
Scientific Programming

Lecture A09 – Programming Paradigms

Andrea Passerini

Università degli Studi di Trento

2019/06/26

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Table of contents

1 Programming Paradigms
2 Object-Oriented Python
3 Functional programming
4 Declarative programming

Programming Paradigms

Programming Paradigms

Imperative

Imperative programming speci-
fies programs as sequences of sta-
tements that change the pro-
gram’s state, focusing on how a
program should operate

C,Pascal

Declarativeg

Declarative programming ex-
presses the logic of a compu-
tation without defining its con-
trol flow, focusing on what the
program should accomplish

SQL, Prolog

Object-Oriented

Object-oriented programming is
based on the concept of "ob-
jects", which may contain data
(attributes) and code (methods)

Java, Smalltalk

Functionalg

Functional programming trea-
ts computation as the evalua-
tion of mathematical functions,
avoiding mutable state

Haskell, OCaml, ML

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 1 / 51

Programming Paradigms

Python

Python is multi-paradigm

Python is imperative/procedural, because programs are described
as sequences of statements

Python is object-oriented, because every piece of data is a an
object and new data types can be defined

Python is functional, thanks to list comprehensions (maps and
filters) and thanks to lambda functions

Some libraries of Python are declarative, like MatPlotLib

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 2 / 51

Object-Oriented Python

The power of OOP

Bundle together objects that share
common attributes and
procedures that operate on those attributes

Use abstraction to make a distinction between how to implement
an object vs how to use the object

Create our own classes of objects on top of Python’s basic classes

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 3 / 51

Object-Oriented Python

What are objects – Recap

Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}

Each of them is an object, i.e. an instance of a type (or class)
1234 is an instance of an int
"hello" is an instance of a string

Every entity in Python is an object: including primitive types,
functions, classes, modules, etc.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 4 / 51

Object-Oriented Python

What are types/classes – Recap

Types, or classes, are abstractions that capture:
an internal data representation (primitive or composite)

Data attributes, also called fields
Think of labels that describe the content of the objects belonging to
the class
Example: A 2-D coordinate is made up of an x-value and y-value

an interface for interaction with instances of such class
Function attributes, also called methods
Think of functions used to manipulate the objects
Example: a distance function that computes the distance between
two coordinate objects

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 5 / 51

Object-Oriented Python

The lifetime of types/classes and objects

Classes are defined
The name of data attributes is defined
The name and code of methods is defined

Objects are instantiated from classes

Objects are manipulated

Objects are destroyed
Either implicitly through garbage collection
Or explicitly through the command del

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 6 / 51

Object-Oriented Python

Objects and classes in the previous lectures

We have not defined new types/classes
We have used built-in types (int, list, dict, etc.)
We have used library classes (ndarray, DataFrame)

We have instantiated objects through:
built-in syntax (L = [1,2,3,4])
class constructors (pd.Series(["a", "b", "c"]))

We have manipulated objects through:
built-in operators ([1,2] + [2,3])
class methods (s.head(2))

We never explicitly deleted objects (not a big deal, though...)

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 7 / 51

Object-Oriented Python

Class definition

class Point:
Define attributes here

The class keyword defines a new type

Similar to def, indent code to indicate which statements are part
of the class definition

Each class inherits all the attributes of the predefined Python type
object (more on this later)

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 8 / 51

Object-Oriented Python

Class definition

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

To define how to create an instance of object, we use a special
method called __init__ (double underscore before/after)

__init__ takes 1 or more parameters:
The first, compulsory parameter self is the Python mechanism to
pass a reference to the object that is being created
x, y are domain parameters used to initialize the object

__init__ defines two data attributes:
self.x and self.y

From "inside", the "." operator is used to access attributes

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 9 / 51

Object-Oriented Python

Class definition

c = Point(3,4)
print(c)
print(c.x, c.y)
c.x = 5
print(c.x, c.y)

<__main__.Point object at 0x10dc58b00>
3 4

5 4

Creating an object is done by calling a function with the instance
name and the init parameters

As a consequence, __init__ is called; a reference to the object
(self) is automatically added by Python

From "outside", the "." operator is used to access attributes

Up to this point, a class is nothing more than a named tuple

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 10 / 51

Object-Oriented Python

Defining methods

class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def distanceFromOrigin(self):
return (self.x**2 + self.y**2)**0.5

The method computes the distance of the point from the origin.

Python always passes the object as the first argument
BTW, the name self is just a convention, but an important one

Again, the "." operator is used to access attributes

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 11 / 51

Object-Oriented Python

Invoking methods

p = Point(7, 6)
print(p.distanceFromOrigin())

9.21954445729

Method attributes are accessed through the dot notation, as usual

http://interactivepython.org/courselib/static/thinkcspy/
ClassesBasics/AddingOtherMethodstoourClass.html

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 12 / 51

http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/AddingOtherMethodstoourClass.html
http://interactivepython.org/courselib/static/thinkcspy/ClassesBasics/AddingOtherMethodstoourClass.html

Object-Oriented Python

Encapsulation

Encapsulation

The process of compartmentalizing the elements of an abstraction
that constitute its structure and behavior. Encapsulation serves to
separate the contractual interface of an abstraction and its imple-
mentation.

[G. Booch]

How it works:
We hide the details of the implementation that are not supposed to
be visible outside (e.g., the internal coordinates)

We provide methods to interact with them (e.g, read / write)

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 13 / 51

Object-Oriented Python

Encapsulation – Java Example

public class Point {

private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int getX() { return this.x; }

public int getY() { return this.y; }

}

Java syntax:
public means that
everybody can access
private means that
values are accessible
only internally

Methods getX(), getY()
are getters

There are no setters:
methods to modify the
content

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 14 / 51

Object-Oriented Python

Encapsulation in Python

class Point:

def __init__(self,x,y):
self.__x = x
self.__y = y

def getX(self):
return self.__x

def getY(self):
return self.__y

def setX(self, x):
self.__x = x

def setY(self, y):
self.__y = y

Conventions

Hidden attributes should start with
a double underscore __

Use setters/getters instead

If no modifier methods are
available, the object is immutable

IMHO: Ugly!

File "lecture.py", line 18:
print(p.__x)

AttributeError:
’Point’ object has no attribute ’__x’

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 15 / 51

Object-Oriented Python

Encapsulation

The author of a class definition could decide to change the variable
names of the data attributes

If you are accessing data attributes outside the class and the class
definition changes, you may get errors

outside of the class, use getters and setters
good style
easy to maintain code
prevents bugs

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 16 / 51

Object-Oriented Python

Defining methods – Multiple parameters
class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def distance(self, other):
x_sq = (self.x - other.x)**2
y_sq = (self.y - other.y)**2
return (x_sq + y_sq)**0.5

The first parameter is always a reference to the object on which
the computation is performed

The other parameters could be everything, including a reference to
another object of the same type

The dot "." notation is used to access the data attributes of both
self and the other object

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 17 / 51

Object-Oriented Python

How to use a method

c = Point(3,4)
origin = Point(0,0)
print(c.distance(origin))

5.0

The method distance() is invoked on the object c

distance() is called with two arguments
Parameter self is equal to c (added automatically)
Parameter other is equal to origin

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 18 / 51

Object-Oriented Python

Equivalent code

c = Point(3,4)
origin = Point(0,0)
print(Point.distance(c, origin))

5.0

The method distance() is invoked on the object c

distance() is called with two arguments
Parameter self is equal to c (added automatically)
Parameter other is equal to origin

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 19 / 51

Object-Oriented Python

Print representation of an object

c = Point(3,4)
print(c)

<__main__.Point object at 0x10dc58b00>

Uninformative print representation by default

Define a __str__() method for a class

Python calls the __str__() method when it needs a string
representation of your object

For example, it is used by print() function

You choose what is does! Say that when we print a Point object,
want to show <3,4>

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 20 / 51

Object-Oriented Python

Print representation of an object

class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def __str__(self):
return "<"+str(self.x)+","+str(self.y)+">"

c = Point(3,4)
print(c)

<3,4>

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 21 / 51

Object-Oriented Python

Instances as return values

class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def halfway(self, other):
mx = (self.x + other.x) / 2
my = (self.y + other.y) / 2
return Point(mx, my)

Methods may return a new object, by simply calling the
constructor

This method returns a point in the middle between self and other

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 22 / 51

Object-Oriented Python

Special operators

+, -, ==, <, >, len(), print, and many others

You can override these to work with your class

Define them with double underscores before/after

__add__(self, other) self + other
__sub__(self, other) self - other
__eq__(self, other) self = other
__lt__(self, other) self < other
__len__(self) len(self)
__str__(self) str(self)

https://docs.python.org/3/reference/datamodel.html#
basic-customization

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 23 / 51

https://docs.python.org/3/reference/datamodel.html#basic-customization
https://docs.python.org/3/reference/datamodel.html#basic-customization

Object-Oriented Python

Exercise: Define a Fraction class

Create a new type to represent a number as a fraction

internal representation is two integers
numerator
denominator

interface a.k.a. methods a.k.a how to interact with Fraction objects

return the sum, product (use __add__, __mul__)

return the inverse

print representation

convert to a float

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 24 / 51

Object-Oriented Python

You may need...

Greatest common divisor
def gcd(a, b):

while b>0:
a, b = b, a % b

return a

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 25 / 51

Object-Oriented Python

Creating and printing a fraction

class Fraction:

def __init__(self,top,bottom):
self.num = top
self.den = bottom

def __str__(self):
return str(self.num)+"/"+str(self.den)

f = Fraction(3,5)
print(f)

3/5

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 26 / 51

Object-Oriented Python

Summing two fractions

def __add__(self,other):

newnum = self.num*other.den + self.den*other.num
newden = self.den * other.den

return Fraction(newnum,newden)

f1=Fraction(1,4)
f2=Fraction(1,2)
print(f1+f2)

6/8

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 27 / 51

Object-Oriented Python

Summing two fractions

def __add__(self,other):
newnum = self.num*other.den + self.den*other.num
newden = self.den * other.den
common = gcd(newnum,newden)
return Fraction(newnum//common,newden//common)

f1=Fraction(1,4)
f2=Fraction(1,2)
print(f1+f2)

3/4

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 28 / 51

Object-Oriented Python

Inheritance

Definition – Inheritance

Inheritance enables new classes to "receive" the attributes of existing
classes.

class ChildClass(ParentClass):
Additional attributes here

Parent attributes are inherited – they are made available in the
child class

Parent attributes may be overridden – new version are made
available in the child class

Overridden parent attributes may be referred through the parent
class’ name

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 29 / 51

Object-Oriented Python

Inheritance and overriding

class Animal:
def __init__(self, name):
self.name = name

def __str__(self):
return "Animal :" + self.name

class Cat(Animal):
def speak(self):
print("Meow")

def __str__(self):
return "Cat: " + self.name

cat = Cat("Eris")
print(cat)
cat.speak()
animal = Animal("Grumpy cat")
animal.speak()

Animal is the parent class,
Cat is the child class

Cat inherits method
__init__() from Animal

Cat overrides method
__str__() with a new
version

Cat: Eris
Meow
AttributeError: ’Animal’

object has no attribute
’speak’

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 30 / 51

Object-Oriented Python

Inheritance rules

Subclass can have methods with the same name as in the
superclass

For an instance of a class, look for a method name in current class
definition

If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

Use first method up the hierarchy that you found with that
method name

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 31 / 51

Object-Oriented Python

Wrapping your head around classes and types

cat = Cat("Eris")
print(cat)
print(type(cat))
print(Cat)
print(type(Cat))
print(isinstance(cat, Animal))
print(isinstance(cat, Cat))

Cat: Eris
<class ’__main__.Cat’>
<class ’__main__.Cat’>
<class ’type’>
True
True

There is nothing special in a class; it is just another object of type
"type", that can be inspected as any other object.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 32 / 51

Object-Oriented Python

Inheritance – Another example

class Person:
def __init__(self, surname, name, gender):

self.surname = surname
self.name = name
self.gender = gender

def __str__(self):
return self.surname+" "+self.name+" ("+self.gender+")"

class Student(Person):

def __init__(self, surname, name, gender, mark_avg):
Person.__init__(self,surname,name,gender)
self.mark_avg = mark_avg

def __str__(self):
return Person.__str__(self)+": " + str(self.mark_avg)

student = Student("Albert", "Einstein", "M", 18.5)
print(student)

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 33 / 51

Functional programming

Functional programming

There are three main mechanisms inherited from functional
programming:

Map

Filter

Reduce

You have already used the first two of them through list
comprehensions

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 34 / 51

Functional programming

Functional programming – A few examples

map(f, list-of-inputs)

Applies function f() to list-of-inputs

print(list(map(len, ["how", "are", "you?"])))

[3,3,4]

filter(f, list-of-inputs)

Returns the items in list-of-inputs for which function f() returns
True

def even(x):
return x%2 == 0

print(list(filter(even, range(10))))

[0,2,4,6,8]
Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 35 / 51

Functional programming

Functional programming – A few examples

reduce(f, list-of-inputs)

Applies f() to the first two items in the list, then it applies fun to the
result and the third item, and so on.

from functools import reduce
def mul(x,y):

return x*y
print(reduce(mul, range(1,5)))

24

Multiplies all the items
included in the range.

Equivalent to:

res = 1
for x in range(2,5):

res = res*x
print(res)

But also to:

from functools import reduce
print(reduce(int.__mul__, range(1,5)))

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 36 / 51

Functional programming

Lambda functions

Creating and naming a function is not needed, though. You can use
(anonymous) lambda functions.

lambda input-parameters: expression

The examples above can be rewritten as follows:

from functools import reduce
print(list(filter(lambda x: x%2==0, range(10))))
print(reduce(lambda x,y: x*y, range(1,5)))

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 37 / 51

Functional programming

Lambda functions and sorting

list.sort() accepts a key argument to specify a function to be called
on each list element prior to make comparisons

Sort case-independent
L = [’a’, ’Andrew’, ’from’, ’is’, ’string’, ’test’, ’This’]
L.sort(key=str.lower)

Sort by third field
students = [(’john’,’A’,15), (’jane’,’B’,12), (’tom’,’B’,10)]
students.sort(key=lambda student: student[2])

Sort by distance from origin, from closer to further
points = [Point(1,2), Point(3,4), Point(4,1)]
points.sort(key=lambda point: point.distanceFromOrigin())

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 38 / 51

Declarative programming

Declarative programming

In Python, declarative programming is used in some of the
libraries.

We already mentioned MatPlotLib

We have a brief look at regular expressions

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 39 / 51

Declarative programming

Regular expressions

Definition
A regular expression (or regex) is a string that encodes a string pattern.
The pattern specifies which strings do match the regex.

A regex consists of both normal and special characters:
Normal characters match themselves.

Special characters match sets of other characters.

A string matches a regex if it matches all of its characters, in the
sequence in which they appear.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 40 / 51

Declarative programming

Regular expression syntax

Character Meaning
text Matches itself
(regex) Matches the regex regex (i.e. parentheses don’t count)
ˆ Matches the start of the string
$ Matches the end of the string or just before the newline
. Matches any character except a newline
regex? Matches 0 or 1 repetitions of regex (longest possible)
regex* Matches 0 or more repetitions of regex (longest possible)
regex+ Matches 1 or more repetitions of regex (longest possible)
regex{m,n} Matches from m to n repetitions of regex (longest possible)
[...] Matches a set of characters
[c1-c2] Matches the characters “in between” c1 and c2
[ˆ...] Matches the complement of a set of characters
r1|r2 Matches both r1 and r2

There are many more special symbols that can be used into a regex. We will
restrict ourselves to the most common ones.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 41 / 51

Declarative programming

Examples

The regex "ˆsomething" matches all strings that start with
"something", for instance "something better".

The regex "worse$" matches all strings that end with "worse", for
instance "I am feeling worse".

The “anything goes” character . (the dot) matches all characters
except the newline:

"." matches all strings that contain at least one character

"..." matches all strings that contain at least three characters

"ˆ.$" matches all those strings that contain exactly one character

"ˆ...$" matches all those strings that contain exactly three
characters.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 42 / 51

Declarative programming

Examples

The “optional” character ? matches zero or more repetitions of the
preceding regex.

"words?" matches both "word" and "words": the last character of
the "words" regex (that is, the "s") is now optional.

"(optional)?" matches both "optional" and the empty string.

"he is (our)? over(lord!)?" matches the following four
strings: "he is over", "he is our over", "he is overlord!",
and "he is our overlord!".

Parenthesis () are used to specify the scope of the ?

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 43 / 51

Declarative programming

Examples

The characters "*" and "+" match zero or more or one or more
repetitions of the preceding regex, respectively:

"Python!*" matches all of the following strings: "Python",
"Python!", "Python!!", "Python!!!!", etc.

"(column)+" matches: "column ", "column column ", etc. but
not the empty string ""

"I think that (you think that (I think that)*)+ this
regex is cool" will match things like

"I think that you think that this regex is cool", as well as
"I think that you think that I think that you think that I
think that this regex is cool", and so on.

The “from n to m” regex n,m matches from n to m repetitions of
the previous regex

"(AB)2,3" matches "AB AB " and "AB AB AB ".

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 44 / 51

Declarative programming

Examples

Regexes can also match entire sets of characters (or their complement);
in other words, they match all strings containing at least one of the
characters in the set.

"[abc]" matches strings that contain "a", "b", or "c". It does not
match the string "zzzz".
"[ˆabc]" matches all characters except "a", "b", and "c".
"[a-z]" matches all lowercase alphabetic characters.
"[A-Z]" matches all uppercase alphabetic characters.
"[0-9]" matches all numeric characters from 0 to 9 (included).
"[2-6]" matches all numeric characters from 2 to 6 (included).
"[ˆ2-6]" matches all characters except the numeric characters
from 2 to 6 (included).
"[a-zA-Z0-9]" matches all alphanumeric characters.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 45 / 51

Declarative programming

Examples of powerful regexes

"ˆATOM[]+[0-9]+ [0-9]+ [0-9]+":
A regex that only matches strings that start with "ATOM", followed
by one or more space, followed by three space-separated integers.
"ATOM 30 42 12" matches

"[0-9]+(\.[0-9]+)?"
A regex that matches a floating-point number in dot-notation:
"123" or "2.71828"

"[0-9]+(\.[0-9])?e[0-9]+"
A regex that matches a floating-point number in mathematical
format
"6.022e23". (It can be improved!)

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 46 / 51

Declarative programming

The re module

The re module of the standard Python library allows to deal with
regular expression matching, for instance checking whether a given
string matches a regular expression, or how many times a regular
expression occurs in a string.

Returns Method Meaning
MatchObject match(regex, str) Match a regular expression

regex to the beginning of a
string

MatchObject search(regex, str) Search a string for the presence
of a regex

list findall(regex, str) Find all occurrences of a regex
in a string

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 47 / 51

Declarative programming

Example

import re

sequence = "AGGAGGCGTGTTGGTGGG"
match = re.search("GG.G", sequence)
if match:

print(match.group(), (match.start(), match.end()))
else:

print("No match!!")

GGAG (1, 5)

If you are interested in a single element, you can use the MatchObject
object returned by search()

match.group() returns the matched string
match.start() returns the starting point
match.stop() returns the stop point

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 48 / 51

Declarative programming

Example

import re

sequence = "AGGAGGCGTGTTGGTGGG"
for match in re.finditer("GG.G", sequence):

s = match.start()
e = match.end()
print("Found",match.group(),"at",s,"-",e)

Found GGAG at 1 - 5
Found GGTG at 12 - 16

You can iterate over all (non-overlapping) matches using method
finditer()

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 49 / 51

Declarative programming

Example

import re

line = """Don’t forget to write your comments in the
teaching evaluation form. You can also directly write
to andrea.passerini@unitn.it for the first module,
and luca.bianco@fmach.it for the second one."""

print(re.findall(r’[\w\.-]+@[\w\.-]+’, line))

[’andrea.passerini@unitn.it’, ’luca.bianco@fmach.it’]

If you are interested just in the text of non-overlapping matches, you
may obtain it through method findall()

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 50 / 51

Declarative programming

Example

import re

sequence = "AGGAGGAGTGTTCCCGGG<@GCAGGAGTGT"
match = re.search("(.G.)GG.G(...)", sequence)
if match:

print(match.group(), (match.start(), match.end()))
print(match.groups())

else:
print("No match!!")

GGAGGAGTGT (1, 11)
(’GGA’, ’TGT’)

re is capable to answer match more complex questions; here, we are
looking for GG.G and we are interested in identifying what occurs before
and after the match.

Andrea Passerini (UniTN) SP - Programming Paradigms 2019/06/26 51 / 51

	Programming Paradigms
	Object-Oriented Python
	Functional programming
	Declarative programming

