Reinforcement Learning

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Reinforcement Learning

Reinforcement learning

Learning setting

@ The learner is provided a set of possible states S, and for
each state, a set of possible actions, .4 moving it to a next
state.

@ In performing action a from state s, the learner is provided
an immediate reward r(s, a).

@ The task is to learn a policy allowing to choose for each
state s the action a maximizing the overall reward
(including future moves).

@ The learner has to deal with problems of delayed reward
coming from future moves, and trade-off between
exploitation and exploration.

@ Typical applications include moving policies for robots and
sequential scheduling problems in general.

Reinforcement Learning

Reinforcement learning: overview

Action a,
4‘-*# |
Reward r, (J%-LI
- State s, l t}
g] Environment

Image from Sean Devlin

Reinforcement Learning

Reinforcement learning: applications

Robotics

Game Playing |

Reinforcement Learning

Sequential Decision Making

@ An agent needs to take a sequence of decisions (e.g.
moves in a maze)

@ The agent should maximize some utility function (e.g.
avoiding holes, exiting the maze)

@ There is uncertainty in the result of a decision (e.g. the
floor could be slippery)

Reinforcement Learning

Formalization

Markov Decision Process (MDP)

@ A set of states S in which the agent can be at each time
instant

@ A (possibly empty) set of terminal states Sg C S
@ A set of actions .4 the agent can make

@ A transition model providing the probability of going to a
state s’ with action a from state s

P(s'|s,a) s,se€S,ac A

@ Areward R(s, a, ') for making action a in state s and
reaching state s’

Reinforcement Learning

MDP: Example

3

=

1 START

1 2

Agent moving in room

@ State: occupied cell

@ Terminal states (row,column): (4,2), (4,3)
@ Actions: UPDOWN,LEFT,RIGHT

@ Transitions probabilities: 0.8 in direction of action, 0.1 in
each orthogonal direction (see figure)

@ Rewards: R((4,2)) = -1, R((4,3)) = +1, all other rewards = r

3

4

Image from Russell & Norvig, 2010

Reinforcement Learning

Defining Utilities

Utilities over time

@ An environment history is a sequence of states
@ Utilities are defined over environment histories

@ We assume an infinite horizon (no constraint on the
number of time steps)

@ We assume stationary preferences (if one history is

preferred to another at time £, the same should hold at time
t' provided they start from the same state)

Reinforcement Learning

Defining Utilities

Two sensible ways to define utilities under previous conditions

@ Additive rewards

U([so, 51, S2,]) = R(so0) + A(s1) + R(s2) + -
@ Discounted rewards
U([s0, S1, S2,]) = R(S0) +YR(s1) +7?R(s2) + - -

for v € [0,1]

We consider rewards that only depend on the (destination)
state. In the more general case each reward should be written
as R(st, at, St+1)-

Reinforcement Learning

MDP: taking decisions

Optimal Policy

@ A policy r is a full specification of what action to take at
each state.

@ The expected utility of a policy is the utility of an
environment history, taken in expectation over all possible
histories generated with that policy

@ An optimal policy 7* is a policy maximizing expected
utility

@ For infinite horizons, optimal policies are stationary, i.e.
they only depend on the current state

Reinforcement Learning

Optimal policy: examples

=004 - | - »E - | - ->
[} - (= [} [N=|

— — —
: ! I . Y=) =<
s * * r<-1.6284 0.4278 <r<-0.0850
* - =|=|m + |4+ ==
' [} - |= + <=
roore e l=l={t] |

Optimal policies varying r

@ utility is made with additive rewards

@ ris the reward of non-terminal states

@ Arrows indicate the best action to take

@ Star indicates all actions are equally optimal

Image from Russell & Norvig, 2010

Reinforcement Learning

Optimal policy: examples

- | || - ==

r=-0.04

-0.0221 <r<0 r>0

Discussion

@ If moving is very expensive, optimal policy is to reach any
terminal state asap

@ If moving is very cheap, optimal policy is avioding the bad
terminal state at all costs

@ If moving gives positive reward, optimal policy is to stay
away of terminal states!! (usefulness of discounted
rewards)

Reinforcement Learning

Optimal policy: utilities

@ The utility of a state given a policy = is:

U™(s) = E;

> A'R(S1)|So = s]

t=0

where S; is the state reached after t steps using policy 7
starting from Sy = s.
@ The true utility of a state is its utility under an optimal
policy:
U(s) = U™ (s)
@ Given the true utility, an optimal policy is as follows:
m*(s) = argmax Y _ p(s'|s, a)U(s')

acA s'eS

Reinforcement Learning

Computing an optimal policy

The utility of a state is its immediate reward plus the
expected discounted utility of the next state, assuming
that the agent chooses and optimal action

Bellman equation
U — / /
() = R(s) +y+max > p(s'|s, a)U(s)
s'eS
@ There is a Bellman equation for each state s € S

@ Utilities of states are solutions of the set of Bellman
equations

@ The solutions to the set of Bellman equations are unique

@ Directly solving the set of equations is hard (non-linearities
because of the max)

Reinforcement Learning

Computing an optimal policy

Q |Initialize Uy(s) to zero for all s

© Repeat
@ do Bellman update for each state s:

Uii1(8) = A(s) + 7+ max 3 p(s']s, a)Ui(s)

s’eS
Q i+ i+1
© Until max utility difference below a threshold
Q return U

Optimal policy

The optimal policy can be set as:

7*(8) = argmax Z p(s'|s,a)U(s’)

acA gcs

Reinforcement Learning

Computing an optimal policy

@ Initialize mo randomly
©Q Repeat
@ policy evaluation, solve set of linear equations:

U(s) = R(s) +7 Y _ p(s|s, mi(s))Ui(s) VseS

s'eS

where 7;(s) is the action that policy «; prescribes for state s.
@ policy improvement

mir1(8) argmax Y p(s'|s,a)Ui(s') VseS

acA s'eS
Q@ i+—i+1
© Until no policy improvement
Q return

Reinforcement Learning

Reinforcement learning

Dealing with partial knowledge

@ Value iteration and policy iteration assume perfect
knowledge (environment, transition model,rewards)

@ In most cases, some of these aspects are not known

@ Reinforcement learning aims at learning policies by
space exploration

@ policy evaluation: policy is given, environment is learned
(passive agent)

@ policy improvement: both policy and environment are
learned (active agent)

Reinforcement Learning

Policy evaluation in unknown environment

Adaptive Dynamic Programming (ADP): algorithm

@ Loop
Q Initialize s
@ Repeat
@ Receivereward r, set R(s) = r
@ Choose next action a < m(s)
© Take action a, reach step s’
@ Update counts

Nsa <~ Nsa+1; Nysjsq < Nsrjsa + 1
@ Update transition model

p(s”|s,a) < Ngr|sa/Nsa VS" €S
@ Update utility estimate

U < POLICYEVALUATION(m, U, p, R,)

© Until sis terminal

Reinforcement Learning

Policy evaluation in unknown environment

ADP: characteristics

@ The algorithm performs maximum likelihood estimation
of transition probabilities

@ Upon updating the transition model, it calls standard
policy evaluation to update the utility estimate (U is
initially empty)

@ Each step is expensive as it runs policy evaluation

Reinforcement Learning

Policy evaluation in unknown environment

Temporal-difference (TD) policy evaluation: rationale
@ Avoid running policy evaluation at each iteration
@ Locally update utility.

@ If transition from s to s’ is observed:

o If s’ was always the successor of s, the utility of s should be
U(s) = R(s) +yU(s)

e The temporal-difference update rule updates the utility to
get closer to that situation:

U(s) < U(s) + a(R(s) +yU(s") — U(s))

where « is a learning rate (possibly decreasing over time)

Reinforcement Learning

Policy evaluation in unknown environment

TD policy evaluation: algorithm

@ Loop
@ Initialize s
@ Repeat
@ Receive reward r
@ Choose next action a < 7(s)
© Take action a, reach step s’
@ Update local utility estimate

U(s) < U(s) + a(r +~yU(s") — U(s))

© Unitil sis terminal

Reinforcement Learning

Policy evaluation in unknown environment

TD policy evaluation: characteristics

@ No need for a transition model for utility update

@ Each step is much faster than ADP

@ Same as ADP on the long run

@ Takes longer to converge

@ Can be seen as a rough efficient approximation of ADP

Reinforcement Learning

Policy learning in unknown environment

@ policy learning requires combining learning the
environment and learning the optimal policy for the
environment

@ A simple option consists of replacing policy evaluation in
ADP with optimal policy computation (given current
knowledge of the environment, greedy agent):

U(s) = R(s) +~max > p(s']s) U(s)

s'eS

The knowledge of the environment is incomplete. A greedy
agent usually learns a suboptimal policy (lack of exploration).

Reinforcement Learning

Suboptimal policy: example

2 ‘ ' =N
1| = | — ' ‘

@ The algorithm finds a policy reaching the +1 terminal state
along the lower route (2,1), (3,1), (3,2), and (3,3)

@ It never learns the utilities of the other states

@ [t fails to discover the optimal route (1,2), (1,3), and (2,3).

Reinforcement Learning

Learning optimal policies

Exploration-exploitation trade-off

@ Exploitation consists in following promising directions
given current knowledge

@ Exploration consists in trying novel directions looking for
better (unknown) alternatives
@ A reasonable trade-off should be used in defining the
search scheme:
@ e-greedy strategy: choose a random move with probability
€, be greedy otherwise
@ assign higher utility estimates to (relatively) unexplored
state-action pairs:

U™ (s) = R(s) + v maxf <Z p(s'ls, a)U™(s), Nsa>

s'eS

with f increasing over the first argument and decreasing
over the second.

Reinforcement Learning

Learning optimal policies

TD learning: learning utilities of actions

@ TD policy evaluation can also be adapted to learn an
optimal policy

@ If TD is used to learn a state utility function, it needs to
estimate a transition model to derive a policy

@ TD can instead be applied to learn an action utility function
Q(s, a)

@ The optimal policy corresponds to:

7 (8) = argmax Q(S, a)
acA

Reinforcement Learning

Learning optimal policies

SARSA: on-policy TD learning
@ Loop

Q Initialize s

@ Repeat
@ Receive reward r
@ Choose next action a < 7°(s)
© Take action a, reach step s’
O Choose action @ + 7<(s')
© Update local utility estimate

Q(s,a) + Q(s,a) + a(r +vQ(s’,a) — Q(s, a))

© Until sis terminal

7€ is an e-greedy (or some other form of non-greedy) policy
based on Q.

Reinforcement Learning

Learning optimal policies

Q-learning: off-policy TD learning

@ Loop
@ Initialize s
@ Repeat
@ Receive reward r
@ Choose next action a < 7°(s)
© Take action a, reach step s’

o GI’%EESE aatie3 a/ 5(5/)

@ Update local utility estimate

Q(s,a) < Q(s,a) + a(r+~ max Q(s’,a) — Q(s, a))

© Until sis terminal

Reinforcement Learning

Learning optimal policies

SARSA vs Q-learning

@ SARSA is on-policy: it updates Q using the current
policy’s action

@ Q-learning is off-policy: it updates Q using the greedy
policy’s action (which is NOT the policy it uses to search)

@ Off-policy methods are more flexible: they can even learn
from traces generated with an unknown policy

@ On-policy methods tend to converge faster, and are easier

to use for continuous-state spaces and linear function
approximators (see following slides)

Reinforcement Learning

Scaling to large state spaces

Function approximation

@ All techniques seen so far assume a tabular representation
of utility functions (of states or actions)

@ Tabular representations do not scale to large state spaces
(e.g. Backgammon has an order of 1020 states)

@ The solution is to rely on function approximation:
approximate U(s) or Q(s, a) with a parameterized function.

@ The function takes a state representation as input (e.g. X,y
coordinates for the maze)

@ The function allows to generalize to unseen states

Reinforcement Learning

Example: State utility function approximation

feature parameter
vector vector

0 0.1
I 2
0 0
— | O X |05 = 924+0+5-
0 - 2+0+5=3)
I 0
I 5 estimated
0 4
value

Image from Ngo Anh Vien’s lectures

Reinforcement Learning

Example: Action utility function approximation

QTable
State-Action Value

_

- B

olo|o|o|e|o|o|eo|o|E

Q Learning

e]

Deep Q Learning
Image from Praphul Sing’s blog

Reinforcement Learning

Learning the approximation function

TD learning: state utility

@ TD error
E(s.8) = 5(R(S) + 1Us(s)) ~ Up(s)?
@ Error gradient wrt function parameters
VoE(s,s') = (R(s) + v7Us(s") — Up(5))(=VoUs(s))
@ Stochastic gradient update rule

0 = 0—aVyE(s,s)
= 0+ a(R(s) +vUs(s') — Us(s))(VoUs(s))

Reinforcement Learning

Learning the approximation function

TD learning: action utility (Q-learning)
@ TD error

E((s.a).) = 5(R(5) +ymax Qy(s, &) - Qy(s,a))?
@ Error gradient wrt function parameters
VoE((s,a),s) = (R(s)+~ max Qu(s',d) — Qy(s, a))
(=VoQu(s a))
@ Stochastic gradient update rule

0 = 6—aVyE((s,a),s)
= 0+ a(R(s) +ymaxQy(s. &) — Qy(s,a))(VsQs(s. 2)

Reinforcement Learning

Bibliography

@ Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A
Modern Approach (3rd edition). Prentice Hall. Chapters 17
and 21.

@ Sutton, R. S. & Barto, A. G. (2018). Reinforcement
Learning: an Introduction (2nd edition), The MIT PRESS.

Reinforcement Learning

