IDF) 
which requires searching over the entire dataset. 
As threshold and Log Tf-Idf are already applied to 
be a filter for removing unnecessary non-duplicate 
pairs, Jaccard score can serve to refine further the 
list of tokens and sort list D’. In fact, Jaccard 
similarity would eliminate many false-positive 
possibilities for being part of the list D. applying 
these two heuristics is of vital experimental benefit 
in filtering and sorting out tokens that can 
demonstrate high degree of overlap. 

The constraint enforce in the algorithm is that 
each record from the property table appears at 
most once in a set D’. intuitively, the restrictions 
tries to make the unsupervised training set very 
much representative by preventing unnecessary 
records to appear in the training set. This is mostly 
a challenge of many existing Training Set 
Generators that are mainly semi-supervised such 
as in the work by [25]. 

Example 1: let n = 3 and the sorted list in D’ in 
the algorithm is given as 

, where  
and  represents the records P1 and P2 in the 
property tables respectively. The matrix of the 
above list can be represented as: 
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Figure 3: Utsg Process Flow  

 i1 i2 i3 i4 i5 i6 i7 

j1       

j2        
j3       

j4        

j5       

j6        

j7       

With the positive training set will be , since the record i1 appeared 
most in the scoring pairs. 
Example 2: proceeding from example 1, the generated set , the possible 
non-duplicates set G by permuting D may be derived from the table below: 
 

 i1 i2 i3 i4 i5 i6 i7 

j1      

j2        
j3       

j4        

j5        

j6        

j7        
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The possible set , in 
practice these permutation yields a near perfect 
result in terms of accuracy on the generated sets. 
3.1 Evaluation 
Goal: To evaluate the domain-independence and 
scalability empirically using our proposed 
Unsupervised Training Set Generator (UTSG). We 
conducted evaluation on nine cross-domain test 
cases that cover about twenty data types with some 
of them multi-type.  

The statistics of nine paired test suites used in 
the evaluation of UTSG are summarized in Table 1. 
In all nine data contains pair of distinct serialized 
files. All data sets are real-world benchmarks made 
available via ontology matching and semantic web 
competitions (OAEI1). Almost, all the test cases 
share the same type information. Therefore, the 
type alignment problem has been taken care off in 
the data sets, so we do not consider it here. This is 
why the type alignment is excluded in our 
matching process flow diagram. This is a right 
benefit of using real-world benchmark data sets in 
an evaluation otherwise another module for type 
alignment has to be constructed in order to generate 
a reliable alignment. Our analysis criteria consists 
of the following parameters (data type, data size, 
data distribution, parameter thresh, number of 
instances and data transformation). The data 
transformation is characterized by data structure, 
data type and data semantics [26]. The important 
factors are the number of instances pairs as used in 
many previous training set algorithms such as the 
work of [27] to be compared among the instances 
pairs with a very small parameter thresh (thresh ≠ 
0). These factors are used to measure the 
conformance of the generated training samples 
with maximum precision and recall in which every 
potential attribute can be considered as a training 
sample. These training samples can be used to 
generate matching between the semantically related 
objects. The data distribution for the synthetic data 
used ranges from 0.0 to 1.0 (0.2, 0.4, 0.6, 0.8 and 
1.0) as shown in figures 4, 5 and 6. 

 
 
 

                                                 
1 Ontology Alignment Evaluation Initiative organizes annual 

campaign in order to evaluate ontology matching systems. 

Table 1: Test Suites Statistics 
Matching 
task 

Ontology’s classes Number 
of Pairs 

Total 
Instances 

Sanbox003 owl: 
NamedIndividual 
owl: 
NamedIndividual 

363 
367 
 

133221 

Person 1 Person_11: Person 
Person_12: Person 

2000 
1000 
 

2000000 

Person 2 Person_21: Person 
Person_22: Person 

2400 
800 
 

1920000 

IM_Identity  
 
 

identity_a: Book 
identity_b: Book 

1330 
2649 
 

3523170 

IM_Similarity Similarity_a:Book 
Similarity_b:Book 

1675 
1658 
 

2777150 

 
IIMB_005 
 

 
Film:Science_fiction 
Film:Science_fiction 

 
581 
222 
 

 
128982 

IIMB_010 
 

Film:Science_fiction 
Film:Science_fiction 

2150 
1568 
 

3371200 

IIMB_015 
 

Film:Science_fiction 
Film:Science_fiction 

8441 
1416 
 

11952456 

SABINE Source: Topic 
Target:  Topic 

706 
1127 

795662 
 

3.2 Measurement Metrics 

We apply commonly used measurement 
metrics, precision and recall as well as their 
harmonic mean (F-Measure) as the evaluation 
metrics. Precision is the fraction of relevant 
instances among the retrieved instances 
while Recall is the fraction of relevant instances 
that have been retrieved over the total amount of 
relevant instances. Both precision and recall are 
based on the measure of relevance. The ground 
truth in this experiment is the set of true positives 
in both our UTSG and the baseline TSGs. In this 
context the metrics are formally defined as: 

    
(2) 

        
(3) 

In real-world scenarios, the trade of between 
efficiency and effectiveness is frequently observed. 
Therefore, F-Measure is applied to represent this 
trade-off. It is used to approximate the average of 
precision and recall value. F-Measure can be 
defined mathematically as follows: 
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(4) 

3.3 Experimental Set-up  

To the best of our knowledge, DUMAS2 TSG [16] 
and a semi-supervised TSG proposed by [15] are 
the only existing works that detect matches in 
structurally heterogeneous data sets. Thus, we use 
them as the baseline in this experiment. Both 
approaches applied LogTfIdf to point the required 
duplicate set (process 2-3 in our flow chart, (fig.3)). 
In the first action, precision-recall trade-off is 
plotted by applying the Jaccard similarity score 
(process step 4 in the flow chart, (fig.3). We ran the 
paired t-test to measure the statistical significance 
by comparing F-Scores generated by our system 
against each of the baseline system. The parameter 
threshold is asset as 0.02 in the algorithm and it is 
sets to be in a self-tuning mode. Self-tuning mode 
will make the threshold acceptable for the variety 
of test suites.  

We used large number of instances (n value) in 
our experiment so that the underlying properties of 
the data sets can be represented. About 700 
instances are considered as n value of our 
algorithm. With this value of n, the algorithm is 
expected to eliminate all imperfectly classified 
pairs of instances to be present in the training set. 
In selecting these instances, the elements or 
attributes have to undergo series of sorting and re-
sorting so that all selected instances appeared once 
in the list (sort step in the flow diagram). Finally, 
the selected non-duplicate is rearranged and the 
results are recorded base on the precision, recall 
and F-score measures of 758 instances. For better 
justification, this procedure is repeated for our 
baseline TSGs techniques. The report of the 
experiment is presented and discussed in the 
subsequent sections. All experiments were 
conducted in Python programming environment 
with statistical test carried out in R programming 
language in order to obtain a reliable result. 

3.4 Results and Discussions 
Table 2 shows the results of our proposed 

UTSG against the baseline TSGs: KEJ_TSG and 
DUMAS_TSG. The result is recorded according to 
the highest obtained F-Measure either greater or 
equal to 80% in both precisions and recalls for all 
test cases. Our proposed method outperforms all 
baseline TSGs in both precision and recall which 
also resulted in having high F-measure in our 
approach as against the baseline TSGs. The poor 
                                                 

2 Duplicate-based Matching of Schemas 

performance with average F-Measure of 58% 
obtained by DUMAS_TSG in the experiment 
clearly indicates that supervised TSG is 
inappropriate for bootstrapping the matching and 
RDF data linkage. This is because the difference of 
35% between the F-Measure of our UTSG and that 
of DUMAS TSG is too significant. On the other 
hand, KEJ_TSG also performs considerability 
better than DUMAS TSG. The F-Measure obtained 
by KEJ_TSG is almost high than that obtained by 
DUMAS_TSG in the entire test cases, except in 
IIMB_010 and Sabine data sets. 

Despite the average F-Measure recorded by 
KEJ_TSG which is below our benchmark of 80%, 
we can still conclude that KEJ-TSG can fairly 
bootstrap the matching process in contrast to 
DUMAS_TSG. By extension, one can say that 
semi-supervised TSG is suitable for bootstrapping 
the matching and RDF data interlink than the 
complete supervised TSG. In contrast to KEJ_TSG, 
our proposed complete unsupervised method 
performs significantly better with the average F-
Measure of 93% as against 76% recorded in 
KEJ_TSG baseline. In the end, the hypothesis 
holds with statistically significant difference at (P-
value < 0.05).This empirical results show that 
developing TSG in complete unsupervised fashion 
will yield to a better performed ontology matching 
system. Even though, execution time not 
considered in this experiment but careful 
observation of the running times of both our 
proposed method and the baseline TSGs 
demonstrated competiveness in all the test cases 
and performed near linear. However, the general 
running time will be of great importance during the 
final run of the system (that is when all sub-
components under construction in our ongoing 
project are integrated to generate final and 
complete alignments).  
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Figure 4: Results showing the Performance of Proposed 

UTSG obtained in all Nine Test 
Cases

 
Figure 5: Results showing the Performance of Kejriwal 

TSG obtained in all Nine Test Cases 

 
Figure 6: Results showing the Performance of Dumas 

TSG obtained in all Nine Test Cases 

In Figure 4, 5 and 6, the recall, precision and F-
measure obtained in all the test cases by applying 
proposed UTSG is graphically represented.  Except 
in IM-Identity and Sabine test cases, all test cases 
achieved the maximum recall more than 90% 
which signifies the presence of high true-positives 
in the generated sets. This indicates that our 
proposed UTSG yields a positive result. The fall in 
recall below 90% experienced by IM-Identity and 
Sabine arose as a result of too much irregular data 
found in the two data sets and this is one of the 
important issues that the remaining components 
would take care off to improve the efficiency of the 
system in producing final output. This result clearly 
shows that our UTSG can also perform well in a 
cross domain scenarios as the nine test cases used 
for the experiment came from different domains. 
Furthermore, UTSG also addresses another 
drawback of most instance matchers for being non-
scalable systems. Regardless of the size of the 
ontologies, our UTSG effectively generated 
training samples in all the nine test cases in a near 
linear running time. This is why the running time is 
not a priority in this experiment but rather in the 
final output of the system.  

Even though, the semi supervised TSG 
proposed by Kejriwal (Figure 5) performs 
reasonably better than DUMAS TSG (Figure 6), 
both experience some falls in both recall and 
precision in many of the test cases. However, their 
performances are still low compared to that of 
UTSG. These falls led to a trade-off by having low 
F-Measures in the baseline TSGs compared to our 
proposed UTSG (Table 2). The average F-
Measures (Figure 7) shows that our approach with 
93% F-Score outperforms the two baseline TSGs 
(KEJ TSG and DUMAS TSG) with F-Score 76% 
and 58% respectively. This result also shows the 
suitability of our approach in addressing scalability 
and controlling the trade-off between effectiveness 
and efficiency of the matching systems. Yet, all the 
three TSGs demonstrated the ability of being 
Domain-independence. To the base of our 
knowledge, these baseline TSGs are the only 
learning-based TSGs found to be applicable in 
bootstrapping the RDF data matching and 
populating linked data.  
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Table 2: Comparative Analysis for the Proposed UTSG with Baseline TSGs

Proposed UTSG KEJ_TSG DUMAS_TSG

Test Suits Recall Precision F-Measure Recall Precision F-Measure Recall Precision F-Measure 

Sanbox003 1.00 1.00 1.00 0.83 0.83 0.83 0.53   0.40 0.46 

Persons 1 1.00 0.99 0.99 0.82 0.87 0.80 0.99   0.51 0.68 

Persons 2 0.98 1.00 0.99 0.83 0.57 0.68 0.67   0.32 0.43 

IM_Identity 0.89 0.95 0.92 0.84 0.81 0.82 0.85   0.42 0.56 

IM_Similarity 0.97 0.95 0.96 0.96 0.83 0.89 0.51   0.62 0.56 

IIMB_005 0.99 0.87 0.93 0.71 0.85 0.77 0.31   0.53 0.39 

IIMB_010 0.93 0.71 0.81 0.48 1.00 0.65 0.95   0.60 0.73 

IIMB_ 015 0.92 0.87 0.89 0.74 0.84 0.79 0.77   0.66 0.71 

Sabine 0.86 0.91 0.88 0.78 0.65 0.71 0.94   0.64 0.76 

AVERAGE 0.95 0.92 0.93 0.77 0.80 0.76 0.72  0.52 0.58 

 
 

 
Figure 7: Average F-Measures of UTSG with 

Baseline TSGs obtained from all Nine Test Cases 

Traditional instance-based matching techniques 
analyze candidate attributes separately; they extract 
attribute’s properties like average length of 
character, average length of strings, and ratio of the 
attribute length and so on. Attributes with 
corresponding properties are always assumed to be 
the same in meaning. This kind of approach is 
normally called, vertical matching as a result of 
comparing properties of table columns. In DUMAS 
method [16], horizontal matching is performed. 
They traverse tables to search similar tuples (rows)  

 
 

to detect duplicates. Their horizontal approach 
solves two important matching problems: (i) fuzzy 
duplicates detection and (2) generating a schema 
matching using the duplicates set. In this method, 
duplicates can be found even if the overlap is 
small. In [15], TSG is designed to tokenize each 
row (tuple) in a property table by applying a 
tokenizer, then transforms it into bag-of-words 
through a standard information retrieval method 
Term Frequencies and Inverse Document 
frequencies (TF-IDF). To the best of our 
knowledge, TSGs are applied to record linkage 
problem and they are considered to work in a 
supervised and semi-supervised fashion 
respectively and demonstrated low performance 
compared to our approach. 

All four types of validity threats have been 
monitored with due consideration to the type of 
research in prioritization. In this work, the priority 
for experiment is in the order: Internal, external, 
construct, and conclusion. In conducting this 
experiment, we identified and handled two 
important threats to validity: internal and external 
validity. Before the commencement of the 
experiment, we ensure that the experimental 
environment is appropriate to carry out the 
experiment. The amount of memory needed and 
CPU speed are ensured to be in conformity with the 
baseline methods used in this work. Thus, threat to 
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internal validity has taken care of. To ensure 
generalization of this work and easy replication in 
different environment, we tested our algorithm with 
nine benchmark datasets which are publically 
available in OAEI website which is cross-domain.  
The technique is also compared with two state-of-
the-art techniques of training set generation. Thus, 
threat to external validity addressed.  

4. CONCLUSION 

Linked Data success is the important aspect for 
web applications success. Most importantly, if the 
data to be linked across two or more RDF graph, or 
to be replicated in the same source of data (i.e. self-
match) may link to different domains, such as 
health, publication, people, production, agriculture, 
etc. for instance, with the growing quantity of 
online shopping websites, instance matching is the 
best technology that provides accurate and all-
inclusive price unification among similar products 
by linking all instances of related items together 
and presents it to user as required. A shopping site 
(such as AMAZON) can be able to precisely 
identify similar products alongside their prices with 
the power of semantic interoperability and record 
matching. 

For web search applications (named, search 
engines), instance matching is an important 
technology that facilitates the removal of duplicate 
query results. Moreover, instance matching 
technique is also broadly applied to knowledge 
management systems that provide a mechanism to 
drive new knowledge through integrating similar 
data when preparing for data mining and statistical 
analysis. 

The significance of instance matching gains 
more relevance if one consider that lot of real-
world object (such as, place, people, event) are 
being represented on the web within many 
documents in a heterogeneous form of 
representation of individuals or instances. 
Furthermore, instance-based matching is highly 
needed in the areas of ontology management as it 
tremendously assists domain experts in performing 
ontology manipulations via advancement and 
improvements in the ontology engineering 
techniques and models. For example, instance-
based matching boosts ontology population (i.e., 
make a new inclusion of an individual in an 
ontology) and also to identify the similarity 
possibility to map incoming instance with the 
existing ones. 

The output of our UTSG shows that, the 
implementation of the algorithm can successfully 

take care of data irregularity (heterogeneity) which 
is a necessary concern in different problems that 
are data-intensive. It is observed that with efficient 
UTSG, it is possible to have a complete 
unsupervised instance matching system that could 
not compromise quality. This will allowed us to 
achieve the desired aim of developing an instance 
matching system that can satisfy the scalability and 
automation requirements despite the heterogeneous 
nature of the RDF graph data. However, 
discovering when the UTSG will be selected 
automatically over a self-adaptive classifier is a 
serious limitation of this work which is open for 
further research.  

There are many direction of work intended to 
undertake in a near future. This includes cloud 
implementation of this method as MapReduce to 
ensure real time scalability test. 
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