Structured Output Prediction

Andrea Passerini andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Structured Output Prediction: the task

The task

- The input is (typically) a structured object
- The output is also a structured-object (rather than a scalar)
 e.g.:
 - A sequence (part-of-speech tagging, protein secondary structure prediction)
 - A tree (parse-tree prediction)
 - A graph (link detection, protein 3D structure prediction)

Image from Joachims et al, 2009

Structured Output Prediction: the issue

The issue

 Standard supervised learning learns a function

$$f: \mathcal{X} \to \mathcal{Y}$$

- However the space of candidate outputs is huge (exponential in the number of output variables, or even infinite)
- The problem cannot be formalized as multiclass classification

Image from Joachims et al, 2009

Structured Output Prediction: approaches

Energy-based models

$$y^* = \operatorname{argmin}_{y \in \mathcal{Y}} E(x, y)$$

- An energy function predicts the energy of each input-output pair
- Prediction is achieved by getting minimal energy output for a given input
- Inference methods are needed to solve the argmin problem (learning with inference)

Energy-based models

Learning

- Adjust weights of energy function to drive correct output to have minimal energy
- Based on loss functions between correct output and incorrect ones
- Typically focus on most offending incorrect answer.

$$\bar{y}^i = \operatorname{argmin}_{v \in \mathcal{V}, v \neq v^i} E(x^i, y^i; w)$$

Structured Output Prediction: approaches

Search-based models

- State-space search process
- Initial state with empty output
- Heuristic function to choose next state (partial output)
- Terminal states are states with complete output
- No need for global inference algorithm (learning for inference)

Search-based models

learning

- Adjust weights of heuristic function to have high score for correct moves given current state
- on-trajectory training, current state is always a correct one.
- off-trajectory training, current state is highest scoring state even if incorrect

Energy-based models: Structured SVM

Joint input-output feature map

$$f(x,y) = \mathbf{w}^T \Psi(x,y) = -E(x,y)$$

- Joint input-output feature map $\Psi(x, y)$
- Features capture interaction between input and output variables and between output variables among themselves
- Energy function is a linear function of the feature map
- The function can be kernelized

Structured SVM: learning

$$\begin{aligned} \min_{\mathbf{w},\xi} & & \frac{1}{2}||\mathbf{w}||^2 + C\sum_i \xi_i \\ \text{subject to:} & & & \\ & & \mathbf{w}^T \Psi(x_i,y_i) - \mathbf{w}^T \Psi(x_i,y') \geq \Delta(y_i,y') - \xi_i \\ & & \forall i,y' \neq y_i \end{aligned}$$

Max-margin formulation

- Δ(y_i, y') is the cost for predicting y' instead of y_i (structured-output loss)
- The formulation aims at separating correct predictions from incorrect predictions with a large margin
- Hard to solve directly (exponential number of constraints!!)

Structured SVM: learning

Cutting plane algorithm

- **①** Initialize weights and constraints $S_i = \emptyset \ \forall i$
- While constraint added
 - For each example i

$$\xi_{i} = \max_{y' \in S_{i}} \Delta(y_{i}, y') + \mathbf{w}^{T} \Psi(x_{i}, y') - \mathbf{w}^{T} \Psi(x_{i}, y_{i})$$

$$\xi_{i}^{new} = \max_{y' \neq y_{i}} \Delta(y_{i}, y') + \mathbf{w}^{T} \Psi(x_{i}, y') - \mathbf{w}^{T} \Psi(x_{i}, y_{i})$$

- \odot Add constraint and update S_i
- retrain

Alternatives

- Stochastic subgradient descent
- Block-coordinate Frank-Wolfe optimization

Structured SVM: inference

(Loss augmented) argmax inference

inference at prediction time

$$y^* = \operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}^T \Psi(x, y)$$

 loss augmented inference at training time (most offending incorrect answer)

$$\bar{y}' = \operatorname{argmax}_{y' \neq y_i} \Delta(y_i, y') + \mathbf{w}^T \Psi(x_i, y') - \mathbf{w}^T \Psi(x_i, y_i)$$

Approaches

- Viterbi algorithm for sequence labelling
- CYK algorithm for parse tree prediction
- Loopy belief propagation (approximate)
- Amortized inference (use previous solutions to speed up related inference tasks)

Structured SVM: PROs and CONs

PROs

- Max-margin approach
- Guarantees on number of iterations (depends on ϵ , independent on number of output structures)
- Can deal with arbitrary constrains on output structure

CONs

- Inefficient, (loss augmented) inference required at every training iteration
- The function to be learned is complex, high-order feature typically required (making inference even more expensive)

Search-based models: ordered vs unordered

Ordered search space

- Fixed ordering of decisions (e.g., left-to-right decisions in sequences)
- Classifier-based structured prediction (reduction to multi-class classification task)

Unordered search space

- Learner dynamically orders decisions
- Easy-first approach (make easy decisions first)

Search-based models: classifier-based

Setting

- Ordered search space
- Reduction to multi-class classification on next decision
- Training examples:
 - input is set of outputs up to position t
 - output is correct output for position t + 1
- imitation learning (training examples as expert demonstrations)

Classifier-based structured prediction: exact imitation

Image from Fern et al., 2016

Exact imitation problem: error propagation

Error propagation

Problem

- Errors in early decisions propagate to down-stream ones
- System is not trained to deal with decisions given incorrect states

Solution

- Generate trajectories using current policy
- Use optimal policy to generate optimal next states given states visited by current policy

DAgger (Dataset Aggregation)

The algorithm

- Collect training set $\mathcal D$ of $\mathbf N$ trajectories using ground-truth policy π^*
- 2 Repeat
 - \bullet $\pi \leftarrow \mathsf{LEARNCLASSIFIER}(\mathcal{D})$
 - 2 Collect set of states S along trajectories computed using π
 - **3** For each $s \in S$
- 3 Return π

Search-based models: easy-first approach

CONs of classifier-based approaches

- Need to define an ordering over output variables
- Some decision are harder than others → fixed ordering can be suboptimal

Easy-first approach: rationale

- Make easy decisions first to constraint harder ones
- Learn to dynamically order decisions
- Analogous to constraint satisfaction algorithms

Example: Cross-document coreference

Easy-first approach: inference

Easy action first

- State s is partial solution
- Set of possible actions $a \in A(s)$ from a state (no ordering)
- Action scoring function $f(s, a) = \mathbf{w}^T \Psi(s, a)$
- Proceed making highest scoring (most-confident) action first

Easy-first approach: learning

Easy-first policy learning

```
while not termination condition do
    for (x, y) \in \mathcal{D} do
         s \leftarrow I(x)
         while not ISTERMINAL(s) do
             a_p \leftarrow \max_{a \in A(s)} w^T \Psi(s, a)
             if a_p \in B(s) then
                  UPDATE(w, G(s), B(s))
             end if
             a_c \leftarrow \text{CHOOSEACTION}(A(s))
             s \leftarrow \mathsf{Apply}\ a_c \ \mathsf{on}\ s
         end while
    end for
end while
```

Easy-first policy learning

$$\mathsf{UPDATE}(w, G(s), B(s))$$

Variants

- Highest scoring good action better than highest scoring bad action (perceptron update)
- Highest scoring good action better than all bad actions

$$a_c \leftarrow \texttt{CHOOSEACTION}(A(s))$$

Variants

- Choose highest scoring good action (a_c ∈ G(s), on-trajectory training)
- Choose highest scoring action $(a_c \in G(s) \cup B(s),$ off-trajectory training)

Combining energy-based and search-based approaches

HC-search framework

- Generate high-quality candidate complete outputs with search-based approach (H = search heuristic)
- Score candidates with energy function and select minimal energy output (C = cost/energy function)

Deep energy-based methods

Structured Prediction Energy Networks (SPEN)

- Energy function modelled as a deep network
- Replaces outputs $y \in \{0,1\}^L$ with relaxations $\hat{y} \in [0,1]^L$
- Training by gradient descent over weights using structured loss (e.g. as in structured SVM)
- Inference by gradient descent over \hat{y} (+ rounding if needed)

SPEN

PROs

- Efficient inference by gradient descent
- No need to pre-specify input-output features (input-output representation learning)

CONs

- No algorithmic guarantees (local optimization of energy)
- No management of explicit constraints
- No support for hard constraints

Deep search-based methods

Transformers for content generation

- Autoregressive models: predict next token given input tokens + currently generated ones
- Attention-based models: use attention to learn token embeddings that depend on other tokens in the context
- Trained with combinations of:
 - self-supervised learning
 - supervised fine tuning
 - reinforcement learning with human feedback

Memory augmented Transformer

Transformer problems

- Cannot access up-to-date information
- Storing all knowledge in the model parameters does not scale
- Enriching prompts with potential knowledge (RAG) also does not scale

Solution

- Give transformers ability to use a key-value memory
- Encode Q&A pairs in the memory

Memory augmented Transformer: key embedding

Procedure

- concatenatePREFIX with query
- pass through encoder, get kth layer
- pass through conv layer, get prefix as key

Memory augmented Transformer: value embedding

Procedure

- concatenate PREFIX with answer
- pass through encoder, get vth layer
- get prefix as value

Memory augmented Transformer: memory retrieval

Procedure

- encode query same as key embedding
- perform inner product with memory keys
- retrieve top-k key-value pairs
- keys are sorted by similarity and prepended at layer c
- values are sorted by similarity and added at layer v

Toolformer: self-learning to use tools

Transformer problems

- Problems in performing precise calculations
- Tendency to hallucinate facts

Solution

- Give transformers ability to use external tools
- Allow them to learn when and how to use tools (with little human annotation)

Toolformer: examples

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") → Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) $\rightarrow 0.29$] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Toolformer: overview

Few-shot driven dataset expansion

- Sample API calls
- Execute API calls
- Filter API calls
- Finetune model

Toolformer: sample API calls - 1

Your task is to add calls to a Question Answering API to a piece of text. The questions should help you get information required to complete the text. You can call the API by writing "[QA(question)]" where "question" is the question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")] Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")] Coke, is a carbonated soft drink manufactured by [QA("Who manufactures Coca-Cola?")] the Coca-Cola Company.

Input: x

Output:

PROMPT(x)

Create API-specific prompt

 $PROMPT(\mathbf{x})$

Toolformer: sample API calls - 2

Your task is to add calls to a Question Answering API to a piece of text. The questions should help you get information required to complete the text. You can call the API by writing "[QA(question)]" where "question" is the question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")] Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")] Coke, is a carbonated soft drink manufactured by [QA("Who manufactures Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is

[PROMPT('Pittsburgh is also known as the Steel City'), 'Pittsburgh is']

Sample candidate API-call positions according to

$$p_i = P('['|PROMPT(\mathbf{x}), x_{1:i-1})$$

Toolformer: sample API calls - 3

Your task is to add calls to a Question Answering API to a piece of text. The questions should help you get information required to complete the text. You can call the API by writing "[QA(question)]" where "question" is the question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")] Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")] Coke, is a carbonated soft drink manufactured by [QA("Who manufactures Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is also known as [

[PROMPT('Pittsburgh is also known as the Steel City'), 'Pittsburgh is', '[']

Sample candidate API calls for *i* from the sequence

 $[PROMPT(\mathbf{x}), x_{1:i-1}, '[']]$ up to ']'

Toolformer: execute, filter, finetune

Execute, filter, finetune

- Execute API for each sampled call
- Filter results based on whether they reduce loss for subsequent tokens
- Finetune model with expanded dataset including retained calls (+ results)

Toolformer: inference

API-augmented inference

- Plain decoding until '→'
- Call API
- Insert response + ']'
- Continue decoding

GeLaTo: **Ge**nerating **L**anguage with **T**ractable **Co**nstraints

Transformer problems

- Autoregressive models cannot enforce (non-local) constraints
- Search-based solutions are very expensive

Solution

- Combine tranformer with a tractable probabilistic model (TPM)
- Efficiently enforce constraints on the TPM

GeLaTo: architecture

GeLaTo: example of inference

Experience Memory

- Starts empty
- Stores tasks after addressing them
- Stores task name, description and experience
 - Procedure: steps for handling task
 - Suggestions: how to better accomplish task / avoid errors

Task Type Categorization

- retrieve similar tasks from memory
- if match found
 - retrieve task from memory
 - if task adequately learned skip learning
 - otherwise start learning
- otherwise, add new task to memory

Experience Transfer

- step-by-step experience transfer (prompt-based)
 - understand differences
 - identify shared experience
 - rephrase it for target task
- merge transferred experience with task experience

Autonomous Practice

- retrieve web documents related to question
- generate task-specific question related to document
- verify correctness from document

Experience Induction

- summarize new experience for current task
 - summarize commonalities between correct examples
 - identify patterns in incorrect examples
 - generate task-solving insights
- merge induced experience with existing experience

Reasoning with Experience

- Retrieve experience for current task
- Address task based on experience

References

Bibliography

- Deshwal, A.; Doppa, J. R.; and Roth, D., Learning and inference for structured prediction: A unifying perspective, in IJCAI 2019.
- LeCun, Y.; Chopra, S.; Hadsell, R.; Huang, F. J.; and et al., A tutorial on energy-based learning, in Predicting Structured Data, MIT Press.
- Joachims, T.; Hofmann, T.; Yue, Y.; and Yu, C.-N., Predicting structured objects with support vector machines, in Comm. of the ACM, 2009.
- Daumé, H.; Langford, J.; and Marcu, D., Search-based structured prediction, in Machine Learning, 2009.
- Ross, S.; Gordon, G.; and Bagnell, D., A reduction of imitation learning and structured prediction to no-regret online learning, in AISTATS, 2011.
- Belanger D. and McCallum, A., Structured prediction energy networks, in ICML 2016.
- Wu Y., Zhao Y., Hu B., Minervini P., Stenetorp P., and Riedel S., An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks, EMNLP 2022.
- Schick T., Dwivedi-Yu J., Dessì R., Raileanu R., Lomeli M., Zettlemoyer L., Cancedda N., Scialom T., Toolformer: Language Models Can Teach Themselves to Use Tools, NeurlPS, 2023.
- Zhang H., Dang M., Peng N., and Van Den Broeck G., Tractable control for autoregressive language generation, ICML 2023.
- Gao, J.; Ding, X.; Cui, Y.; Zhao, J.; Wang, H.; Liu, T., Self-Evolving GPT: A Lifelong Autonomous Experiential Learner. ACL, 2024.