
Scientific Programming

Lecture A03 – Structured programming

Andrea Passerini

Università degli Studi di Trento

2020/10/01

Acknowledgments: Alberto Montresor, Stefano Teso

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



Introduction

Structured programming

After having surveyed the basic data items, we now survey the basic
control structures:

Statement

Statement

Statement

Statement

Condition

Statement Statement

True False Condition

Statement

TrueFalse

Sequence Conditional statement Loop statement

if - elif - else for - whileNewlines

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 1 / 70



Introduction

Structured programming

Blocks

Blocks are used to enable
groups of statements to be
treated as if they were one
statement.

Block-structured languages have a
syntax for enclosing blocks in some
formal way.

Statement

Statement

Statement

Statement

Condition
True False

Condition

Statement

TrueFalse

Statement

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 2 / 70



Introduction

Some simple examples

for loop
L = [1,2,3,4]
print("---------------")
for val in L:

print(">> ", end="")
print(val, val*val)

print("---------------")

---------------
>> 1 1
>> 2 4
>> 3 9
>> 4 16
---------------

if - else statement

answer = input()
if (answer.lower() == "yes"):

print("Good!")
else:

print("Too bad!")
Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 3 / 70



Introduction

Some simple examples

for loop
L = [1,2,3,4]
print("---------------")
for val in L:

print(">> ", end="")
print(val, val*val)

print("---------------")

---------------
>> 1 1
>> 2 4
>> 3 9
>> 4 16
---------------

if - else statement

answer = input()
if (answer.lower() == "yes"):

print("Good!")
else:

print("Too bad!")
Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 3 / 70



Introduction

Python vs rest-of-the-world: Indentation

Python

Blocks are identified by inden-
tation

L = [1,2,3,4]
print("––––")
for val in L

print("** ", end="")
print(val, val*val)

print("––––")

Java

Blocks are identified by curly
braces
System.out.println("--------")
for (int val=1; val <= 4; i++) {
System.out.print("** ");
System.out.println(val + " "

+ val*val)
}
System.out.println("--------")

Rules

End-of-line is end of statement

End-of-indentation is end of block
Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 4 / 70



Introduction

Common errors

L = [1,2,3,4]
print("---------------")
for val in L:
print("** ", end="")
print(val, val**2)
print("---------------")

[andrea@praha ~]$ python errors.py
File "errors.py", line 4

print("** ", end="")
^

IndentationError: expected an indented block

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 5 / 70



Introduction

Common errors

L = [1,2,3,4]
print("---------------")
for val in L:

print("** ", end="")
print(val, val**2)

print("---------------")

[andrea@praha ~]$ python errors.py
File "errors.py", line 5

print(val, val**2)
^

IndentationError: unindent does not match any
outer indentation level

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 6 / 70



Introduction

Common errors

L = [1,2,3,4]
print("---------------")
for val in L:

print("** ", end="")
print(val, val**2)

print("---------------")

[andrea@praha ~]$ python errors.py
File "errors.py", line 5

print(val, val**2)
^

IndentationError: unexpected indent

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 7 / 70



Introduction

Other formatting quirks

Content of parenthesis (), [], { } can be split among multiple
lines. Without parenthesis, you get an error.

L = [ "A Game of Thrones", "A Clash of Kings",
"A Storm of Swords", "A Feast for Crows",
"A Dance with Dragons"

]
S1 = ("abcefghijklmnopqrstuvwxyz" +

"ABCDEFGHIJKLMNOPQRSTUVWXYZ")
S2 = "abcefghijklmnopqrstuvwxyz" +

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

[andrea@praha ~]$ python prova.py
File "prova.py", line 12

S2 = "abcefghijklmnopqrstuvwxyz" + ^
SyntaxError: invalid syntax

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 8 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



Conditional statements

if – else statements

Conditional statement

A conditional statement allows to write code that gets executed if
and only if some condition is satisfied.

guess = input("Guess what number I’m thinking: ")
if guess == 5633839494:

print("It’s correct!")
else:

print("Sorry, wrong number")

BTW, do you see a problem in this code?

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 9 / 70



Conditional statements

if – else statements

Conditional statement

The conditional statements allow to write code that gets executed
if and only if some condition is satisfied.

guess = int(input("Guess what number I’m thinking: "))
if guess == 5633839494:

print("It’s correct!")
else:

print("Sorry, wrong number")

The return of input() is a string, compared to a number returns False

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 10 / 70



Conditional statements

if – elif – else statements

if, elif and else form a “chain”: only one of the branches is
executed.

value = int(input("Insert a number between 1 and 4"))
if value == 1:

print("Very good choice")
elif value == 2:

print("The first even number")
elif value == 3:

print("The first Fermat number")
elif value == 4:

print("A highly totient number")
else:

print("I said, between 1 and 4")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 11 / 70



Conditional statements

if – elif – else statements

if, elif and else form a “chain”: only one of the branches is
executed. The first one that matches is executed.

What is the difference between these two pieces of code?

value = 2
if (value == 2):

print("Even and prime")
elif (value % 2 == 0):

print("Even")

value = 2
if (value == 2):

print("Even and prime")
if (value % 2 == 0):

print("Even")

Even and prime Even and prime
Even

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 12 / 70



Conditional statements

if – elif – else statements

if, elif and else form a “chain”: only one of the branches is
executed. The first one that matches is executed.

What is the difference between these two pieces of code?

value = 2
if (value == 2):

print("Even and prime")
elif (value % 2 == 0):

print("Even")

value = 2
if (value == 2):

print("Even and prime")
if (value % 2 == 0):

print("Even")

Even and prime Even and prime
Even

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 12 / 70



Conditional statements

if – elif – else statements

What is printed by this piece of code?

if condition1:
print("A")

elif condition2:
print("B")

else:
print("C")

condition2==True condition2==False
condition1==True
condition1==False

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 13 / 70



Conditional statements

if – elif – else statements

What is printed by this piece of code?

if condition1:
print("A")

elif condition2:
print("B")

else:
print("C")

condition2==True condition2==False
condition1==True A A
condition1==False B C

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 13 / 70



Conditional statements

if – elif – else statements

How we can re-obtain the behavior described by the table, without
using elif / else, but using and/or/not operators?

condition2==True condition2==False
condition1==True A A
condition1==False B C

if condition1:
print("A")

if not condition1 and condition2:
print("B")

if not condition1 and not condition2:
print("C")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 14 / 70



Conditional statements

if – elif – else statements

How we can re-obtain the behavior described by the table, without
using elif / else, but using and/or/not operators?

condition2==True condition2==False
condition1==True A A
condition1==False B C

if condition1:
print("A")

if not condition1 and condition2:
print("B")

if not condition1 and not condition2:
print("C")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 14 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



for loop

For Loop

For loop

The for loop is a generic iterator in Python: it can step through
the items of any ordered sequence or other iterable object.

Works on strings, lists, tuples, dictionaries, and other built-in
iterables

Is it possible to define new iterable objects

L = ["Venezia", "Verona", "Padova", "Vicenza",
"Treviso", "Belluno", "Rovigo"]

for provincia in L:
print(provincia, " si trova in Veneto")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 15 / 70



for loop

For loop

for var in sequence:
statement1
statement2
...

var is the loop variable; it is assigned
to each of the values in the list, until
all the values are used

sequence is the loop sequence;

the statements to be executed are
called the loop body

Codelens

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 16 / 70

https://runestone.academy/runestone/static/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html


for loop

Iteration

str for iterates over the characters
list for iterates over the elements
tuple for iterates over the elements
dict for iterates over the keys

for k in [1,2,3,4]:
print(k, end=’ ’)

print("")
for k in (’a’,’b’,’c’):

print(k, end=’ ’)
print("")
for k in "IBM":

print(k, end=’.’)
print("")

1 2 3 4

a b c

I.B.M.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 17 / 70



for loop

Iteration

str for iterates over the characters
list for iterates over the elements
tuple for iterates over the elements
dict for iterates over the keys

for k in [1,2,3,4]:
print(k, end=’ ’)

print("")
for k in (’a’,’b’,’c’):

print(k, end=’ ’)
print("")
for k in "IBM":

print(k, end=’.’)
print("")

1 2 3 4

a b c

I.B.M.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 17 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(stop)

Returns a list of integers between 0 and stop-1

for k in range(4):
print(k, end = ’ ’)

print("")

0 1 2 3

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 18 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(stop)

Returns a list of integers between 0 and stop-1

for k in range(4):
print(k, end = ’ ’)

print("") 0 1 2 3

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 18 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(start, stop)

Returns a list of integers between start and stop-1

for k in range(1,5):
print(k, end = ’ ’)

print("")

1 2 3 4

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 19 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(start, stop)

Returns a list of integers between start and stop-1

for k in range(1,5):
print(k, end = ’ ’)

print("")
1 2 3 4

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 19 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(start, stop, increment)

Returns a list of integers between start and stop-1, with increment
increment

for k in range(2,10,2):
print(k, end = ’ ’)

print("")

2 4 6 8

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 20 / 70



for loop

Range

Range

The range() built-in function returns an iterable object that can
be used to obtain a list of integers.

range(start, stop, increment)

Returns a list of integers between start and stop-1, with increment
increment

for k in range(2,10,2):
print(k, end = ’ ’)

print("") 2 4 6 8

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 20 / 70



for loop

Range - Differences between 2.x and 3.x

Python 2.7.13 (default, Apr 23 2017, 16:50:35)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> L = range(10)
>>> print(L)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Python 3.5.3 |Anaconda 4.4.0 (x86_64)| (default, Mar 6 2017, 12:15:08)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> L = range(10)
>>> print(L)
range(0, 10)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 21 / 70



for loop

Range - Differences between 2.x and 3.x

Python 2.x

range() returns a list that contains the desired integers. The list
is stored in memory, making it inefficient to use range() for a very
large number of iterations.
If you want to use the 3.x approach in 2.x, use xrange() instead.

Python 3.x

In Python 3.x, range() generates the numbers as the iterator for
asks for them, without storing the list.
If you do want to create the list, use the list() built-in function:

L = list(range(10))
print(L)
[0,1,2,3,4,5,6,7,8,9]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 22 / 70



for loop

Examples of for – Summation

The following code sums the numbers contained in the list L

L = [1, 25, 6, 27, 57, 12]
total = 0
for number in L:

total = total + number
print("The sum is", total)

Alternative code (using built-in functions)

L = [1, 25, 6, 27, 57, 12]
print(sum(L))

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 23 / 70



for loop

Examples of for – Maximum

The following code returns the maximum value contained in L

L = [1, 25, 6, 27, 57, 12]
max_so_far = L[0]
for number in L:

if number > max_so_far:
max_so_far = number

print("The maximum is", max_so_far)

Alternative code (using built-in functions)

L = [1, 25, 6, 27, 57, 12]
print(max(L))

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 24 / 70



for loop

Examples of for – Fibonacci

The following code computes the first 20 Fibonacci numbers

F [n] =

{
F [n− 1] + F [n− 2] n > 2

1 n ≤ 2

F = [1,1]
for k in range(18):

F.append(F[-1]+F[-2])
print(F)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
610, 987, 1597, 2584, 4181, 6765]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 25 / 70



for loop

Nested for loops

Two or more loops may be "nested", meaning that one is contained in
the other.
Consider the following example, that lists all possible "quarters of hour"

L = []
for h in range(24):

for m in range(0, 60, 15):
L.append(str(h)+":"+str(m))

print(L)

[’0:0’, ’0:15’, ’0:30’, ’0:45’, ’1:0’, ’1:15’, ’1:30’,
’1:45’,’2:0’, ’2:15’, ’2:30’, ’2:45’, ’3:0’, ’3:15’,
’3:30’, ’3:45’, ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 26 / 70



for loop

Nested for loops

The following code should check whether there are two repeated
values inside a list

L = [1,3,5,6]
for x in L:

for y in L:
if x == y:

print(x, "is repeated")

Do you see any problems?

1 is repeated
3 is repeated
5 is repeated
6 is repeated

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 27 / 70



for loop

Nested for loops

The following code should check whether there are two repeated
values inside a list

L = [1,3,5,6]
for x in L:

for y in L:
if x == y:

print(x, "is repeated")

Do you see any problems?

1 is repeated
3 is repeated
5 is repeated
6 is repeated

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 27 / 70



for loop

Nested for loops

The following code checks whether there are two repeated values
inside a list

L = [1,3,5,6,1,8,3]
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i] == L[j]:

print(L[i], "is repeated at ", i, j)

1 is repeated at 0 4
3 is repeated at 2 6

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 28 / 70



for loop

Nested for loops

The following code checks whether there are two repeated values
inside a list

L = [1,3,5,6,1,8,3]
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i] == L[j]:

print(L[i], "is repeated at ", i, j)

1 is repeated at 0 4
3 is repeated at 2 6

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 28 / 70



for loop

Nested for loops

The following code checks whether there are two repeated values
inside a list

L = [1,3,5,6,1,8,3,4,3]
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i] == L[j]:

print(L[i], "is repeated at ", i, j)

What is printed?

1 is repeated at 0 4
3 is repeated at 2 6
3 is repeated at 2 8
3 is repeated at 6 8

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 29 / 70



for loop

Nested for loops

The following code checks whether there are two repeated values
inside a list

L = [1,3,5,6,1,8,3,4,3]
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i] == L[j]:

print(L[i], "is repeated at ", i, j)

What is printed?

1 is repeated at 0 4
3 is repeated at 2 6
3 is repeated at 2 8
3 is repeated at 6 8

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 29 / 70



for loop

Exercise

Given a list L of integers, print True if L contains two distinct values
whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print True because 7+10=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17:

found = True
print(found)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 30 / 70



for loop

Exercise

Given a list L of integers, print True if L contains two distinct values
whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print True because 7+10=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17:

found = True
print(found)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 30 / 70



for loop

Exercise

Given a list L of integers, print the indexes of a couple of values
whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print either 2,7 or 1,3 because
L[2]+L[7]=17 and L[1]+L[3]=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17:

found = True
pos_i = i
pos_j = j

if found:
print(pos_i, pos_j)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 31 / 70



for loop

Exercise

Given a list L of integers, print the indexes of a couple of values
whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print either 2,7 or 1,3 because
L[2]+L[7]=17 and L[1]+L[3]=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17:

found = True
pos_i = i
pos_j = j

if found:
print(pos_i, pos_j)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 31 / 70



for loop

Exercise

Given a list L of integers, print the indexes of the first couple of
values whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print 1,3 because
L[1]+L[3]=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17 and not found:

found = True
pos_i = i
pos_j = j

if found:
print(pos_i, pos_j)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 32 / 70



for loop

Exercise

Given a list L of integers, print the indexes of the first couple of
values whose sum is equal to 17

Example: If L=[3,7,12,10,8,32,7,5], print 1,3 because
L[1]+L[3]=17.

found = False
for i in range(len(L)):

for j in range(i+1,len(L)):
if L[i]+L[j] == 17 and not found:

found = True
pos_i = i
pos_j = j

if found:
print(pos_i, pos_j)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 32 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



While loops

While loops

While

The while statement allows to write code
that repeats as long as a certain condition
is true. while stops iterating as soon as
the condition is not true anymore.

while condition:
# statements that may change
# the condition from
# True to False

Statement

Statement

Statement

Statement

Condition

Statement Statement

True False Condition

Statement

TrueFalse

Sequence Conditional statement Loop statement

if - elif - else for - whileNewlines

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 33 / 70



While loops

While loops

Differences between while and for

for element in collection: executes n times, where n is the length
of collection.

while condition: executes an indefinite number of times, as long as
the condition is true.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 34 / 70



While loops

Use of while

The while statement is useful when the value of condition can not
be known beforehand, for instance when interacting with a user

while input("Do you want me to stop? ").lower() != "yes":
print("Then I’ll keep going!")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 35 / 70



While loops

Exercise

Write a program that asks the user a question (e.g., what is the
capital of Italy) and keeps repeating the question until the answer
is correct

answer = ""
while (answer != "rome"):

answer = input("What is the capital of Italy?").lower()
if answer != "rome":

print("Sorry, wrong answer; retry")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 36 / 70



While loops

Exercise

Write a program that asks the user a question (e.g., what is the
capital of Italy) and keeps repeating the question until the answer
is correct

answer = ""
while (answer != "rome"):

answer = input("What is the capital of Italy?").lower()
if answer != "rome":

print("Sorry, wrong answer; retry")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 36 / 70



While loops

Exercise

Write a program that asks the user a question (e.g., what is the
capital of Italy) and repeats the question three times or until the
answer is correct.

answer = ""
attempts = 0
while (answer != "rome" and attempts < 3):

answer = input("What is the capital of Italy?").lower()
if answer != "rome":

print("Sorry, wrong answer; retry")
attempts = attempts+1

if (attempts == 3):
print("The capital is Rome! Goat!")

else:
print("Very good")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 37 / 70



While loops

Exercise

Write a program that asks the user a question (e.g., what is the
capital of Italy) and repeats the question three times or until the
answer is correct.

answer = ""
attempts = 0
while (answer != "rome" and attempts < 3):

answer = input("What is the capital of Italy?").lower()
if answer != "rome":

print("Sorry, wrong answer; retry")
attempts = attempts+1

if (attempts == 3):
print("The capital is Rome! Goat!")

else:
print("Very good")

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 37 / 70



While loops

Exercise

Let L be a list of integers and let Lsum(k) =
∑k−1

i=0 L[i]. Write a
program that takes L and an integer value threshold as input and
prints the number of elements k such that Lsum(k) ≥ threshold .
Print −1 if the sum of all elements is smaller than threshold .

For example,

If L = [1, 4, 3, 12, 7] and threshold = 7, the output should be 3,
meaning that the sum of the first three elements (8) is larger than
threshold .

If L = [1, 2, 3, 4] and threshold = 11, the output should be −1,
meaning that the sum of all elements (10) is smaller than threshold .

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 38 / 70



While loops

Exercise

L = list(range(10))
threshold = 20
tot = 0
i = 0
while (tot <= threshold and i < len(L)):

tot = tot + L[i]
i = i+1

if (tot >= threshold):
print(i)

else:
print(-1)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 39 / 70



While loops

Exercise

Write a program that creates a list with all the Fibonacci numbers
smaller than 1,000,000.

F = [1,1]
over = False

while not over:
next = F[-1]+F[-2]
if next > 1000000:

over = True
else:

F.append(next)

F = [1,1]
while F[-1]<1000000:

F.append(F[-1]+F[-2])
F.pop(-1)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 40 / 70



While loops

Exercise

Write a program that creates a list with all the Fibonacci numbers
smaller than 1,000,000.

F = [1,1]
over = False

while not over:
next = F[-1]+F[-2]
if next > 1000000:

over = True
else:

F.append(next)

F = [1,1]
while F[-1]<1000000:

F.append(F[-1]+F[-2])
F.pop(-1)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 40 / 70



While loops

Exercise

Exercise

The 3n+1 sequence is defined like this: given a number n, compute
a new value for n as follow: if n is even, divide n by 2. If n is odd,
multiply it by 3 and add 1. Stop when you reach the value of 1.
Example: for n = 3, the sequence is [3, 10, 5, 16, 8, 4, 2, 1].
Write a program that creates a list D , such that for each value
n between 1 and 50, D[n] contains the length of the sequence so
generated. In case of n = 3, the length is 8. In case of n = 27, the
length is 111.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 41 / 70



While loops

Use of while – Exercise

MAX = 51
L = [0]*MAX
for n in range(1,MAX):

count = 0
start = n
while n > 1:

if (n % 2 == 0):
n = n // 2

else:
n = 3*n+1

count = count + 1
L[start] = count

print(L[1:])

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 42 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



Break and continue

Break and continue – hate and love

break

Inside a loop (either for or while), a break statement interrupts
the execution of the loop.

sums = []
tot = 0
for x in range(1,100):

tot = tot+x
if tot>300:

break
sums.append(tot)

print(sums)

[1, 3, 6, 10, 15, 21, 28,
36, 45, 55, 66, 78, 91,
105, 120, 136, 153, 171,
190, 210, 231, 253, 276,
300]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 43 / 70



Break and continue

Break and continue – hate and love

break

This version prints the same output as before; it is much better
without a break!

sums = []
tot = 0
x = 1
while (tot+x <= 300):

tot = tot + x
sums.append(tot)
x = x + 1

print(sums)

[1, 3, 6, 10, 15, 21, 28,
36, 45, 55, 66, 78, 91,
105, 120, 136, 153, 171,
190, 210, 231, 253, 276,
300]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 44 / 70



Break and continue

Break and continue – hate and love

continue

Inside a loop (either for or while), a continue statement interrupts
the current iteration of the loop and skip to the next one.

LS = []
for x in range(1,31):

if x%2 != 0 and x%3 != 0:
continue

LS.append(x)
print(LS)

[2, 3, 4, 6, 8, 9, 10, 12,
14, 15, 16, 18, 20, 21,
22, 24, 26, 27, 28, 30]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 45 / 70



Break and continue

Break and continue – hate and love

continue

Inside a loop (either for or while), a continue statement interrupts
the current iteration of the loop and skip to the next one.

LS = []
for x in range(1,31):

if x%2 != 0 and x%3 != 0:
continue

LS.append(x)
print(LS)

[2, 3, 4, 6, 8, 9, 10, 12,
14, 15, 16, 18, 20, 21,
22, 24, 26, 27, 28, 30]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 45 / 70



Break and continue

Break and continue – hate and love

continue

This version prints the same output as before; it is much better
without a continue!

LS = []
for x in range(1,31):

if x%2 == 0 or x%3 == 0:
LS.append(x)

print(LS)

[2, 3, 4, 6, 8, 9, 10, 12,
14, 15, 16, 18, 20, 21,
22, 24, 26, 27, 28, 30]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 46 / 70



Break and continue

Avoid break and continue!

Using break and continue frequently makes code hard to follow. But
if replacing them makes the code even harder to follow, then that’s
a bad change.

E.W. Dijkstra. Go To Sta-
tement Considered Harmful.
Communications of the ACM,
Vol. 11 (1968) 147-148

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 47 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



List comprehension

List Comprehension

List comprehension

The list comprehension operator allows to filter or transform a list.
The original list is left unchanged. A new list is created instead.

The abstract syntax is:

filtered = [expression(element)
for element in original
if condition(element)]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 48 / 70



List comprehension

List Comprehension

List comprehension as a filter

Given an arbitrary iterable object original, we can create a new
list that only contains those elements of original that satisfy a
given condition.

The abstract syntax is:

filtered = [element
for element in original
if condition(element)]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 49 / 70



List comprehension

List comprehension - example

Example

Generate the list of natural numbers smaller or equal to 30 that are
divisible by either 2 or 3

L = {n : 1 ≤ n ≤ 30 and (n mod 2 = 0 or n mod 3 = 0)}

L = [n for n in range(1,31) if n%2 == 0 or n%3 == 0]

[2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16,
18, 20, 21, 22, 24, 26, 27, 28, 30]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 50 / 70



List comprehension

List comprehension - exercise

Exercise

Given a list of DNA sequences represented as strings, returns only
those sequences that contain at least one adenosine ("A")

sequences = ["ACTGG", "CCTGT", "ATTTA", "TATAGC"]

L = [seq for seq in sequences if "A" in seq]

[’ACTGG’, ’ATTTA’, ’TATAGC’]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 51 / 70



List comprehension

List comprehension - exercise

Exercise

Given a list of DNA sequences represented as strings, returns only
those sequences that contain at least one adenosine ("A")

sequences = ["ACTGG", "CCTGT", "ATTTA", "TATAGC"]
L = [seq for seq in sequences if "A" in seq]

[’ACTGG’, ’ATTTA’, ’TATAGC’]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 51 / 70



List comprehension

List comprehension - exercise

Exercise

Given a list of telephone numbers represented as strings, returns
only those that are from Verona (prefix "045")

numbers = ["04599904523", "0461304534",
"0288662244", "0458346157"]

L = [number for number in numbers if number.startswith("045")]

[’04599904523’, ’0458346157’]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 52 / 70



List comprehension

List comprehension - exercise

Exercise

Given a list of telephone numbers represented as strings, returns
only those that are from Verona (prefix "045")

numbers = ["04599904523", "0461304534",
"0288662244", "0458346157"]

L = [number for number in numbers if number.startswith("045")]

[’04599904523’, ’0458346157’]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 52 / 70



List comprehension

Note

The name of the "temporary" variable holding the current element
(in the examples above, n and seq, respectively) is arbitrary.

These pieces of code are identical:

L = [n for n in range(1,31) if n%2 == 0 or n%3 == 0]

L = [pippo for pippo in range(1,31)
if pippo%2 == 0 or pippo%3 == 0]

The name of the variable does not make any difference. You are free to
pick any name you like, but choose something meaningful.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 53 / 70



List comprehension

List Comprehension

List comprehension as transformation

Given an arbitrary list original, we can use a list comprehension
to also transform the elements in the list in some way.

The abstract syntax is:

transformed = [expression(element)
for element in original]

The expression should be based on element, but sometimes it is
possible that they are completely independent.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 54 / 70



List comprehension

List comprehension - exercises

Exercise

Generate the list of the squares of the natural numbers between 1
and 30.

L = {n2 : 1 ≤ n ≤ 30 }

L = [n*n for n in range(1,31)]
print(L)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196,
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625,
676, 729, 784, 841, 900]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 55 / 70



List comprehension

List comprehension - exercises

Exercise

Generate the list of the squares of the natural numbers between 1
and 30.

L = {n2 : 1 ≤ n ≤ 30 }

L = [n*n for n in range(1,31)]
print(L)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196,
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625,
676, 729, 784, 841, 900]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 55 / 70



List comprehension

List comprehension – exercises

Exercise

Given the list of strings representing (part of) the 3D structure of
a protein chain, compute a list of lists which should hold, for each
residue (that is, for every row of atoms), its coordinates.

atoms = [
"SER A 96 77.253 20.522 75.007",
"VAL A 97 76.066 22.304 71.921",
"PRO A 98 77.731 23.371 68.681",
"SER A 99 80.136 26.246 68.973",
"GLN A 100 79.039 29.534 67.364",
"LYS A 101 81.787 32.022 68.157",

]

coords = [row.split()[-3:] for row in atoms]
print(coords)

[[’77.253’, ’20.522’, ’75.007’], [’76.066’, ’22.304’, ’71.921’], ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 56 / 70



List comprehension

List comprehension – exercises

Exercise

Given the list of strings representing (part of) the 3D structure of
a protein chain, compute a list of lists which should hold, for each
residue (that is, for every row of atoms), its coordinates.

atoms = [
"SER A 96 77.253 20.522 75.007",
"VAL A 97 76.066 22.304 71.921",
"PRO A 98 77.731 23.371 68.681",
"SER A 99 80.136 26.246 68.973",
"GLN A 100 79.039 29.534 67.364",
"LYS A 101 81.787 32.022 68.157",

]

coords = [row.split()[-3:] for row in atoms]
print(coords)

[[’77.253’, ’20.522’, ’75.007’], [’76.066’, ’22.304’, ’71.921’], ...
Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 56 / 70



List comprehension

List comprehension – example

But! The results is a list of list of strings, I need float coordinates!
What we can do?

coords = [
[float(coord) for coord in row.split()[-3:]]
for row in atoms]

print(coords)

[[77.253, 20.522, 75.007], [76.066, 22.304, 71.921], ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 57 / 70



List comprehension

List comprehension – example

But! The results is a list of list of strings, I need float coordinates!
What we can do?

coords = [
[float(coord) for coord in row.split()[-3:]]
for row in atoms]

print(coords)

[[77.253, 20.522, 75.007], [76.066, 22.304, 71.921], ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 57 / 70



List comprehension

List comprehension – example

But! Nice list of lists, but I need a list of tuples - I will use them later
in a dictionary!

coords = [
tuple([float(coord) for coord in row.split()[-3:]])
for row in atoms]

print(coords)

[(77.253, 20.522, 75.007), (76.066, 22.304, 71.921), ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 58 / 70



List comprehension

List comprehension – example

But! Nice list of lists, but I need a list of tuples - I will use them later
in a dictionary!

coords = [
tuple([float(coord) for coord in row.split()[-3:]])
for row in atoms]

print(coords)

[(77.253, 20.522, 75.007), (76.066, 22.304, 71.921), ...

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 58 / 70



List comprehension

List Comprehension

All together, now!

Given an arbitrary list original, we can use a list comprehension
to transform and filter the elements in the list at the same time

The abstract syntax is:

transformed = [expression(element)
for element in original
if condition(element)]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 59 / 70



List comprehension

List Comprehension

Using the example developed so far, we want just to list the coordinates
of serines.

coords = [
tuple([float(coord) for coord in row.split()[-3:]])
for row in atoms
if row.startswith("SER")]

print(coords)

[(77.253, 20.522, 75.007), (80.136, 26.246, 68.973)]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 60 / 70



List comprehension

List Comprehension

Using the example developed so far, we want just to list the coordinates
of serines.

coords = [
tuple([float(coord) for coord in row.split()[-3:]])
for row in atoms
if row.startswith("SER")]

print(coords)

[(77.253, 20.522, 75.007), (80.136, 26.246, 68.973)]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 60 / 70



List comprehension

List comprehension and lists of lists

Let’s say that we want to create a bi-dimensional matrix n× n,
initialized to zero. Let’s write in this way

n = 4
L = [[0]*n]*n
print(L)

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

What happens if I execute L[1][1] = 5?

[[0, 5, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0]]

Why?

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 61 / 70



List comprehension

List comprehension and lists of lists

Let’s say that we want to create a bi-dimensional matrix n× n,
initialized to zero. Let’s write in this way

n = 4
L = [[0]*n]*n
print(L)

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

What happens if I execute L[1][1] = 5?

[[0, 5, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0], [0, 5, 0, 0]]

Why?

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 61 / 70



List comprehension

List comprehension and lists of lists

The correct way of initializing a list of lists is to use list comprehension
(or a loop)

n = 4
L = [[0]*n for i in range(n)]
L[1][1] = 5
print(L)

[[0, 0, 0, 0], [0, 5, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 62 / 70



Table of contents

1 Introduction
2 Conditional statements
3 for loop
4 While loops
5 Break and continue
6 List comprehension
7 Exercises



Exercises

Exercise

Exercise

Given a number n, print all the possible ways to obtain it as a
products of two integers. Pay attention at commutative repetitions
(e.g., 4x9 and 9x4)

n = 36
L = []
for i in range(n+1):

for j in range(i,n+1):
if (i*j==n):

L.append((i,j))
print(L)

# Through list comprehension
L = [(i,j) for i in range(n+1) for j in range(i,n+1) if i*j==n]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 63 / 70



Exercises

Exercise

Exercise

Given a number n, print all the possible ways to obtain it as a
products of two integers. Pay attention at commutative repetitions
(e.g., 4x9 and 9x4)

n = 36
L = []
for i in range(n+1):

for j in range(i,n+1):
if (i*j==n):

L.append((i,j))
print(L)

# Through list comprehension
L = [(i,j) for i in range(n+1) for j in range(i,n+1) if i*j==n]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 63 / 70



Exercises

Exercise

Problem

Given a list of values, generate the sublist of values that only appear
once in the list. For example, L = [1,3,2,3,5,4,5,3,3] should
generate [1, 2, 4]

L = [1,3,2,3,5,4,5,3,3]
SL = [n for n in L if L.count(n)==1]
print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 64 / 70



Exercises

Exercise

Problem

Given a list of values, generate the sublist of values that only appear
once in the list. For example, L = [1,3,2,3,5,4,5,3,3] should
generate [1, 2, 4]

L = [1,3,2,3,5,4,5,3,3]
SL = [n for n in L if L.count(n)==1]
print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 64 / 70



Exercises

Exercise

Problem

Given a list of values, potentially with repeated values, genera-
te the ordered sublist of values where repeated value are remo-
ved. For example, L = [1,3,2,3,5,4,5,3,3] should generate L
= [1,2,3,4,5]

L = [1,3,2,3,5,4,5,3,3]
SL = []
for n in L:

if (n not in SL):
SL.append(n)

SL.sort()
print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 65 / 70



Exercises

Exercise

Problem

Given a list of values, potentially with repeated values, genera-
te the ordered sublist of values where repeated value are remo-
ved. For example, L = [1,3,2,3,5,4,5,3,3] should generate L
= [1,2,3,4,5]

L = [1,3,2,3,5,4,5,3,3]
SL = []
for n in L:

if (n not in SL):
SL.append(n)

SL.sort()
print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 65 / 70



Exercises

Exercise

Problem

Given two lists of values (with no repetitions), generate the sublist
of values that appear in both of them.

L1 = [1,7,9,3,23,11]
L2 = [7,23,2,4,8,16]

SL = []
for v in L1:

if v in L2:
SL.append(v)

print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 66 / 70



Exercises

Exercise

Problem

Given two lists of values (with no repetitions), generate the sublist
of values that appear in both of them.

L1 = [1,7,9,3,23,11]
L2 = [7,23,2,4,8,16]

SL = []
for v in L1:

if v in L2:
SL.append(v)

print(SL)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 66 / 70



Exercises

Exercise

Problem

Given two lists of ordered values, generate the sublist of values that
appear in both of them. Exploit the fact that the lists are ordered.

A = [1,2,4,8,16,32]
B = [4,8,12,16,20]
LS = []
a = b = 0
while (a < len(A) and b < len(B)):

if A[a] == B[b]:
LS.append(A[a])
a = a+1
b = b+1

elif A[a] < B[b]:
a = a+1

else:
b = b+1

print(LS)

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 67 / 70



Exercises

Exercise

Problem

Given two lists of ordered values, generate the sublist of values that
appear in both of them. Exploit the fact that the lists are ordered.

A = [1,2,4,8,16,32]
B = [4,8,12,16,20]
LS = []
a = b = 0
while (a < len(A) and b < len(B)):

if A[a] == B[b]:
LS.append(A[a])
a = a+1
b = b+1

elif A[a] < B[b]:
a = a+1

else:
b = b+1

print(LS)
Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 67 / 70



Exercises

Exercise

Exercise - Sudoku

Given a matrix 9 × 9, print True if the matrix is an acceptable
Sodoku solution, print False otherwise.

L = [[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 5, 6, 7, 8, 9, 1, 2, 3],
[7, 8, 9, 1, 2, 3, 4, 5, 6],
[2, 3, 4, 5, 6, 7, 8, 9, 1],
[5, 6, 7, 8, 9, 1, 2, 3, 4],
[8, 9, 1, 2, 3, 4, 5, 6, 7],
[3, 4, 5, 6, 7, 8, 9, 1, 2],
[6, 7, 8, 9, 1, 2, 3, 4, 5],
[9, 1, 2, 3, 4, 5, 6, 7, 8] ]

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 68 / 70



Exercises

Exercise

Given the list of strings:

table = [
"protein domain start end",
"YNL275W PF00955 236 498",
"YHR065C SM00490 335 416",
"YKL053C-A PF05254 5 72",
"YOR349W PANTHER 353 414",

]

write a program that takes the column names from the first row of table;

for each row creates a dictionary like this:

dictionary = {
"protein": "YNL275W",
"domain": "PF00955",
"start": "236",
"end":, "498"

}

append each of these dictionaries to a list.

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 69 / 70



Exercises

Exercise

Given a long text represented as a string, compute the frequencies
of each word that appears in it and store it in a dictionary that
associates words to frequencies.

text = """Nel pozzo di San Patrizio c’e’ una pazza che lava
una pezza. Arriva un pazzo, con un pezzo di pizza e chiede
alla pazza se ne vuole un pezzo. La pazza rifiuta. Allora
il pazzo prende la pazza, la pezza e la pizza e li butta
nel pozzo di San Patrizio, protettore dei pazzi.
"""

Andrea Passerini (UniTN) SP - Controlo flow 2020/10/01 70 / 70


	Introduction
	Conditional statements
	for loop
	While loops
	Break and continue
	List comprehension
	Exercises

