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Learning graphical models

Parameter estimation

@ We assume the structure of the model is given
@ We are given a dataset of examples D = {x(1),...,x(N)}

@ Each example x(/) is a configuration for all (complete data)
or some (incomplete data) variables in the model

@ We need to estimate the parameters of the model
(conditional probability distributions) from the data

@ The simplest approach consists of learning the parameters
maximizing the likelihood of the data:

0™ = argmaxgp(D|6) = argmaxyL(D, 6)
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Learning Bayesian Networks

N
p(D|6) = H p(x(1)|0) examples independent given 6
i=1
N m
= H H p(x;()|pa;(),0) factorization for BN
i=1 j=1
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Learning Bayesian Networks

Maximum likelihood estimation, complete data

p(D|0) = H H p(x;()|pa;(i), 0) factorization for BN
i=1 j=1

= H H p(x;()|pa;(i), Ox; T ) disjoint CPD parameters
i=1j=1
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Learning graphical models
Maximum likelihood estimation, complete data

@ The parameters of each CPD can be estimated
independently:

N
max _ (i T
05, = aremaxg, H1p(x,(:)|pa,(f), Ox )
1=

c(e)(ijajvp)

@ A discrete CPD P(X]|U), can be represented as a table,
with:

e a number of rows equal to the number Val(X) of
configurations for X

e a number of columns equal to the number Val(U) of
configurations for its parents U

e each table entry 0,, indicating the probability of a specific
configuration of X = x and its parents U = u
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Learning graphical models
Maximum likelihood estimation, complete data

@ Replacing p(x(/)[pa(i)) with 6y (/). the local likelihood of
a single CPD becames:

L(0x|pa; D H p(x(/)[pa(i), O xps;)

N

= 11 9x(yue
=1

- I

uevali(l)

11 ex”t*]

xe Val(X)

where Ny x is the number of times the specific
configuration X = x, U = u was found in the data
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Learning graphical models
Maximum likelihood estimation, complete data

@ A column in the CPD table contains a multinomial
distribution over values of X for a certain configuration of
the parents U

@ Thus each column should sum to one: } _, O,y = 1

@ Parameters of different columns can be estimated
independently

@ For each multinomial distribution, zeroing the gradient of
the maximum likelihood and considering the normalization
constraint, we obtain:

pmax _ NU,X
TN
x "Yu,x

@ The maximum likelihood parameters are simply the fraction
of times in which the specific configuration was observed in
the data




Learning graphical models

Adding priors

@ ML estimation tends to overfit the training set

@ Configuration not appearing in the training set will receive
zero probability

@ A common approach consists of combining ML with a prior

probability on the parameters, achieving a
maximum-a-posteriori estimate:

6™ = argmaxgp(D|0)p(0)
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Learning graphical models

Dirichlet priors

@ The conjugate (read natural) prior for a multinomial
distribution is a Dirichlet distribution with parameters a,,
for each possible value of x

@ The resulting maximum-a-posteriori estimate is:
gmax _ Nu.x + Oxlu

Xju ™ Zx (Nu,x + ax|u)

@ The prior is like having observed a,, imaginary samples
with configuration X = x, U = u
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Learning graphical models

Incomplete data

@ With incomplete data, some of the examples miss
evidence on some of the variables

@ Counts of occurrences of different configurations cannot be
computed if not all data are observed

@ The full Bayesian approach of integrating over missing
variables is often intractable in practice

@ We need approximate methods to deal with the problem
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Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell

@ Sufficient statistics (counts) cannot be computed (missing
data)

@ Fill-in missing data inferring them using current parameters
(solve inference problem to get expected counts)

@ Compute parameters maximizing likelihood (or posterior)
of such expected counts

@ lterate the procedure to improve quality of parameters

Learning in Graphical Models



Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

e-step Compute the expected sufficient statistics for the
complete dataset, with expectation taken wrt the
joint distribution for X conditioned of the current
value of 8 and the known data D:

n
By xp,6)[Nik] = > p(Xi(1) = Xk, Pai() = pa;| X}, 6)
=

@ If Xj(/) and Pa;(/) are observed for X, it is
either zero or one

@ Otherwise, run Bayesian inference to
compute probabilities from observed variables
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Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

m-step compute parameters maximizing likelihood of the
complete dataset D, (using expected counts):

0" = argmaxgp(Dc|0)
which for each multinomial parameter evaluates to:
. Eoxip.6)[Nik]
= =1
! 22:1 Ep(X|D,0)[Ni/'k]

ML estimation can be replaced by maximum a-posteriori (MAP)
estimation giving:

ajk + By xp.0,5)[Nik]
I
> k=1 (O‘ijk + Ep(X|D,9,S)[Nifk]>

¥ —
ik —




Learning structure of graphical models

Approaches

constraint-based test conditional independencies on the data
and construct a model satisfying them

score-based assign a score to each possible structure, define
a search procedure looking for the structure
maximizing the score

model-averaging assign a prior probability to each structure,
and average prediction over all possible structures
weighted by their probabilities (full Bayesian,
intractable)

Learning in Graphical Models



Appendix: Learning the structure

Bayesian approach

@ Let S be the space of possible structures (DAGS) for the
domain X.

@ Let D be a dataset of observations

@ Predictions for a new instance are computed marginalizing
over both structures and parameters:

P(Xns1D) = 3 / P(Xn,1, S, 6/D)d6
Ses 0

= Z/ P(Xn+1|S,6,D)P(S,6|D)d6
Ses 0

-y /0 P(Xn.11S.0)P(6]S,D)P(S|D)d6
Ses

=Y P(SD) / P(Xn41|S,0)P(0|S,D)d6é
Ses 0
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Learning the structure

Problem
Averaging over all possible structures is too expensive

Model selection

@ Choose a best structure S* and assume P(S*|D) = 1
@ Approaches:

@ Score-based:

@ Assign a score to each structure
@ Choose S* to maximize the score

e Constraint-based:

@ Test conditional independencies on data
@ Choose S* that satifies these independencies
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Score-based model selection

Structure scores

@ Maximum-likelihood score:

S* = argmaxsesp(D|S)
@ Maximum-a-posteriori score:

S* = argmaxscsp(D|S)p(S)
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Computing P(D|S)

@ The easiest solution is to approximate P(D|S) with the
maximume-likelihood score over the parameters:

P(D|S) ~ maxyP(D|S, 0)

@ Unfortunately, this boils down to adding a connection
between two variables if their empirical mutual information
over the training set is non-zero (proof omitted)

@ Because of noise, empirical mutual information between
any two variables is almost never exactly zero = fully
connected network
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Computing P(D|S) = Ps(D): Bayesian-Dirichlet
scoring

Simple case: setting

@ X is a single variable with r possible realizations (r-faced
die)

@ Sis a single node

@ Probability distribution is a multinomial with Dirichlet priors
1y ..., 0.

@ D is a sequence of N realizations (die tosses)
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Computing Ps(D): Bayesian-Dirichlet scoring

Simple case: approach

@ Sort D according to outcome:
D={x"x",. .. x'\, X% ... X% ... x",... . x"}
@ lts probability can be decomposed as:

HPs (OIX(t-1),...,X(1))
D(t-1)

@ The prediction for a new event given the past is:

QK + Nk(t)

k
Ps(X(t+1) = x"|D(t)) = E,_ g;p())10x] = ot

where Nk(t) is the number of times we have X = xX in the
first t examples in D
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Computing Ps(D): Bayesian-Dirichlet scoring

Simple case: approach

a1 aq+ 1 a1+ Ny —1

Ps(P) = @ a+1 a+ Ny —1
o o + 1 oo + No — 1
o+ Nya+ N +1 a+N+No—1
Qr ar+ N —1
'a+N1+ +N,1"'a+N—1

. ak a4F Nk
- a —|— N) H F(ak
where we used the Gamma function (I'(x + 1) = xI'(x)):

FN+ «)
()
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Computing Ps(D): Bayesian-Dirichlet scoring

General case

p
(i) [ (v + Nik)

Ps(D)

o) =TT ety 1T

where
@ /e {1,...,n} ranges over nodes in the network
@ j € {1,q,} ranges over configurations of Xj’s parents
@ k € {1,r;} ranges over states of X;

Note

The score is decomposabile: it is the product of independent
scores associated with the distribution of each node in the net |
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Search strategy

Approach

@ Discrete search problem: NP-hard for nets whose nodes
have at most k > 1 parents.

@ Heuristic search strategies employed:

Search space: set of DAGs

Operators: add, remove, reverse one arc

Initial structure: e.g. random, fully disconnected, ...
Strategies: hill climbing, best first, simulated annealing

Decomposable scores allow to recompute local scores only for
a single move
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