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Structured Output Prediction: the task

[Obama]running
in the [presidental
election] has
mobilized [many
young voters]
[His] [position] on

[climate change]
was well received

by [this group]

The dog chased the cat.
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@ The input is (typically) a structured object

@ The output is also a structured-object (rather than a scalar)
e.g.:
e A sequence (part-of-speech tagging, protein secondary
structure prediction)
e A tree (parse-tree prediction)
e A graph (link detection, protein 3D structure prediction)

Image from Joachims et al, 2009



Structured Output Prediction: the issue

@ Standard supervised
learning learns a function

f:x =Y

@ However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)

@ The problem cannot be
formalized as multiclass
classification

The dog chased the cat.

Class 1

Forr e
o ]

Class?2| == &=

Class 3

Classk| B \

e
]

R

Image from Joachims et al, 2009




Structured Output Prediction: approaches
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Energy-based models

y* = argmin, .y E(X, y)
@ An energy function predicts the energy of each
input-output pair
@ Prediction is achieved by getting minimal energy output for
a given input
@ Inference methods are needed to solve the argmin
problem (learning with inference)
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Energy-based models
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@ Adjust weights of energy function to drive correct output to
have minimal energy

@ Based on loss functions between correct output and
incorrect ones

@ Typically focus on most offending incorrect answer:

y = argminyeyyy?gy/E(X", y'w)




Structured Output Prediction: approaches

Search-based models

@ State-space search
process

@ Initial state with empty
output

@ Heuristic function to
choose next state (partial
output)

@ Terminal states are states
with complete output

@ No need for global
inference algorithm
(learning for inference)

terminal state

goal state



Search-based models

learning

@ Adjust weights of heuristic function to have high score for
correct moves given current state

@ on-trajectory training, current state is always a correct one.

@ off-trajectory training, current state is highest scoring state
even if incorrect

.




Energy-based models: Structured SVM
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Joint input-output feature map
f(x,y) =w'W(x,y) = —E(x,y)

@ Joint input-output feature map W(x, y)

@ Features capture interaction between input and output
variables and between output variables among themselves

@ Energy function is a linear function of the feature map
@ The function can be kernelized




Structured SVM: learning
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Max-margin formulation

@ A(y;,y') is the cost for predicting y’ instead of y;
(structured-output loss)

@ The formulation aims at separating correct predictions from
incorrect predictions with a large margin

@ Hard to solve directly (exponential number of constraints!!) )




Structured SVM: learning

Cutting plane algorithm

@ Initialize weights and constraints S; = () Vi

© While constraint added
@ For each example i

& = maxpesAWLy)+W (X, y) — W (x,y)

new

i = maxy ., Ay Y) +W (X, y') —w V(X y)

Q Ifgr" —E>e€
© Add constraint and update S;
O retrain

Alternatives
@ Stochastic subgradient descent
@ Block-coordinate Frank-Wolfe optimization




Structured SVM: inference
(Loss augmented) argmax inference

@ inference at prediction time
y* = argmax, ., W' W(X, y)

@ loss augmented inference at training time (most offending
incorrect answer)

y' = argmaxy, ., A(y;, ¥') + wV(x;,y") - wiV(x;, )

Approaches

@ Viterbi algorithm for sequence labelling
@ CYK algorithm for parse tree prediction
@ Loopy belief propagation (approximate)

@ Amortized inference (use previous solutions to speed up
related inference tasks)




Structured SVM: PROs and CONs

@ Max-margin approach

@ Guarantees on number of iterations (depends on e,
independent on number of output structures)

@ Can deal with arbitrary constrains on output structure

@ Inefficient, (loss augmented) inference required at every
training iteration

@ The function to be learned is complex, high-order feature
typically required (making inference even more expensive)




Search-based models: ordered vs unordered

Ordered search space

@ Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)

@ Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space

@ Learner dynamically orders decisions

@ Easy-first approach (make easy decisions first)




Search-based models: classifier-based

@ Ordered search space
@ Reduction to multi-class classification on next decision

@ Training examples:
@ input is set of outputs up to position ¢
e output is correct output for position f + 1
@ imitation learning (training examples as expert
demonstrations)

.




Classifier-based structured prediction: exact imitation

Image from Fern et al., 2016



Exact imitation problem: error propagation
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Error propagation

@ Errors in early decisions propagate to down-stream ones

@ System is not trained to deal with decisions given incorrect
states

v
@ Generate trajectories using current policy

@ Use optimal policy to generate optimal next states given
states visited by current policy




DAgger (Dataset Aggregation)

The algorithm

@ Collect training set D of N trajectories using ground-truth
policy 7*
© Repeat
© 7 < LEARNCLASSIFIER(D)

@ Collect set of states S along trajectories computed using =
© Foreachse S

@ D+ DU{(s,7"(9))}
© Return




Search-based models: easy-first approach

CONs of classifier-based approaches
@ Need to define an ordering over output variables

@ Some decision are harder than others — fixed ordering
can be suboptimal

Easy-first approach: rationale
@ Make easy decisions first to constraint harder ones

@ Learn to dynamically order decisions

@ Analogous to constraint satisfaction algorithms




Example: Cross-document coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.
Doc 1

Police said Lo Presti has hanged himself.
Doc 2

"One of the key suspected mafia bosses l J] had hanged .
Lo Presti je——— , :has hanged

Hard Easy




Easy-first approach: inference

| One of the key suspected mafia bosses | | had hanged |
pAK; [? %

fThe Pollce |,—| Lo Prestl r“~~\\\[has hanged\\l
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bad actions good actions

Easy action first
@ State s is partial solution
@ Set of possible actions a € A(s) from a state (no ordering)
@ Action scoring function f(s,a) = w’ ¥(s, a)
@ Proceed making highest scoring (most-confident) action
first




Easy-first approach: learning

Easy-first policy learning

while not termination condition do
for (x,y) € D do
s« I(x)
while not ISTERMINAL(S) do
dp < MaXacA(s) WT\U(S, a)
if a, € B(s) then
UPDATE(w, G(S), B(S))
end if
ac < CHOOSEACTION(A(S))
s <+ Apply acon s
end while
end for
end while




Easy-first policy learning

UPDATE(w, G(S), B(S))

@ Highest scoring good action better than highest scoring
bad action (perceptron update)

@ Highest scoring good action better than all bad actions

ac < CHOOSEACTION(A(S))

@ Choose highest scoring good action (a; € G(s),

on-trajectory training)

@ Choose highest scoring action (a; € G(s) U B(s),
off-trajectory training)




Combining energy-based and search-based
approaches

HC-search framework

@ Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)

@ Score candidates with energy function and select minimal
energy output (C = cost/energy function)




Deep energy-based methods
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Structured Prediction Energy Networks (SPEN)

@ Energy function modelled as a deep network

@ Replaces outputs y € {0, 1}- with relaxations y < [0, 1]-

@ Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)

@ Inference by gradient descent over y (+ rounding if needed))




SPEN

@ Efficient inference by gradient descent

@ No need to pre-specify input-output features (input-output
representation learning)

@ No algorithmic guarantees (local optimization of energy)
@ No management of explicit constraints
@ No support for hard constraints




Deep search-based methods

%3 — THE
TRANSFORMER

Transformers for content generation

@ Autoregressive models: predict next token given input
tokens + currently generated ones

@ Attention-based models: use attention to learn token
embeddings that depend on other tokens in the context
@ Trained with combinations of:

o self-supervised learning
e supervised fine tuning
e reinforcement learning with human feedback




Memory augmented Transformer

Transformer problems

@ Cannot access up-to-date information

@ Storing all knowledge in the model parameters does not
scale

@ Enriching prompts with potential knowledge (RAG) also
does not scale

@ Give transformers ability to use a key-value memory

@ Encode Q&A pairs in the memory

€




Memory augmented Transformer: key embedding

Procedure

@ concatenate
PREFIX with query

@ pass through
encoder, get k' ( oo
layer

© pass through conv
layer, get prefix as
key

PREFIX “question: who is ... ?”




Memory augmented Transformer: value embedding

“Barack Obama”

Procedure Value
@ concatenate %}—‘

PREFIX with answer

@ pass through
encoder, get v
layer

© get prefix as value

value layer

PREFIX “answer: Barack Obama”




Memory augmented Transformer: memory retrieval

Procedure
Output

@ encode query same
as key embedding
@ perform inner ( ]
product with add :
memory keys e
© retrieve top-k pere L L L LY
key_value palrs Return Key-Value Pairs key,ﬂye,
O keys are sorted by Query
similarity and - ] PreFX  Input
prepended at layer ¢
© values are sorted by — J
similarity and added —)
at Iayer v Key-Value Memory




Toolformer: self-learning to use tools

Transformer problems

@ Problems in performing precise calculations
@ Tendency to hallucinate facts

@ Give transformers ability to use external tools

@ Allow them to learn when and how to use tools (with little
human annotation)




Toolformer: examples

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from “la tortuga”, the Spanish word for
[MT(“tortuga”) — turtle] turtle.

The Brown Act is California’s law

that requires legislative bodies, like
city councils, to hold their meetings open to the public.



Toolformer: overview

1 2 3 LM Dataset
LMDatasel == qompleAPICalls ExecuteAPICalls FiterAPICalls withAPICalls
X, = Pittsburgh is c;* = What other name is r;* = Steel City Lc;! — Steel City) x" = Pittsburgh is
also known as Pittsburgh known by? < min(L'.(cZ.‘ —g), Ly_(s)) also known as
[QA(What .2
Xy, = the Steel City 2 = which country is r? = United States L{(c?— United States) » Steel City)]
Pittsburgh in? min(L(c? — €), L(e)) the Steel City.

Few-shot driven dataset expansion

@ Sample API calls
© Execute APl calls
© Filter APl calls
©Q Finetune model




Toolformer: sample API calls - 1

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: x

Output:

PROMPT(x)

Create API-specific prompt

PROMPT (x)




Toolformer: sample API calls - 2

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is

[ PROMPT(“Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’]

Sample candidate API-call positions according to

pi = P('[ |IPROMPT (x), x1,:_+)




Toolformer: sample APl calls - 3

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is also known as [

[ PROMPT(‘Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’, [ ]

Sample candidate API calls for i from the sequence

[PROMPT(X), X{:j—1 ,/ [/] up to /]/




Toolformer: execute, filter, finetune

LM Dataset —= 1 .2 ., 3 __,  LMDataset
Sample API Calls Execute API Calls Filter API Calls with API Calls
X, = Pittsburgh is c;! = What other name is 1! = Steel City Lc;! — Steel City) x" = Pittsburgh is
also known as Pittsburgh known by? <min(Lc;} — €), L(e)) also known as
[QA(What .2
X;, = the Steel City 2 = which country is 72 = United States L{c?— United States) > Steel City)]
Pittsburgh in? min(L(c? — £), L)) the Steel City.

Execute, filter, finetune

@ Execute API for each sampled call

© Filter results based on whether they reduce loss for
subsequent tokens

© Finetune model with expanded dataset including retained
calls (+ results)




Toolformer: inference

APl-augmented inference

@ Plain decoding until '—’
© Call API

© Insert response + |’

© Continue decoding




GelLaTo: Generating Language with Tractable
Constraints

Transformer problems

@ Autoregressive models cannot enforce (non-local)
constraints

@ Search-based solutions are very expensive

@ Combine tranformer with a tractable probabilistic model
(TPM)

@ Efficiently enforce constraints on the TPM

A\




GelaTo: architecture

Lexical Constraint a: sentence contains keyword “winter”

Constrained Generation: Pr(x,, |, x;,, = "the weather is")

TPM irained to fit
x intractable J efficient LM output distribution
Pre-trained Tractable
Language Model Probabilistic Model

TPM computes probability of
= satisfying constraints given
current output + next token

X1 Priyier [ %) X1 | Propylal| Xip X))
cold 0.05 cold 0.50
warm 0.10 warm 0.01
- TPM + LLM compute
constraint-adjusted probability
K1 Py |, xp.,) of next token
cold 0.025

warm 0.001




GelL example of inference

Lexical Constraint a= (I(Iike eating) V I(soccer)) A I(like working)

Prxy,-p, @),

where x.,_; = "Kids ... like" and «,., means « is satisfied on X, .,

Goyess - (i)

Prx, 1, Z=J)

Pr(xp, s a,) =D+ 2)+3)

X, Recurrence

“eating” (1) Pr(x;,_,X,="eating",a’.,) = Z] Pr(x,.,_y, Z,=j) |Pr(X,="eating". o', | Z,=))

“working” (2) Pr(x;,_;,X,="working", a’.,) = Z Pr(xy,,_y, Z,=j) -|Pr(X,= "working", a'1.,| Z,= )
gl

else  (3) Pr(xy,_.X,#"eating”, X, "working", ')
= Pr(x;,_. ) — Pr(x,,_;. X,="eating", a',,) — Pr(x;,_,. X,= "working", a’s,))

= Z, Pr(x,, Z=) - (Priein 2= -[prx = "eating ", o' 12, =)|Hprx,= "working .o’ 1,=))])

7
®

a
I(like working)
I(like eating) v I(soccer)

(I(like eating) v I(soccer))
A I(like working)



olving GPT: self-learni experience
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Question: Tom is a diabetic patient. Would avocado or mango be ﬂ
a better choice for him?

start learning
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[Respanse: Avocado is better because Tom needs to consume] @

less sugar, and mango is too sweet.




Self-evolving GPT: self-learning from experience
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Task Type @ e Reasoning @
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” {Questitm: Tom is a diabetic patient. Would avocado or mango be ] ﬂ

a better choice for him?

{Response: Avocado is better because Tom needs to consume

)
less sugar, and mango is too sweet. W

Experience Memory

@ Starts empty

@ Stores tasks after addressing them
@ Stores task name, description and experience

e Procedure: steps for handling task
@ Suggestions: how to better accomplish task / avoid errors




Self-evolving GPT: self-learning from experience
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8
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Task Type Categorization

@ retrieve similar tasks from memory
© if match found

@ retrieve task from memory
@ if task adequately learned skip learning
© otherwise start learning

© otherwise, add new task to memory

.




Self-evolving GPT: self-learning from experience
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Experience Transfer

@ step-by-step experience transfer (prompt-based)

@ understand differences
@ identify shared experience
© rephrase it for target task

© merge transferred experience with task experience )




Self-evolving GPT: self-learning from experience
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Autonomous Practice

@ retrieve web documents related to question
© generate task-specific question related to document
© verify correctness from document




Self-evolving GPT: self-learning from experience
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Experience Induction

@ summarize new experience for current task
@ summarize commonalities between correct examples
@ identify patterns in incorrect examples
© generate task-solving insights

start learning
2l
2
21
el

© merge induced experience with existing experience

4




Self-evolving GPT: self-learning from experience
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Question: Tom is a diabetic patient. Would avocado or mango be
a better choice for him?

- 8
Response: Avocado is better because Tom needs to consume | (oo
less sugar, and mango is too sweet, (=)

Reasoning with Experience

@ Retrieve experience for current task
© Address task based on experience
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