
Structured Output Prediction

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

SOP

Structured Output Prediction: the task

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.
S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…
Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

The task
The input is (typically) a structured object
The output is also a structured-object (rather than a scalar)
e.g.:

A sequence (part-of-speech tagging, protein secondary
structure prediction)
A tree (parse-tree prediction)
A graph (link detection, protein 3D structure prediction)

Image from Joachims et al, 2009

SOP

Structured Output Prediction: the issue

The issue
Standard supervised
learning learns a function

f : X → Y

However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)
The problem cannot be
formalized as multiclass
classification

98 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

the modeled compatibility between inputs x and classes y.
To classify x, the prediction rule h(x) then simply chooses the
highest-scoring class

 h(x) y argmax f (x, y) (1)
y � Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have
been chosen such that the inequalities f (x, y–) < f (x, y) hold for
all incorrect outputs y– z y.

For a given training sample (x1, y1), …, (xn, yn), this leads
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

 mi
w

n
1_
2

 __w__2, s.t. f (xi, yi) ��f (xi, y
–) ≥ 1 (�i, y– z yi) (2)

For a k-class problem, the optimization problem has a
total of n(k − 1) inequalities that are all linear in w, since one
can expand f (xi, yi) ��f (xi, y

–) = (wyi

� wy–) ��)(xi). Hence, it is a
convex quadratic program.

The first challenge in using (2) for structured outputs is
that, while there is generalization across inputs x, there is
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since
the number of possible outputs can become very large (or
infinite), naively reducing structured output prediction to
multiclass classification leads to an undesirable blowup in
the overall number of parameters.

The key idea in overcoming these problems is to extract
features from input–output pairs using a so-called joint fea-
ture map <(x, y) instead of)(x). This yields compatibility
functions with contributions from combined properties of
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even
for outputs that were never actually observed in the training
data. At the same time, since we will define compatibility
functions via f (x, y) { w ��<(x, y), the number of parameters
will simply equal the number of features extracted via <,
which may not depend on _Y _. One can then use the formu-
lation in (2) with the more flexible definition of f via < to
arrive at the following (hard-margin) optimization problem
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just
one parameter for each class, we would already have more
parameters than we could ever hope to have enough training
data for. Second, just making a single prediction on a new
example is a computationally challenging problem, since
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least,
we need efficient training algorithms that have a run-time
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by
one, starting with the formulation of the structural SVM
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural
SVM from the multiclass SVM.6 These multiclass SVMs use
one weight vector wy for each class y. Each input x now has
a score for each class y via f (x, y) { wy ��)(x). Here) (x) is a
vector of binary or numeric features extracted from x. Thus,
every feature will have an additively weighted influence in

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of
 proteins (middle), and predicting an equivalence relation over noun phrases (right).

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

A
PP

G
EA

YL
Q

PG
EA

YL
Q

V

[Obama]running
in the [presidental
election] has
mobilized [many
young voters].
[His][position] on
[climate change]
was well received
by [this group].

Obama

presidential election

many young voters

His

position

climate change

this group

Figure 2. Structured output prediction as a multiclass problem.

Th
e

do
g

ch
as

ed
 th

e
ca

t.

S

NP VP

NDet NPV

Det N

S

NP VP

NDet PPV

IN N

S

NP

VP

NDet

V

S

S

VPNP

V

…

Class 1

Class 2

Class 3

Class k

NP

NP

N

CC

CC

N

S

VPNP

VN

Image from Joachims et al, 2009

SOP

Structured Output Prediction: approachesy⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

Energy-based models

y∗ = argminy∈YE(x , y)

An energy function predicts the energy of each
input-output pair
Prediction is achieved by getting minimal energy output for
a given input
Inference methods are needed to solve the argmin
problem (learning with inference)

SOP

Energy-based models

E(Y, X)E(Y, X)

Figure 3: How training affects the energies of the possible answers in the discrete case: the
energy of the correct answer is decreased, and the energies of incorrect answers are increased,
particularly if they are lower than that of the correct answer.

Ȳ
i

Y
i

(Y)

E
(W

,·
,X

i
)

Ȳ
i

Y
i

(Y)

E
(W

,·
,X

i
)

Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-
tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect
answers.

9

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E(x, y)

yi

ȳi

E(xi, yi;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw,x1 � x2i = 0

U(x) = hw,�(x)i

x⇤ = argmax
x2Xfeasible

hw,�(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

1

y⇤

E
(x
,y
)

yi ȳi

E
(x

i ,
y;
w
)

�
=

>

�
=

¬Y
1
_
¬Y

2

m
ax

w
,x

,µ
,"

µ
�

↵
k X i=
1

k"
i k

1
�

�
k X i=
1

kw
i k

1
+

�
k X i=
1

hw
i ,
x
i i

s.
t.

hw
i ,
x̄
h +
�

x̄
h �
i�

µ
�

"i h

hw
i ,
x
i
�

x
j
i�

µ

w
i
2

W
fe
a
si
b
le

x
i
2

X
fe
a
si
b
le

,"
i
�

0

8i
,j

2
[1
,k

],
i
6=

j,
h
2

[1
,|
D
|]

hw
,x̄

h +
�
x̄
h �
i=

0

hw
,x

1
�
x
2
i=

0

U
(x

)
=

hw
,�

(x
)i

x
⇤
=

ar
gm

ax
x
2
X

fe
a
s
ib

le

hw
,�

(x
)i

U
(x
,y
)
=

hw
,'

(x
,y
)i

y⇤
=

ar
gm

ax
y
2
Y

fe
a
s
ib

le

hw
,'

(x
,y
)i

1y⇤

E
(x
,y
)

yi ȳi

E
(x

i ,
y;
w
)

�
=

>

�
=

¬Y
1
_
¬Y

2

m
ax

w
,x

,µ
,"

µ
�

↵
k X i=
1

k"
i k

1
�

�
k X i=
1

kw
i k

1
+

�
k X i=
1

hw
i ,
x
i i

s.
t.

hw
i ,
x̄
h +
�

x̄
h �
i�

µ
�

"i h

hw
i ,
x
i
�

x
j
i�

µ

w
i
2

W
fe
a
si
b
le

x
i
2

X
fe
a
si
b
le

,"
i
�

0

8i
,j

2
[1
,k

],
i
6=

j,
h
2

[1
,|
D
|]

hw
,x̄

h +
�
x̄
h �
i=

0

hw
,x

1
�
x
2
i=

0

U
(x

)
=

hw
,�

(x
)i

x
⇤
=

ar
gm

ax
x
2
X

fe
a
s
ib

le

hw
,�

(x
)i

U
(x
,y
)
=

hw
,'

(x
,y
)i

y⇤
=

ar
gm

ax
y
2
Y

fe
a
s
ib

le

hw
,'

(x
,y
)i

1

Learning
Adjust weights of energy function to drive correct output to
have minimal energy
Based on loss functions between correct output and
incorrect ones
Typically focus on most offending incorrect answer:

ȳ i = argminy∈Y,y ̸=y i E(x i , y i ;w)

Image adapted from LeCun et al, 2006
SOP

Structured Output Prediction: approaches

Search-based models
State-space search
process
Initial state with empty
output
Heuristic function to
choose next state (partial
output)
Terminal states are states
with complete output
No need for global
inference algorithm
(learning for inference)

shown great success in a large number of NLP applications.
ILP formulations were found to be helpful in modeling a large
number of problems; the inference problems can be solved
exactly or via various relaxation methods and are shown to
work very well in practice. A recent work [Meshi et al.,
2016] provided a theoretical insight that explains this success:
a large number of relaxed solutions are integral (relaxations
are tight), and this tightness on training instances generalizes
to testing instances (PAC theory for ILP based inference).
Decomposed learning. The decomposed learning frame-
work [Samdani and Roth, 2012; Sontag et al., 2010] improves
the speed of training by performing inference over a subset of
the structured output space Y ′(x) ⊂ Y (x). The size of Y ′(x)
is determined by a parameter k and grows exponentially as a
function of k. The general construction considers all candi-
date structured outputs whose Hamming loss with respect to
correct output y∗ is at most k (referred as neighborhood of
y∗): Y ′(x) = {y ∈ Y (x) : Hamm-Loss(y, y∗) ≤ k}. Sam-
dani and Roth [Samdani and Roth, 2012] provide theoreti-
cal conditions under which decomposed learning is equiva-
lent to standard learning that considers entire output space
Y (x). In practice, decomposed learning is shown to achieve
same accuracy as standard learning with a small value of k
(e.g., 1,2,3) [Samdani and Roth, 2012; Sontag et al., 2010]:
significantly improves the training time.
Amortized inference and structured learning. We need
to solve inference problems for multiple structured inputs
during both training and testing. The naive approach is to
run an inference solver independently on each input exam-
ple. It is conceivable that we can learn useful knowledge
while solving inference problems on past examples to im-
prove the speed of inference on future examples. This is
referred to as amortizing the cost of inference [Srikumar et
al., 2012], which is highly related to the speedup learning
literature [Fern, 2010]. Recent work has exploited the ILP
inference formulation as an abstraction to provably achieve
amortized inference [Srikumar et al., 2012] and significantly
improve the speed of inference and of training cost functions
[Chang et al., 2015b]. The key idea is to store a set of cached
solutions for ILP problems and reuse them for new inference
problems without calling the inference solver when theoreti-
cal conditions are met. For NLP applications, many sentences
have identical structured outputs such as POS tag sequences,
parse trees, semantic parses etc. Therefore, the amortization
theorems “fire” often and result in significant savings. By
viewing inference procedures as computational search pro-
cesses will allow us to study generic approaches to address
speedup learning problems arising in structured prediction.
Some examples include treating ILP inference as a white box
(i.e., branch and bound search) to learn heuristic functions to
achieve amortized inference.
Theoretical results. Early theoretical results for general-
ization were based on covering number bounds for decom-
posable loss functions and linear scoring functions [Taskar et
al., 2003]; and PAC Bayesian theory. Recent results based
on factor graph complexity provide improved bounds, and
served as a motivation to derive the voted risk minimization
principle to achieve better generalization by learning a en-

Figure 1: An example search space for handwriting recognition.

semble of simpler scoring functions [Cortes et al., 2016].

Structured prediction cascades. This approach addresses
inference complexity via cascade training [Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010], where efficiency
is achieved by performing multiple runs of inference from
a coarse level to a fine level of abstraction using learned
cost functions of varying complexity. We can view this as
a form of progressive filtering of candidate structured outputs
by trading-off the accuracy (number of errors) and efficiency
(number of filtered outputs) of filtering at each level. [Weiss
and Taskar, 2010] developed a forward training approach to
learn the weights of different cost functions employed in the
cascade. These methods have shown good success in prac-
tice, but they need to place some restrictions on the form of
the cost functions to facilitate “cascading.”

4 Search-based Learning Approaches
In this section, we discuss different search-based learning ap-
proaches and their distinction with traditional cost function
learning methods. Search-based approaches formulates in-
ference as an explicit search problem.

Overview. Search-based methods formulate the problem of
structured prediction as an explicit state-space search process
using a search architecture (search space, search procedure,
and termination criteria). They learn appropriate search con-
trol knowledge (e.g., heuristics, cost functions) using training
data to optimize the accuracy of this search architecture in
making predictions. Unlike traditional approaches, there is
no need to solve a global optimization problem at prediction
time. In effect, the system learns how to do inference (aka
learning for inference) when compared to learning with in-
ference) style of cost function learning approaches.

Potential advantages. Some advantages of search-based
methods include: 1) Scale gracefully with the representa-
tion complexity. We can employ higher-order features for
functions that guide the search without increasing the infer-
ence complexity. 2) Since inference is modeled as “white-
box”, learning process can observe search errors and perform
robust training. It can help with debugging from a practi-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

6293

SOP

Search-based models

learning
Adjust weights of heuristic function to have high score for
correct moves given current state
on-trajectory training, current state is always a correct one.
off-trajectory training, current state is highest scoring state
even if incorrect

SOP

Energy-based models: Structured SVM
LARGE MARGIN METHODS FOR STRUCTURED AND INTERDEPENDENT OUTPUT VARIABLES

Figure 1: Illustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natural language parsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and empirical results.

The rest of the paper is organized as follows: Section 2 presents the general framework of
large margin learning over structured output spaces using representations of input-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algorithm for solving the resulting
optimization problems. Sections 4 and 5 discuss numerous important special cases and experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning functions f : X → Y between input spaces
X and arbitrary discrete output spaces Y based on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical application in the sequel,
consider the case of natural language parsing, where the function f maps a given sentence x to a
parse tree y. This is depicted graphically in Figure 1.

The approach we pursue is to learn a discriminant function F : X ×Y → R over input-output
pairs from which we can derive a prediction by maximizing F over the response variable for a
specific given input x. Hence, the general form of our hypotheses f is

f (x;w) = argmax
y∈Y

F(x,y;w) , (1)

where w denotes a parameter vector. It might be useful to think of F as a compatibility function
that measures how compatible pairs (x,y) are, or, alternatively, −F can be thought of as a w-
parameterized family of cost functions, which we try to design in such a way that the minimum of
F(x, ·;w) is at the desired output y for inputs x of interest.

Throughout this paper, we assume F to be linear in some combined feature representation of
inputs and outputs Ψ(x,y), i.e.

F(x,y;w) = ⟨w,Ψ(x,y)⟩ . (2)

The specific form of Ψ depends on the nature of the problem and special cases will be discussed
subsequently. However, whenever possible we will develop learning algorithms and theoretical

1455

Joint input-output feature map

f (x , y) = wTΨ(x , y) = −E(x , y)

Joint input-output feature map Ψ(x , y)
Features capture interaction between input and output
variables and between output variables among themselves
Energy function is a linear function of the feature map
The function can be kernelized

Image from Tsochantaridis et al., 2005SOP

Structured SVM: learning

minw,ξ
1
2
||w||2 + C

∑
i

ξi

subject to:

wTΨ(xi , yi)−wTΨ(xi , y ′) ≥ ∆(yi , y ′)− ξi

∀i , y ′ ≠ yi

Max-margin formulation

∆(yi , y ′) is the cost for predicting y ′ instead of yi
(structured-output loss)
The formulation aims at separating correct predictions from
incorrect predictions with a large margin
Hard to solve directly (exponential number of constraints!!)

SOP

Structured SVM: learning
Cutting plane algorithm

1 Initialize weights and constraints Si = ∅ ∀i
2 While constraint added

1 For each example i

ξi = maxy ′∈Si∆(yi , y ′) + wTΨ(xi , y ′)−wTΨ(xi , yi)

ξnew
i = maxy ′ ̸=yi∆(yi , y ′) + wTΨ(xi , y ′)−wTΨ(xi , yi)

2 If ξnew
i − ξ > ϵ

3 Add constraint and update Si
4 retrain

Alternatives
Stochastic subgradient descent
Block-coordinate Frank-Wolfe optimization

SOP

Structured SVM: inference

(Loss augmented) argmax inference
inference at prediction time

y∗ = argmaxy∈YwTΨ(x , y)

loss augmented inference at training time (most offending
incorrect answer)

ȳ ′ = argmaxy ′ ̸=yi
∆(yi , y ′) + wTΨ(xi , y ′)−wTΨ(xi , yi)

Approaches
Viterbi algorithm for sequence labelling
CYK algorithm for parse tree prediction
Loopy belief propagation (approximate)
Amortized inference (use previous solutions to speed up
related inference tasks)

SOP

Structured SVM: PROs and CONs

PROs
Max-margin approach
Guarantees on number of iterations (depends on ϵ,
independent on number of output structures)
Can deal with arbitrary constrains on output structure

CONs
Inefficient, (loss augmented) inference required at every
training iteration
The function to be learned is complex, high-order feature
typically required (making inference even more expensive)

SOP

Search-based models: ordered vs unordered

Ordered search space
Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)
Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space
Learner dynamically orders decisions
Easy-first approach (make easy decisions first)

SOP

Search-based models: classifier-based

Setting

Ordered search space
Reduction to multi-class classification on next decision
Training examples:

input is set of outputs up to position t
output is correct output for position t + 1

imitation learning (training examples as expert
demonstrations)

SOP

Classifier-based structured prediction: exact imitation

55

Exact Imitation: Classification examples

, - - - - - - 𝑓𝑓 𝑠𝑠

𝑓𝑓 𝑡𝑡

𝑓𝑓 𝑟𝑟

𝑓𝑓 𝑢𝑢

𝑓𝑓 𝑐𝑐

𝑓𝑓 𝑡𝑡

, s - - - - -

, s t - - - -

, s t r - - -

, s t r u - -

, s t r u c -

Input Output
�For each training example

Image from Fern et al., 2016

SOP

Exact imitation problem: error propagation

57

Learned Recurrent Classifier: Illustration

�Error propagation:
�errors in early decisions propagate to down-stream decisions

SOP

Error propagation

Problem
Errors in early decisions propagate to down-stream ones
System is not trained to deal with decisions given incorrect
states

Solution
Generate trajectories using current policy
Use optimal policy to generate optimal next states given
states visited by current policy

SOP

DAgger (Dataset Aggregation)

The algorithm
1 Collect training set D of N trajectories using ground-truth

policy π∗

2 Repeat
1 π ← LEARNCLASSIFIER(D)
2 Collect set of states S along trajectories computed using π
3 For each s ∈ S

1 D ← D ∪ {(s, π∗(s))}
3 Return π

SOP

Search-based models: easy-first approach

CONs of classifier-based approaches
Need to define an ordering over output variables
Some decision are harder than others→ fixed ordering
can be suboptimal

Easy-first approach: rationale
Make easy decisions first to constraint harder ones
Learn to dynamically order decisions
Analogous to constraint satisfaction algorithms

SOP

Example: Cross-document coreference

65

Example: Cross-Document Coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.

Police said Lo Presti has hanged himself.

had hanged

has hanged

Easy

One of the key suspected mafia bosses

Lo Presti

Hard

Doc 1

Doc 2

SOP

Easy-first approach: inference

70

Easy-First Approach: Key Elements

• Search space
– A state corresponds to a partial solution
– In each state, we consider a set of fixed possible actions

had hanged

has hanged

One of the key suspected mafia bosses

Lo Presti

Four possible merge actions

The Police
? ? ?

?

good actionsbad actions

Easy action first
State s is partial solution
Set of possible actions a ∈ A(s) from a state (no ordering)
Action scoring function f (s, a) = wTΨ(s, a)
Proceed making highest scoring (most-confident) action
first

SOP

Easy-first approach: learning

Easy-first policy learning
while not termination condition do

for (x , y) ∈ D do
s ← I(x)
while not ISTERMINAL(s) do

ap ← maxa∈A(s) wTΨ(s, a)
if ap ∈ B(s) then

UPDATE(w ,G(s),B(s))
end if
ac ← CHOOSEACTION(A(s))
s ← Apply ac on s

end while
end for

end while

SOP

Easy-first policy learning

UPDATE(w ,G(s),B(s))

Variants
Highest scoring good action better than highest scoring
bad action (perceptron update)
Highest scoring good action better than all bad actions

ac ← CHOOSEACTION(A(s))

Variants
Choose highest scoring good action (ac ∈ G(s),
on-trajectory training)
Choose highest scoring action (ac ∈ G(s) ∪ B(s),
off-trajectory training)

SOP

Combining energy-based and search-based
approaches

HC-search framework
Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)
Score candidates with energy function and select minimal
energy output (C = cost/energy function)

SOP

Deep energy-based methods

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷTBF (x) + cT2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷTBF (x) + cT2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷTBF (x) + cT2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

E(F (x), ŷ) = ŷTBF (x) + cT2 g(C1ŷ)

F (x) = g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

ŷTB F (x) + cT2 g(C1ŷ)

g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

x

ŷ

F (x)

E(F (x), ŷ)

ŷTB F (x) + cT2 g(C1ŷ)

g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y;w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ� ↵
kX

i=1

k"ik1 � �
kX

i=1

kwik1 + �
kX

i=1

hwi,xii

s.t. hwi, x̄h
+ � x̄h

�i � µ� "ih

hwi,xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

1

Structured Prediction Energy Networks (SPEN)
Energy function modelled as a deep network
Replaces outputs y ∈ {0, 1}L with relaxations ŷ ∈ [0, 1]L

Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)
Inference by gradient descent over ŷ (+ rounding if needed)

SOP

SPEN

PROs
Efficient inference by gradient descent
No need to pre-specify input-output features (input-output
representation learning)

CONs
No algorithmic guarantees (local optimization of energy)
No management of explicit constraints
No support for hard constraints

SOP

Deep search-based methods

Transformers for content generation
Autoregressive models: predict next token given input
tokens + currently generated ones
Attention-based models: use attention to learn token
embeddings that depend on other tokens in the context
Trained with combinations of:

self-supervised learning
supervised fine tuning
reinforcement learning with human feedback

SOP

Memory augmented Transformer

Transformer problems
Cannot access up-to-date information
Storing all knowledge in the model parameters does not
scale
Enriching prompts with potential knowledge (RAG) also
does not scale

Solution
Give transformers ability to use a key-value memory
Encode Q&A pairs in the memory

SOP

Memory augmented Transformer: key embedding

Procedure
1 concatenate

PREFIX with query
2 pass through

encoder, get k th

layer
3 pass through conv

layer, get prefix as
key

… …

… …

… …

… …

concatenate
concat layer

Query

ConvLayer

Key-Value Memory

key layerReturn Key-Value Pairs

add
value layer

“answer: Barack Obama”PREFIX

“ques�on: who is … ?”PREFIX

Key

ConvLayer

Value

Decoder

Decoder

“who is … ?”

“Barack Obama”

key layer

value layer

… …

… …

Decoder

Output

PREFIX Input

Figure 1: Architecture of the proposed Efficient Key-Value Memory Augmented Transformers (EMAT): factual
knowledge is stored in a key-value memory (Section 3.1) where keys and values correspond to questions and
answers, respectively; during inference, the model retrieves information from the memory via MIPS (Section 3.2)
and uses it to condition the generation process.

3 Efficient Memory-Augmented
Transformer

In this work we propose Efficient Memory-
Augmented Transformer (EMAT), a model archi-
tecture that uses a key-value memory to store mil-
lions of dense question-answer representations to
inform its predictions (see Fig. 1). Given an input
sequence X = (x1, · · · , x|X|), EMAT’s encoder
first produces a dense query q to retrieve from the
memory M. The returned key-value representa-
tions corresponding to the retrieved k key-value
pairs are Z = (z1, · · · , zk). Finally, the decoder
generates the target sequence Y = (y1, · · · , y|Y |)
conditioned on the input X and retrieved key-value
pairs Z.

3.1 Key-Value Memory
The key-value memory M = (K,V) contains rep-
resentations of keys K and values V, with each
key ki mapping to one value vi. Since we use
PAQ (Lewis et al., 2021b) as our knowledge source,
each key represents a question, and its value repre-
sents the corresponding answer. We use EMAT’s
encoder to encode the question and the answer sep-
arately, and it produces key and value embeddings
from lk-th and lv-th layer of encoder respectively.

Fig. 1 (left) shows details regarding how key
(question) and value (answer) are encoded in
EMAT. To encode the key embeddings, we first
concatenate a prefix PREFIX of length P with the
question q as input, and then obtain the hidden
states at the lk-th layer hlk = [hlk

1 , · · · ,hlk
n], where

n is the length of the question q prepended with
PREFIX. Then, hlk is passed through a convolu-
tional neural network layer to produce [c1, · · · , cn],
and we use the prefix part as our final key repre-
sentation k = [c1, · · · , cP] 2 RP⇥h . For value
embeddings, we prepend a prefix to the answer,
feed [PREFIX; a] into the model, and use the pre-
fix’s representation at the lv-th layer of encoder
v = [hlv

1 , · · · ,h
lv
P] 2 RP⇥h as our value represen-

tation, where h is the size of hidden representa-
tions.

3.2 Memory Retrieval

The goal of the retriever is to retrieve relevant en-
tries from the key-value memory M to inform the
downstream generation tasks. EMAT’s encoder
embeds the question into a query q using the same
procedure as the key embeddings, described in Sec-
tion 3.1. We conduct an extra step of flattening
for both q and k by averaging: k̄ = flatten(k) =

SOP

Memory augmented Transformer: value embedding

Procedure
1 concatenate

PREFIX with answer
2 pass through

encoder, get v th

layer
3 get prefix as value

… …

… …

… …

… …

concatenate
concat layer

Query

ConvLayer

Key-Value Memory

key layerReturn Key-Value Pairs

add
value layer

“answer: Barack Obama”PREFIX

“ques�on: who is … ?”PREFIX

Key

ConvLayer

Value

Decoder

Decoder

“who is … ?”

“Barack Obama”

key layer

value layer

… …

… …

Decoder

Output

PREFIX Input

Figure 1: Architecture of the proposed Efficient Key-Value Memory Augmented Transformers (EMAT): factual
knowledge is stored in a key-value memory (Section 3.1) where keys and values correspond to questions and
answers, respectively; during inference, the model retrieves information from the memory via MIPS (Section 3.2)
and uses it to condition the generation process.

3 Efficient Memory-Augmented
Transformer

In this work we propose Efficient Memory-
Augmented Transformer (EMAT), a model archi-
tecture that uses a key-value memory to store mil-
lions of dense question-answer representations to
inform its predictions (see Fig. 1). Given an input
sequence X = (x1, · · · , x|X|), EMAT’s encoder
first produces a dense query q to retrieve from the
memory M. The returned key-value representa-
tions corresponding to the retrieved k key-value
pairs are Z = (z1, · · · , zk). Finally, the decoder
generates the target sequence Y = (y1, · · · , y|Y |)
conditioned on the input X and retrieved key-value
pairs Z.

3.1 Key-Value Memory
The key-value memory M = (K,V) contains rep-
resentations of keys K and values V, with each
key ki mapping to one value vi. Since we use
PAQ (Lewis et al., 2021b) as our knowledge source,
each key represents a question, and its value repre-
sents the corresponding answer. We use EMAT’s
encoder to encode the question and the answer sep-
arately, and it produces key and value embeddings
from lk-th and lv-th layer of encoder respectively.

Fig. 1 (left) shows details regarding how key
(question) and value (answer) are encoded in
EMAT. To encode the key embeddings, we first
concatenate a prefix PREFIX of length P with the
question q as input, and then obtain the hidden
states at the lk-th layer hlk = [hlk

1 , · · · ,hlk
n], where

n is the length of the question q prepended with
PREFIX. Then, hlk is passed through a convolu-
tional neural network layer to produce [c1, · · · , cn],
and we use the prefix part as our final key repre-
sentation k = [c1, · · · , cP] 2 RP⇥h . For value
embeddings, we prepend a prefix to the answer,
feed [PREFIX; a] into the model, and use the pre-
fix’s representation at the lv-th layer of encoder
v = [hlv

1 , · · · ,h
lv
P] 2 RP⇥h as our value represen-

tation, where h is the size of hidden representa-
tions.

3.2 Memory Retrieval

The goal of the retriever is to retrieve relevant en-
tries from the key-value memory M to inform the
downstream generation tasks. EMAT’s encoder
embeds the question into a query q using the same
procedure as the key embeddings, described in Sec-
tion 3.1. We conduct an extra step of flattening
for both q and k by averaging: k̄ = flatten(k) =

SOP

Memory augmented Transformer: memory retrieval

Procedure
1 encode query same

as key embedding
2 perform inner

product with
memory keys

3 retrieve top-k
key-value pairs

4 keys are sorted by
similarity and
prepended at layer c

5 values are sorted by
similarity and added
at layer v

… …

… …

… …

… …

concatenate
concat layer

Query

ConvLayer

Key-Value Memory

key layerReturn Key-Value Pairs

add
value layer

“answer: Barack Obama”PREFIX

“ques�on: who is … ?”PREFIX

Key

ConvLayer

Value

Decoder

Decoder

“who is … ?”

“Barack Obama”

key layer

value layer

… …

… …

Decoder

Output

PREFIX Input

Figure 1: Architecture of the proposed Efficient Key-Value Memory Augmented Transformers (EMAT): factual
knowledge is stored in a key-value memory (Section 3.1) where keys and values correspond to questions and
answers, respectively; during inference, the model retrieves information from the memory via MIPS (Section 3.2)
and uses it to condition the generation process.

3 Efficient Memory-Augmented
Transformer

In this work we propose Efficient Memory-
Augmented Transformer (EMAT), a model archi-
tecture that uses a key-value memory to store mil-
lions of dense question-answer representations to
inform its predictions (see Fig. 1). Given an input
sequence X = (x1, · · · , x|X|), EMAT’s encoder
first produces a dense query q to retrieve from the
memory M. The returned key-value representa-
tions corresponding to the retrieved k key-value
pairs are Z = (z1, · · · , zk). Finally, the decoder
generates the target sequence Y = (y1, · · · , y|Y |)
conditioned on the input X and retrieved key-value
pairs Z.

3.1 Key-Value Memory
The key-value memory M = (K,V) contains rep-
resentations of keys K and values V, with each
key ki mapping to one value vi. Since we use
PAQ (Lewis et al., 2021b) as our knowledge source,
each key represents a question, and its value repre-
sents the corresponding answer. We use EMAT’s
encoder to encode the question and the answer sep-
arately, and it produces key and value embeddings
from lk-th and lv-th layer of encoder respectively.

Fig. 1 (left) shows details regarding how key
(question) and value (answer) are encoded in
EMAT. To encode the key embeddings, we first
concatenate a prefix PREFIX of length P with the
question q as input, and then obtain the hidden
states at the lk-th layer hlk = [hlk

1 , · · · ,hlk
n], where

n is the length of the question q prepended with
PREFIX. Then, hlk is passed through a convolu-
tional neural network layer to produce [c1, · · · , cn],
and we use the prefix part as our final key repre-
sentation k = [c1, · · · , cP] 2 RP⇥h . For value
embeddings, we prepend a prefix to the answer,
feed [PREFIX; a] into the model, and use the pre-
fix’s representation at the lv-th layer of encoder
v = [hlv

1 , · · · ,h
lv
P] 2 RP⇥h as our value represen-

tation, where h is the size of hidden representa-
tions.

3.2 Memory Retrieval

The goal of the retriever is to retrieve relevant en-
tries from the key-value memory M to inform the
downstream generation tasks. EMAT’s encoder
embeds the question into a query q using the same
procedure as the key embeddings, described in Sec-
tion 3.1. We conduct an extra step of flattening
for both q and k by averaging: k̄ = flatten(k) =

SOP

Toolformer: self-learning to use tools

Transformer problems
Problems in performing precise calculations
Tendency to hallucinate facts

Solution
Give transformers ability to use external tools
Allow them to learn when and how to use tools (with little
human annotation)

SOP

Toolformer: examples

Toolformer: Language Models Can Teach Themselves to Use Tools

Timo Schick Jane Dwivedi-Yu Roberto Dessì† Roberta Raileanu
Maria Lomeli Luke Zettlemoyer Nicola Cancedda Thomas Scialom

Meta AI Research †Universitat Pompeu Fabra

Abstract

Language models (LMs) exhibit remarkable
abilities to solve new tasks from just a few
examples or textual instructions, especially at
scale. They also, paradoxically, struggle with
basic functionality, such as arithmetic or fac-
tual lookup, where much simpler and smaller
models excel. In this paper, we show that
LMs can teach themselves to use external tools
via simple APIs and achieve the best of both
worlds. We introduce Toolformer, a model
trained to decide which APIs to call, when to
call them, what arguments to pass, and how to
best incorporate the results into future token
prediction. This is done in a self-supervised
way, requiring nothing more than a handful of
demonstrations for each API. We incorporate
a range of tools, including a calculator, a Q&A
system, a search engine, a translation system,
and a calendar. Toolformer achieves substan-
tially improved zero-shot performance across
a variety of downstream tasks, often competi-
tive with much larger models, without sacrific-
ing its core language modeling abilities.

1 Introduction

Large language models achieve impressive zero-
and few-shot results on a variety of natural lan-
guage processing tasks (Brown et al., 2020; Chowd-
hery et al., 2022, i.a.) and show several emergent
capabilities (Wei et al., 2022). However, all of
these models have several inherent limitations that
can at best be partially addressed by further scal-
ing. These limitations include an inability to access
up-to-date information on recent events (Komeili
et al., 2022) and the related tendency to hallucinate
facts (Maynez et al., 2020; Ji et al., 2022), difficul-
ties in understanding low-resource languages (Lin
et al., 2021), a lack of mathematical skills to per-
form precise calculations (Patel et al., 2021) and an
unawareness of the progression of time (Dhingra
et al., 2022).

8LI�2I[�)RKPERH�.SYVREP�SJ�1IHMGMRI�MW�E�VIKMWXIVIH�
XVEHIQEVO�SJ�?5%�ƈ;LS�MW�XLI�TYFPMWLIV�SJ�8LI�2I[�
)RKPERH�.SYVREP�SJ�1IHMGMRI#Ɖ
�ĺ�1EWWEGLYWIXXW�
1IHMGEP�7SGMIX]A�XLI�117�

3YX�SJ������TEVXMGMTERXW�������SV�?'EPGYPEXSV�����������
�
ĺ�����A���	
�TEWWIH�XLI�XIWX��

8LI�REQI�HIVMZIW�JVSQ�ƈPE�XSVXYKEƉ��XLI�7TERMWL�[SVH�JSV�
?18�ƈXSVXYKEƉ
�ĺ�XYVXPIA�XYVXPI�

8LI�&VS[R�%GX�MW�'EPMJSVRMEƅW�PE[�?;MOM7IEVGL�ƈ&VS[R�
%GXƉ
�ĺ�8LI�6EPTL�1��&VS[R�%GX�MW�ER�EGX�SJ�XLI�
'EPMJSVRME�7XEXI�0IKMWPEXYVI�XLEX�KYEVERXIIW�XLI�TYFPMG�W�
VMKLX�XS�EXXIRH�ERH�TEVXMGMTEXI�MR�QIIXMRKW�SJ�PSGEP�
PIKMWPEXMZI�FSHMIW�A�XLEX�VIUYMVIW�PIKMWPEXMZI�FSHMIW��PMOI�
GMX]�GSYRGMPW��XS�LSPH�XLIMV�QIIXMRKW�STIR�XS�XLI�TYFPMG�

Figure 1: Exemplary predictions of Toolformer. The
model autonomously decides to call different APIs
(from top to bottom: a question answering system,
a calculator, a machine translation system, and a
Wikipedia search engine) to obtain information that is
useful for completing a piece of text.

A simple way to overcome these limitations of
today’s language models is to give them the abil-
ity to use external tools such as search engines,
calculators, or calendars. However, existing ap-
proaches either rely on large amounts of human
annotations (Komeili et al., 2022; Thoppilan et al.,
2022) or limit tool use to task-specific settings only
(e.g., Gao et al., 2022; Parisi et al., 2022), hinder-
ing a more widespread adoption of tool use in LMs.
Therefore, we propose Toolformer, a model that
learns to use tools in a novel way, which fulfills the
following desiderata:

• The use of tools should be learned in a
self-supervised way without requiring large
amounts of human annotations. This is impor-

ar
X

iv
:2

30
2.

04
76

1v
1

 [c
s.C

L]
 9

 F
eb

 2
02

3

SOP

Toolformer: overview

ŽƨǝĒƾƨ��!�4MXXWFYVKL�MW�
�������������EPWS�ORS[R�EW

���ŽĒǝĩ�!�XLI�7XIIP�'MX]

Ž��Ƿ�4MXXWFYVKL�MW�
��������EPWS�ORS[R�EW
��������?5%�;LEX�Ə#�
��������ĺ�7XIIP�'MX]
A�
��������XLI�7XIIP�'MX]�

èĒ
ƨ�Ƿ�;LEX�SXLIV�REQI�MW�

���������4MXXWFYVKL�ORS[R�F]#

èĒ
Ʃ�Ƿ�;LMGL�GSYRXV]�MW

���������4MXXWFYVKL�MR#

ōĒ
ƨ�Ƿ�7XIIP�'MX]�

ōĒ
Ʃ�Ƿ�9RMXIH�7XEXIW

VĒǃèĒ
ƨ�ĺ�7XIIP�'MX]Ǆ

� �ħĒĩǃVĒǃèĒ
ƨ�ĺ�¿Ǆǜ�VĒ�¿ǄǄ

VĒǃèĒ
Ʃ�ĺ�9RMXIH�7XEXIWǄ

�"�ħĒĩǃVĒǃèĒ
Ʃ�ĺ�¿Ǆǜ�VĒ�¿ǄǄ

��
7EQTPI�%4-�'EPPW

��
)\IGYXI�%4-�'EPPW

��
*MPXIV�%4-�'EPPW01�(EXEWIX 01�(EXEWIX�

[MXL�%4-�'EPPW

Figure 2: Key steps in our approach, illustrated for a question answering tool: Given an input text x, we first
sample a position i and corresponding API call candidates c1i , c

2
i , . . . , c

k
i . We then execute these API calls and

filter out all calls which do not reduce the loss Li over the next tokens. All remaining API calls are interleaved
with the original text, resulting in a new text x⇤.

tant not only because of the costs associated
with such annotations, but also because what
humans find useful may be different from
what a model finds useful.

• The LM should not lose any of its generality
and should be able to decide for itself when
and how to use which tool. In contrast to
existing approaches, this enables a much more
comprehensive use of tools that is not tied to
specific tasks.

Our approach for achieving these goals is based
on the recent idea of using large LMs with in-
context learning (Brown et al., 2020) to generate
entire datasets from scratch (Schick and Schütze,
2021b; Honovich et al., 2022; Wang et al., 2022):
Given just a handful of human-written examples
of how an API can be used, we let a LM annotate
a huge language modeling dataset with potential
API calls. We then use a self-supervised loss to
determine which of these API calls actually help
the model in predicting future tokens. Finally, we
finetune the LM itself on the API calls that it con-
siders useful. As illustrated in Figure 1, through
this simple approach, LMs can learn to control a va-
riety of tools, and to choose for themselves which
tool to use when and how.

As our approach is agnostic of the dataset be-
ing used, we can apply it to the exact same dataset
that was used to pretrain a model in the first place.
This ensures that the model does not lose any
of its generality and language modeling abilities.
We conduct experiments on a variety of differ-
ent downstream tasks, demonstrating that after
learning to use tools, Toolformer, which is based
on a pretrained GPT-J model (Wang and Komat-
suzaki, 2021) with 6.7B parameters, achieves much
stronger zero-shot results, clearly outperforming a
much larger GPT-3 model (Brown et al., 2020) and

several other baselines on various tasks.

2 Approach

Our aim is to equip a language model M with the
ability to use different tools by means of API calls.
We require that inputs and outputs for each API
can be represented as text sequences. This allows
seamless insertion of API calls into any given text,
using special tokens to mark the start and end of
each such call.

We represent each API call as a tuple c = (ac, ic)
where ac is the name of the API and ic is the cor-
responding input. Given an API call c with a cor-
responding result r, we denote the linearized se-
quences of the API call not including and including
its result, respectively, as:

e(c) = <API> ac(ic)</API>

e(c, r) = <API> ac(ic) ! r </API>

where “<API>”, “</API>” and “!” are special
tokens.1 Some examples of linearized API calls
inserted into text sequences are shown in Figure 1.

Given a dataset C = {x1, . . . ,x|C|} of plain
texts, we first convert this dataset into a dataset
C⇤ augmented with API calls. This is done in three
steps, illustrated in Figure 2: First, we exploit the
in-context learning ability of M to sample a large
number of potential API calls. We then execute
these API calls and finally check whether the ob-
tained responses are helpful for predicting future
tokens; this is used as a filtering criterion. After
filtering, we merge API calls for different tools,
resulting in the augmented dataset C⇤, and finetune

1In practice, we use the token sequences “ [”, “]” and
“->” to represent “<API>”, “</API>” and “!”, respec-
tively. This enables our approach to work without modifying
the existing LM’s vocabulary. For reasons of readability, we
still refer to them as “<API>”, “</API>” and “!” through-
out this section.

Few-shot driven dataset expansion
1 Sample API calls
2 Execute API calls
3 Filter API calls
4 Finetune model

SOP

Toolformer: sample API calls - 1
Your task is to add calls to a Question Answering API to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: x

Output:

PROMPT(x)

Create API-specific prompt

PROMPT (x)

SOP

Toolformer: sample API calls - 2
Your task is to add calls to a Question Answering API to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is

[PROMPT(‘Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’]

Sample candidate API-call positions according to

pi = P(′[′ |PROMPT (x), x1:i−1)

SOP

Toolformer: sample API calls - 3
Your task is to add calls to a Question Answering API to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is also known as [

[PROMPT(‘Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’, ‘[‘]

Sample candidate API calls for i from the sequence

[PROMPT (x), x1:i−1,
′ [′] up to ′]′

SOP

Toolformer: execute, filter, finetune

ŽƨǝĒƾƨ��!�4MXXWFYVKL�MW�
�������������EPWS�ORS[R�EW

���ŽĒǝĩ�!�XLI�7XIIP�'MX]

Ž��Ƿ�4MXXWFYVKL�MW�
��������EPWS�ORS[R�EW
��������?5%�;LEX�Ə#�
��������ĺ�7XIIP�'MX]
A�
��������XLI�7XIIP�'MX]�

èĒ
ƨ�Ƿ�;LEX�SXLIV�REQI�MW�

���������4MXXWFYVKL�ORS[R�F]#

èĒ
Ʃ�Ƿ�;LMGL�GSYRXV]�MW

���������4MXXWFYVKL�MR#

ōĒ
ƨ�Ƿ�7XIIP�'MX]�

ōĒ
Ʃ�Ƿ�9RMXIH�7XEXIW

VĒǃèĒ
ƨ�ĺ�7XIIP�'MX]Ǆ

� �ħĒĩǃVĒǃèĒ
ƨ�ĺ�¿Ǆǜ�VĒ�¿ǄǄ

VĒǃèĒ
Ʃ�ĺ�9RMXIH�7XEXIWǄ

�"�ħĒĩǃVĒǃèĒ
Ʃ�ĺ�¿Ǆǜ�VĒ�¿ǄǄ

��
7EQTPI�%4-�'EPPW

��
)\IGYXI�%4-�'EPPW

��
*MPXIV�%4-�'EPPW01�(EXEWIX 01�(EXEWIX�

[MXL�%4-�'EPPW

Figure 2: Key steps in our approach, illustrated for a question answering tool: Given an input text x, we first
sample a position i and corresponding API call candidates c1i , c

2
i , . . . , c

k
i . We then execute these API calls and

filter out all calls which do not reduce the loss Li over the next tokens. All remaining API calls are interleaved
with the original text, resulting in a new text x⇤.

tant not only because of the costs associated
with such annotations, but also because what
humans find useful may be different from
what a model finds useful.

• The LM should not lose any of its generality
and should be able to decide for itself when
and how to use which tool. In contrast to
existing approaches, this enables a much more
comprehensive use of tools that is not tied to
specific tasks.

Our approach for achieving these goals is based
on the recent idea of using large LMs with in-
context learning (Brown et al., 2020) to generate
entire datasets from scratch (Schick and Schütze,
2021b; Honovich et al., 2022; Wang et al., 2022):
Given just a handful of human-written examples
of how an API can be used, we let a LM annotate
a huge language modeling dataset with potential
API calls. We then use a self-supervised loss to
determine which of these API calls actually help
the model in predicting future tokens. Finally, we
finetune the LM itself on the API calls that it con-
siders useful. As illustrated in Figure 1, through
this simple approach, LMs can learn to control a va-
riety of tools, and to choose for themselves which
tool to use when and how.

As our approach is agnostic of the dataset be-
ing used, we can apply it to the exact same dataset
that was used to pretrain a model in the first place.
This ensures that the model does not lose any
of its generality and language modeling abilities.
We conduct experiments on a variety of differ-
ent downstream tasks, demonstrating that after
learning to use tools, Toolformer, which is based
on a pretrained GPT-J model (Wang and Komat-
suzaki, 2021) with 6.7B parameters, achieves much
stronger zero-shot results, clearly outperforming a
much larger GPT-3 model (Brown et al., 2020) and

several other baselines on various tasks.

2 Approach

Our aim is to equip a language model M with the
ability to use different tools by means of API calls.
We require that inputs and outputs for each API
can be represented as text sequences. This allows
seamless insertion of API calls into any given text,
using special tokens to mark the start and end of
each such call.

We represent each API call as a tuple c = (ac, ic)
where ac is the name of the API and ic is the cor-
responding input. Given an API call c with a cor-
responding result r, we denote the linearized se-
quences of the API call not including and including
its result, respectively, as:

e(c) = <API> ac(ic)</API>

e(c, r) = <API> ac(ic) ! r </API>

where “<API>”, “</API>” and “!” are special
tokens.1 Some examples of linearized API calls
inserted into text sequences are shown in Figure 1.

Given a dataset C = {x1, . . . ,x|C|} of plain
texts, we first convert this dataset into a dataset
C⇤ augmented with API calls. This is done in three
steps, illustrated in Figure 2: First, we exploit the
in-context learning ability of M to sample a large
number of potential API calls. We then execute
these API calls and finally check whether the ob-
tained responses are helpful for predicting future
tokens; this is used as a filtering criterion. After
filtering, we merge API calls for different tools,
resulting in the augmented dataset C⇤, and finetune

1In practice, we use the token sequences “ [”, “]” and
“->” to represent “<API>”, “</API>” and “!”, respec-
tively. This enables our approach to work without modifying
the existing LM’s vocabulary. For reasons of readability, we
still refer to them as “<API>”, “</API>” and “!” through-
out this section.

Execute, filter, finetune
1 Execute API for each sampled call
2 Filter results based on whether they reduce loss for

subsequent tokens
3 Finetune model with expanded dataset including retained

calls (+ results)

SOP

Toolformer: inference

API-augmented inference
1 Plain decoding until ’→’
2 Call API
3 Insert response + ’]’
4 Continue decoding

SOP

GeLaTo: Generating Language with Tractable
Constraints

Transformer problems
Autoregressive models cannot enforce (non-local)
constraints
Search-based solutions are very expensive

Solution
Combine tranformer with a tractable probabilistic model
(TPM)
Efficiently enforce constraints on the TPM

SOP

GeLaTo: architecture
Tractable Control for Autoregressive Language Generation

Honghua Zhang * 1 Meihua Dang * 1 Nanyun Peng 1 Guy Van den Broeck 1

Abstract
Despite the success of autoregressive large lan-
guage models in text generation, it remains a ma-
jor challenge to generate text that satisfies com-
plex constraints: sampling from the conditional
distribution Pr(text |↵) is intractable for even the
simplest lexical constraints ↵. To overcome this
challenge, we propose to use tractable probabilis-
tic models (TPMs) to impose lexical constraints
in autoregressive text generation models, which
we refer to as GeLaTo (Generating Language
with Tractable Constraints). To demonstrate the
effectiveness of this framework, we use distilled
hidden Markov models, where we can efficiently
compute Pr(text |↵), to guide autoregressive gen-
eration from GPT2. GeLaTo achieves state-of-the-
art performance on challenging benchmarks for
constrained text generation (e.g., CommonGen),
beating various strong baselines by a large margin.
Our work not only opens up new avenues for con-
trolling large language models but also motivates
the development of more expressive TPMs.

1. Introduction
Large pre-trained language models (LMs) (Radford et al.,
2019; Lewis et al., 2020) have achieved remarkable perfor-
mance on a wide range of challenging language generation
tasks such as machine translation (Bahdanau et al., 2015;
Luong et al., 2015), summarization (Liu et al., 2015; Xu &
Durrett, 2019) and open-domain creative generation (Yao
et al., 2019; Tian & Peng, 2022). Nevertheless, many prac-
tical language generation applications require fine-grained
control of LMs to follow complex lexical constraints (e.g.,
given a source document, generate a summary that contains
certain keywords). The common paradigm for controlling

*Equal contribution 1Department of Computer Science, Uni-
versity of California, Los Angeles, USA. Correspondence to:
Honghua Zhang <hzhang19@cs.ucla.edu>, Meihua Dang <mh-
dang@cs.ucla.edu>, Nanyun Peng <violetpeng@cs.ucla.edu>,
Guy Van den Broeck <guyvdb@cs.ucla.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cold 0.50

warm 0.01

cold 0.05

warm 0.10

 Lexical Constraint : sentence contains keyword “winter”

 Constrained Generation:

Pre-trained
Language Model

Tractable
Probabilistic Model

PrLM(xt+1 |x1:t) PrTPM(� |xt+1, x1:t)

intractable efficient

Minimize KL-divergence

Pr(xt+1 |�, x1:t = "the weather is")

�

cold 0.025

warm 0.001

p(xt+1 |�, x1:t)

xt+1 xt+1

xt+1

Figure 1. Given some lexical constraint ↵ that we want our pre-
trained language models to follow in generation, the conditional
distribution Pr(xt+1 | x1:t,↵) is often intractable. We propose
to control and guide the autoregressive generation process of pre-
trained LMs via tractable probabilistic models, which do support
efficient computation of Pr(xt+1 | x1:t,↵).

pre-trained LMs is to either finetune them on task-specific
datasets or to condition them on certain prompts. However,
finetuning and prompting are by nature approximate solu-
tions and do not guarantee that the desired constraints are
satisfied (Meng et al., 2022; Zhang et al., 2022). The major
difficulty of constrained language generation lies in the au-
toregressive nature of LMs: they only model the next token
distribution given some prefix PrLM(xt+1 | x1:t), while the
conditional distribution PrLM(x1:n | ↵) given a constraint
↵ as simple as, e.g., a keyword appearing at the end of a
sentence, is often intractable (Roth, 1996).

Aside from language models based on neural architectures,
one line of research in machine learning focuses on the de-
velopment of tractable probabilistic models (TPMs) (Poon
& Domingos, 2011; Kulesza & Taskar, 2012; Choi et al.,
2020b; Zhang et al., 2021). TPMs model joint probability
distributions and allow for efficient conditioning on vari-
ous families of logical constraints (Kisa et al., 2014; Choi
et al., 2015; Bekker et al., 2015). In this paper, we propose
GeLaTo (Generating Language with Tractable Constraints),

1

ar
X

iv
:2

30
4.

07
43

8v
4

 [c
s.C

L]
 1

5
N

ov
 2

02
3 TPM trained to fit

LM output distribution

TPM computes probability of
satisfying constraints given
current output + next token

 TPM + LLM compute
constraint-adjusted probability

of next token

SOP

GeLaTo: example of inference
Tractable Control for Autoregressive Language Generation

Pr(x1:t�1, Xt �"eating", Xt �"working", �� t:n)
= Pr(x1:t�1, �� t:n) � Pr(x1:t�1, Xt ="eating", �� t:n) � Pr(x1:t�1, Xt ="working", �� t:n)
= ∑j

Pr(x1:t�1, Zt = j) � (Pr(�� t:n |Zt = j) � Pr(Xt ="eating", �� t:n |Zt = j) � Pr(Xt ="working", �� t:n |Zt = j))

 � = (I(like eating) � I(soccer)) � I(like working)

Z1

Recurrence

“eating”

“working”

else

Pr(x1:t�1, Xt ="eating", �� t:n) = ∑j
Pr(x1:t�1, Zt = j) � Pr(Xt ="eating", �� t:n |Zt = j) I(like working)

I(like eating) � I(soccer)
(I(like eating) � I(soccer))

� I(like working)

“like”“Kids” … ?

Pr(x1:t�1, �1:n),
Lexical Constraint

Pr(x1:t�1, Zt = j) Pr(Xt = ?, �� t:n |Zt = j)
X1 Xt�1

Zt

Xt

Zn

Xn

… …

Pr(x1:t�1, Xt ="working", �� t:n) = ∑j
Pr(x1:t�1, Zt = j) � Pr(Xt ="working", �� t:n |Zt = j)

Xt ��

Zt�1

Pr(x1:t�1, �1:n) = (1) + (2) + (3)

(1)
(2)
(3)

where x1:t�1 = "Kids ... like" and �1:n means � is satisfied on X1:n

Figure 2. A toy example illustrating our dynamic programming algorithm. Here, given the the first t�1 tokens “Kids ... like” that have
been generated, the figure illustrates how to compute Pr(X1:t�1=“Kids ... like”,↵1:n). We consider three possible cases for the next
token Xt: “eating”, “working” or neither, and for each case we can reduce the constraint ↵1:n to the “easier” constraint ↵0

t:n for some ↵0.
Then by conditioning on Zt = j (hidden states), we can break down Pr(x1:t�1, Xt =?,↵0

t:n) into two terms: Pr(x1:t�1, Zt = j) and
Pr(Xt =?,↵0

t:n |Zt = j), which are underlined and boxed in the figure, respectively; in particular the underlined terms can be computed
by the forward algorithm for HMMs and the boxed terms can be computed recursively by the dynamic programming algorithm.

treat HMMs as language models over sequences of tokens
of maximum length n and the lexical constraint we enforce
is denoted as ↵1:n; in the following discussions, we write
Pr(x1:t,↵1:n) instead of Pr(x1:t,↵).

3.1. Hidden Markov Models

A hidden Markov model (HMM) represents a joint prob-
ability distribution over n observed variables X1:n and n

latent variables Z1:n. Specifically, for language modeling,
Xt represents the token at position t and Zt represents the
corresponding latent state; Zt takes values in {1, 2, . . . , h},
where h is the number of latent states. Given observed to-
ken sequence x1:n and latent state sequence z1:n, the joint
probability Pr(x1:n, z1:n) is defined as:

Pr(x1 | z1) Pr(z1)
Y

2tn
Pr(xt | zt) Pr(zt | zt�1);

in particular, the parameters of HMM are given by the ini-
tial probability Pr(z1), emission matrix Pr(xt | zt) and the
transition matrix Pr(zt+1 | zt), which stay the same across
different positions t. HMMs can also be represented as
Bayesian networks (Pearl, 1985); see Figure 2 for an exam-
ple. To perform probabilistic inference on HMMs efficiently,
we leverage the following Markov property:

Pr(xt:n | zt, x1:t�1) = Pr(xt:n | zt). (3)

For example, we can compute the probability of any prefix
Pr(x1:t) =

P
zt
Pr(x1:t, zt), which can be efficiently com-

puted by the following recurrence relation, which is referred
to as the forward algorithm (Rabiner & Juang, 1986):

Pr(x1:t, zt)

=
X

1zt�1h

Pr(xt | zt) Pr(zt | zt�1) Pr(x1:t�1, zt�1).

Modeling Variable-length Texts with HMMs. HMMs
model distributions over a fixed number of random vari-
ables X1:n. To model texts with variable lengths, we first
determine a maximum sequence length n and pad training
texts of length < n with the special EOS (“endoftext”) token
to the maximum length. We also construct our HMM in a
special way such that an EOS token can only be followed by
EOS tokens; that is, sequences that do not satisify this con-
straint have 0 probability. Hence, PrHMM(x1:n) effectively
defines a distribution over all texts with length  n.

3.2. An Efficient Dynamic Programming Algorithm

We first illustrate the dynamic programming algorithm with
a toy example. As shown in Figure 2, assume that we have
generated the first t � 1 tokens “Kids ... like” and we are
given the constraint:

↵ = I(like � working) ^ (I(like � eating) _ I(soccer)) ;

4

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Experience Memory
Starts empty
Stores tasks after addressing them
Stores task name, description and experience

Procedure: steps for handling task
Suggestions: how to better accomplish task / avoid errors

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Task Type Categorization
1 retrieve similar tasks from memory
2 if match found

1 retrieve task from memory
2 if task adequately learned skip learning
3 otherwise start learning

3 otherwise, add new task to memory
SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Experience Transfer
1 step-by-step experience transfer (prompt-based)

1 understand differences
2 identify shared experience
3 rephrase it for target task

2 merge transferred experience with task experience

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Autonomous Practice
1 retrieve web documents related to question
2 generate task-specific question related to document
3 verify correctness from document

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Experience Induction
1 summarize new experience for current task

1 summarize commonalities between correct examples
2 identify patterns in incorrect examples
3 generate task-solving insights

2 merge induced experience with existing experience

SOP

Self-evolving GPT: self-learning from experience

Reasoning
with Experience

Task Type
Categorization

Autonomous
Practice

Experience
Induction

Experience
Transfer Task-Specific

Experience Memory

retrieve stored tasks
add new tasks

select source tasks update experience

refer to experience

skip learning for stored tasks mastered proficiently

!
"

Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

Response: Avocado is better because Tom needs to consume
less sugar, and mango is too sweet.

st
ar

t l
ea

rn
in

g

Figure 2: The framework of our proposed Self-Evolving GPT. The lines connected to the memory indicate the flow
of information stored in memory. Other lines with arrows represent the execution sequence of our framework.

et al., 2022) requires the development set for select-
ing demonstrations, while TP-ICL (Yu et al., 2023)
is designed explicitly for complex reasoning tasks
like shortest-path reasoning, and Self-ICL (Chen
et al., 2023b) is the general-purpose one. These
demonstrations suffer from issues such as incor-
rect formatting, noise, and low diversity. However,
our framework utilizes the general insights summa-
rized from multiple demonstrations, which is more
reliable than the demonstrations themselves.

3 Methodology

Figure 2 shows the framework of our proposed
Self-Evolving GPT, which consists of one task-
specific experience memory and five experience-
centric modules based on ChatGPT. Our framework
continuously receives various user questions. It
automatically categorizes the task type of the ques-
tion, and adds it to memory if it is a new task not yet
stored. For tasks that are not proficiently mastered,
it performs experience transfer, autonomous prac-
tice, and experience induction to update their expe-
rience in memory. Finally, it refers to experience
stored in memory to respond the user question.

In practice, we provide a basic implementation
of our framework, which may be further optimized.
We primarily focus on the overall framework, and
aim to analyze its effectiveness and behavior. The
prompts and execution examples of our imple-
mentation are presented in Appendix D and E.

3.1 Task-Specific Experience Memory
We utilize an external memory to store the task-
specific textual experience that our framework au-
tonomously learns. This memory starts empty and
gradually grows as our framework runs, assisting it
in task-solving and learning new experience.

Specifically, we store each task in the memory
with its name, description and experience. For the
completeness of experience, our memory stores
two types of experience for each task: 1) Proce-
dure: the specific steps for handling the task; 2)
Suggestions: how to better accomplish the task
or avoid low-quality responses. These task names,
descriptions, and experience are all autonomously
generated by our framework.

3.2 Task Type Categorization
Users may pose various questions to the framework,
corresponding to unpredictable task types. There-
fore, we employ this module to first autonomously
categorize the task type of each user question.

The operation of this module is divided into three
steps: 1) ChatGPT utilizes Prompt 1 to generate the
task name and description based on the question;
2) we retrieve the top 5 tasks from memory that
are semantically most similar to the generated task
description; 3) finally, ChatGPT utilizes Prompt 2
to select which one of the five tasks is identical to
the generated task. If a match is found, the question
is linked to the selected task; otherwise, it is linked
to the generated task, and we add the generated task
into the memory with empty initial task experience.

6387

Reasoning with Experience
1 Retrieve experience for current task
2 Address task based on experience

SOP

References

Bibliography
Deshwal, A.; Doppa, J. R.; and Roth, D., Learning and inference for structured prediction: A unifying
perspective, in IJCAI 2019.

LeCun, Y.; Chopra, S.; Hadsell, R.; Huang, F. J.; and et al., A tutorial on energy-based learning, in
Predicting Structured Data, MIT Press.

Joachims, T.; Hofmann, T.; Yue, Y.; and Yu, C.-N., Predicting structured objects with support vector
machines, in Comm. of the ACM, 2009.

Daumé, H.; Langford, J.; and Marcu, D., Search-based structured prediction, in Machine Learning, 2009.

Ross, S.; Gordon, G.; and Bagnell, D., A reduction of imitation learning and structured prediction to
no-regret online learning, in AISTATS, 2011.

Belanger D. and McCallum, A., Structured prediction energy networks, in ICML 2016.

Wu Y., Zhao Y., Hu B., Minervini P., Stenetorp P., and Riedel S., An Efficient Memory-Augmented
Transformer for Knowledge-Intensive NLP Tasks, EMNLP 2022.

Schick T., Dwivedi-Yu J., Dessı̀ R., Raileanu R., Lomeli M., Zettlemoyer L., Cancedda N., Scialom T.,
Toolformer: Language Models Can Teach Themselves to Use Tools, NeurIPS, 2023.

Zhang H., Dang M., Peng N., and Van Den Broeck G., Tractable control for autoregressive language
generation, ICML 2023.

Gao, J. ; Ding, X. ; Cui, Y. ; Zhao, J. ; Wang, H. ; Liu, T., Self-Evolving GPT: A Lifelong Autonomous
Experiential Learner. ACL, 2024.

SOP

