
Non-linear Support Vector Machines

Non-linearly separable problems

• Hard-margin SVM can address linearly separable problems

• Soft-margin SVM can address linearly separable problems with outliers

• Non-linearly separable problems need a higher expressive power (i.e. more complex feature combinations)

• We do not want to loose the advantages of linear separators (i.e. large margin, theoretical guarantees)

Solution

• Map input examples in a higher dimensional feature space

• Perform linear classification in this higher dimensional space

Non-linear Support Vector Machines

feature map

Φ : X → H

• Φ is a function mapping each example to a higher dimensional spaceH

• Examples x are replaced with their feature mapping Φ(x)

• The feature mapping should increase the expressive power of the representation (e.g. introducing features which
are combinations of input features)

• Examples should be (approximately) linearly separable in the mapped space

Feature map
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Polynomial mapping

• Maps features to all possible conjunctions (i.e. products) of features:

1. of a certain degree d (homogeneous mapping)

2. up to a certain degree (inhomogeneous mapping)
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Feature map

Φ

Non-linear Support Vector Machines
f (x)

Linear separation in feature space

• SVM algorithm is applied just replacing x with Φ(x):

f(x) = wTΦ(x) + w0

• A linear separation (i.e. hyperplane) in feature space corresponds to a non-linear separation in input space, e.g.:

f

(
x1

x2

)
= sgn(w1x

2
1 + w2x1x2 + w3x

2
2 + w0)

Kernel Machines

Kernel trick

• Feature mapping Φ(·) can be very high dimensional (e.g. think of polynomial mapping)

• It can be highly expensive to explicitly compute it
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• Feature mappings appear only in dot products in dual formulations

• The kernel trick consists in replacing these dot products with an equivalent kernel function:

k(x,x′) = Φ(x)TΦ(x′)

• The kernel function uses examples in input (not feature) space

Kernel trick

Support vector classification

• Dual optimization problem

max
α∈IRm

m∑
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αi −
1

2
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• Dual decision function

f(x) =
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αiyi Φ(xi)
TΦ(x)︸ ︷︷ ︸

k(xi,x)

Kernel trick

Polynomial kernel

• Homogeneous:

k(x,x′) = (xTx′)d

• E.g. (d = 2)
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Kernel trick
Polynomial kernel

• Inhomogeneous: k(x,x′) = (1 + xTx′)d

• E.g. (d = 2)
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Valid Kernels

Dot product in feature space

• A valid kernel is a (similarity) function defined in cartesian product of input space:

k : X × X → IR

• corresponding to a dot product in a (certain) feature space:

k(x,x′) = Φ(x)TΦ(x′)

Note

• The kernel generalizes the notion of dot product to arbitrary input space (e.g. protein sequences)

• It can be seen as a measure of similarity between objects

Valid Kernels

Gram matrix

• Given examples {x1, . . . ,xm} and kernel function k

• The Gram matrix K is the (symmetric) matrix of pairwise kernels between examples:

Kij = k(xi,xj) ∀i, j
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Valid Kernels

Positive definite matrix

• A symmetric m×m matrix K is positive definite (p.d.) if

m∑
i,j=1

cicjKij ≥ 0, ∀c ∈ IRm

If equality only holds for c = 0, the matrix is strictly positive definite (s.p.d)

Alternative conditions

• All eigenvalues are non-negative (positive for s.p.d.)

• There exists a matrix B such that

K = BTB

Valid Kernels

Positive definite kernels

• A positive definite kernel is a function k : X × X → IR giving rise to a p.d. Gram matrix for any m and
{x1, . . . ,xm}

• Positive definiteness is necessary and sufficient condition for a kernel to correspond to a dot product of some
feature map Φ

How to verify kernel validity

• Prove its positive definiteness (difficult)

• Find out a corresponding feature map (see polynomial example)

• Use kernel combination properties (we’ll see)

Kernel machines
Support vector regression

• Dual problem:

max
α∈IRm

−1

2

m∑
i,j=1

(α∗
i − αi)(α

∗
j − αj) Φ(xi)

TΦ(xj)︸ ︷︷ ︸
k(xi,xj)

−ϵ
m∑
i=1

(α∗
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yi(α
∗
i − αi)

subject to
m∑
i=1

(αi − α∗
i ) = 0 αi, α

∗
i ∈ [0, C] ∀i ∈ [1,m]

• Regression function:
f(x) = wTΦ(x) + w0 =

m∑
i=1

(αi − α∗
i ) Φ(xi)

TΦ(x)︸ ︷︷ ︸
k(xi,x)

+w0
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Kernel machines

(Stochastic) Perceptron: f(x) = wTx

1. Initialize w = 0

2. Iterate until all examples correctly classified:

(a) For each incorrectly classified training example (xi, yi):

w← w + ηyixi

Kernel Perceptron: f(x) =
∑m

i=1 αik(xi,x)

1. Initialize αi = 0 ∀i

2. Iterate until all examples correctly classified:

(a) For each incorrectly classified training example (xi, yi):

αi ← αi + ηyi

Kernels

Basic kernels

• linear kernel:
k(x,x′) = xTx′

• polynomial kernel:
kd,c(x,x

′) = (xTx′ + c)d

Kernels

Gaussian kernel

kσ(x,x
′) = exp

(
−||x− x′||2

2σ2

)
= exp

(
−xTx− 2xTx′ + x′Tx′

2σ2

)
• Depends on a width parameter σ

• The smaller the width, the more prediction on a point only depends on its nearest neighbours

• Example of Universal kernel: they can uniformly approximate any arbitrary continuous target function (pb of
number of training examples and choice of σ)
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Kernels
Kernels on structured data

• Kernels are generalization of dot products to arbitrary domains

• It is possible to design kernels over structured objects like sequences, trees or graphs

• The idea is designing a pairwise function measuring the similarity of two objects

• This measure has to satisfy the p.d. conditions to be a valid kernel

Match (or delta) kernel

kδ(x, x
′) = δ(x, x′) =

{
1 if x = x′

0 otherwise.

• Simplest kernel on structures

• x does not need to be a vector! (no boldface to stress it)

Kernels on sequences

Spectrum kernel

• Feature space is space of all possible k-grams (subsequences)

• An efficient procedure based on suffix trees allows to compute kernel without explicitly building feature maps

Kernels

Kernel combination

• Simpler kernels can combined using certain operators (e.g. sum, product)

• Kernel combination allows to design complex kernels on structures from simpler ones

• Correctly using combination operators guarantees that complex kernels are p.d.

Note

• Simplest constructive approach to build valid kernels
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Kernel combination

Kernel Sum

• The sum of two kernels corresponds to the concatenation of their respective feature spaces:

(k1 + k2)(x, x
′) = k1(x, x

′) + k2(x, x
′)

= Φ1(x)
TΦ1(x

′) + Φ2(x)
TΦ2(x

′)

= (Φ1(x) Φ2(x))

(
Φ1(x

′)
Φ2(x

′)

)
• The two kernels can be defined on different spaces (direct sum, e.g. string spectrum kernel plus string length)

Kernel combination
Kernel Product

• The product of two kernels corresponds to the Cartesian products of their features:

(k1 × k2)(x, x
′) = k1(x, x

′)k2(x, x
′)

=

n∑
i=1

Φ1i(x)Φ1i(x
′)

m∑
j=1

Φ2j(x)Φ2j(x
′)

=

n∑
i=1

m∑
j=1

(Φ1i(x)Φ2j(x))(Φ1i(x
′)Φ2j(x

′))

=

nm∑
k=1

Φ12k(x)Φ12k(x
′) = Φ12(x)

TΦ12(x
′)

• where Φ12(x) = Φ1(x)× Φ2(x) is the Cartesian product

• the product can be between kernels in different spaces (tensor product)

Kernel combination

Linear combination

• A kernel can be rescaled by an arbitrary positive constant: kβ(x, x′) = βk(x, x′)

• We can e.g. define linear combinations of kernels (each rescaled by the desired weight):

ksum(x, x′) =

K∑
k=1

βkkk(x, x
′)

Note

• The weights of the linear combination can be learned simultaneously to the predictor weights (the alphas)

• This amounts at performing kernel learning
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Kernel combination

Kernel normalization

• Kernel values can often be influenced by the dimension of objects

• E.g. a longer string has more substrings→ higher kernel value

• This effect can be reduced normalizing the kernel

Cosine normalization

• Cosine normalization computes the cosine of the dot product in feature space:

k̂(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)

Kernel combination

Kernel composition

• Given a kernel over structured data k(x, x′)

• it is always possible to use a basic kernel on top of it, e.g.:

(kd,c ◦ k))(x, x′) = (k(x, x′) + c)d

(kσ ◦ k)(x, x′) = exp

(
−k(x, x)− 2k(x, x′) + k(x′, x′)

2σ2

)
• it corresponds to the composition of the mappings associated with the two kernels

• E.g. all possible conjunctions of up to d k-grams for string kernels

Kernels on graphs

Weistfeiler-Lehman graph kernel

• Efficient graph kernel for large graphs

• Relies on (approximation of) Weistfeiler-Lehman test of graph isomorphism

• Defines a family of graph kernels
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Kernels on graphs

Weistfeiler-Lehman (WL) isomorphism test
Given G = (V, E) and G′ = (V ′, E ′), with n = |V| = |V ′|. Let L(G) = {l(v)|v ∈ V} be the set of labels in G,

and let L(G) == L(G′). Let label(s) be a function assigning a unique label to a string.

• Set l0(v) = l(v) for all v.

• For i ∈ [1, n− 1]

1. For each node v in G and G′

2. Let Mi(v) = {li−1(u)|u ∈ neigh(v)}
3. Concatenate the sorted labels of Mi(v) into si(v)

4. Let li(v) = label(li−1(v) ◦ si(v)) (◦ is concatenation)

5. If Li(G) ̸= Li(G
′)

6. Return Fail

• Return Pass

WL isomorphism test: string determination
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WL isomorphism test: relabeling
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Kernels on graphs

Weistfeiler-Lehman graph kernel

• Let {G0, G1, . . . , Gh} = {(V, E , l0), (V, E , l1), . . . , (V, E , lh)} be a sequence of graphs made from G, where li
is the node labeling of the i-th WL iteration.

• Let k : G×G′ → IR be any kernel on graphs.

• The Weistfeiler-Lehman graph kernel is defined as:

khWL(G,G′) =

h∑
i=0

k(Gi, G
′
i)

Example: WL subtree kernel
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