
Inference in Bayesian Networks

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Inference in Bayesian Networks



Inference in graphical models

Description
Assume we have evidence e on the state of a subset of
variables E in the model (i.e. Bayesian Network)
Inference amounts at computing the posterior probability of
a subset X of the non-observed variables given the
observations:

p(X |E = e)

Note
When we need to distinguish between variables and their
values, we will indicate random variables with uppercase
letters, and their values with lowercase ones.

Inference in Bayesian Networks



Inference in graphical models

Efficiency
We can always compute the posterior probability as the
ratio of two joint probabilities:

p(X |E = e) =
p(X ,E = e)

p(E = e)

The problem consists of estimating such joint probabilities
when dealing with a large number of variables
Directly working on the full joint probabilities requires time
exponential in the number of variables
For instance, if all N variables are discrete and take one of
K possible values, a joint probability table has K

N entries
We would like to exploit the structure in graphical models
to do inference more efficiently.

Inference in Bayesian Networks



Inference in graphical models

x1 x2 xN −1 xN

Inference on a chain (1)

p(X) = p(X1)p(X2|X1)p(X3|X2) · · · p(X
N

|X
N�1)

The marginal probability of an arbitrary X

n

is:

p(X
n

) =
X

X1

X

X2

· · ·
X

X

n�1

X

X

n+1

· · ·
X

X

N

p(X)

Only the p(X
N

|X
N�1) is involved in the last summation

which can be computed first, giving a function of X

N�1:

µ�(X
N�1) =

X

X

N

p(X
N

|X
N�1)

Inference in Bayesian Networks



Inference in graphical models

x1 x2 xN −1 xN

Inference on a chain (2)
the marginalization can be iterated as:

µ�(X
N�2) =

X

X

N�1

p(X
N�1|XN�2)µ�(X

N�1)

down to the desired variable X

n

, giving:

µ�(Xn

) =
X

X

n+1

p(X
n+1|Xn

)µ�(Xn+1)

Inference in Bayesian Networks



Inference in graphical models

x1 x2 xN −1 xN

Inference on a chain (3)
The same procedure can be applied starting from the other
end of the chain, giving:

µ↵(X2) =
X

X1

p(X1)p(X2|X1)

up to µ↵(Xn

)

The marginal probability is now computed as the product of
the contributions coming from both ends:

p(X
n

) = µ↵(Xn

)µ�(Xn

)

Inference in Bayesian Networks



Inference in graphical models

x1 xn�1 xn xn+1 xN

µ↵(xn�1) µ↵(xn) µ�(xn) µ�(xn+1)

Inference as message passing
We can think of µ↵(Xn

) as a message passing from X

n�1
to X

n

µ↵(Xn

) =
X

X

n�1

p(X
n

|X
n�1)µ↵(X

n�1)

We can think of µ�(Xn

) as a message passing from X

n+1
to X

n

µ�(Xn

) =
X

X

n+1

p(X
n+1|Xn

)µ�(Xn+1)

Each outgoing message is obtained multiplying the
incoming message by the “local” probability, and summing
over the node values

Inference in Bayesian Networks



Inference in graphical models

Full message passing
Suppose we want to know marginal probabilities for a
number of different variables X

i

:
1 We send a message from µ↵(X1) up to µ↵(X

N

)
2 We send a message from µ�(X

N

) down to µ�(X1)

If all nodes store messages, we can compute any marginal
probability as

p(X
i

) = µ↵(X
i

)µ�(X
i

)

for any i having sent just a double number of messages wrt
a single marginal computation

Inference in Bayesian Networks



Inference in graphical models

Adding evidence
If some nodes X

e

are observed, we simply use their
observed values instead of summing over all possible
values when computing their messages

Example

p(X) = p(X1)p(X2|X1)p(X3|X2)p(X4|X3)

The marginal probability of X2 and observations X1 = x

e1

and X3 = x

e3 is:

p(X2,X1 = x

e1 ,X3 = x

e3) = p(X1 = x

e1)p(X2|X1 = x

e1)·

·p(X3 = x

e3 |X2)
X

X4

p(X4|X3 = x

e3)

Inference in Bayesian Networks



Inference

Computing conditional probability given evidence
When adding evidence, the message passing procedure
computes the joint probability of the variable and the
evidence, and it has to be normalized to obtain the
conditional probability given the evidence:

p(X
n

|X
e

= x

e

) =
p(X

n

,X
e

= x

e

)P
X

n

p(X
n

,X
e

= x

e

)

Inference in Bayesian Networks



Inference

(a) (b) (c)
Inference on trees

Efficient inference can be computed for the broaded family
of tree-structured models:

undirected trees (a) undirected graphs with a single path
for each pair of nodes

directed trees (b) directed graphs with a single node (the
root) with no parents, and all other nodes with
a single parent

directed polytrees (c) directed graphs with multiple parents
for node and multiple roots, but still a single
(undirected) path between each pair of nodes

Inference in Bayesian Networks



Factor graphs

Description
Efficient inference algorithms can be better explained using
an alternative graphical representation called factor graph

A factor graph is a graphical representation of a graphical
model highlighting its factorization (i.e. conditional
probabilities)
The factor graph has one node for each node in the
original graph
The factor graph has one additional node (of a different
type) for each factor
A factor node has undirected links to each of the node
variables in the factor

Inference in Bayesian Networks



Factor graphs: examples

x1 x2

x3

x1 x2

x3

f

x1 x2

x3

f c

f a f b

p(x3|x1,x2)p(x1)p(x2) f(x1,x2,x3)=p(x3|x1,x2)p(x1)p(x2) fc(x1,x2,x3)=p(x3|x1,x2)
fa(x1)=p(x1)
fb(x2)=p(x2)

Inference in Bayesian Networks



Inference

The sum-product algorithm
The sum-product algorithm is an efficient algorithm for
exact inference on tree-structured graphs
It is a message passing algorithm as its simpler version for
chains
We will present it on factor graphs, assuming a
tree-structured graph giving rise to a factor graph which is
a tree
The algorithm will be applicable to undirected models (i.e.
Markov Networks) as well as directed ones (i.e. Bayesian
Networks)

Inference in Bayesian Networks



Inference

Computing marginals
We want to compute the marginal probability of X :

p(X ) =
X

X\X

p(X)

Generalizing the message passing scheme seen for
chains, this can be computed as the product of messages
coming from all neighbouring factors f

s

:

p(X ) =
Y

f

s

2ne(X)

µ
f

s

!X

(X )
x

f

s

µ

fs!x

(x)
F

s

(x
,
X

s

)

Inference in Bayesian Networks



Inference

x

m

x

M

x

f

s

µ

xM!fs(xM

)

µ

fs!x

(x)

G

m

(x
m

, X

sm

)

Factor messages
Each factor message is the product of messages coming
from nodes other than X , times the factor, summed over all
possible values of the factor variables other than X

(X1, . . . ,X
M

):

µ
f

s

!X

(X ) =
X

X1

· · ·
X

X

M

f

s

(X ,X1, . . . ,X
M

)
Y

X

m

2ne(f
s

)\X

µ
X

m

!f

s

(X
m

)

Inference in Bayesian Networks



Inference

xm

fl

fL

fs

Fl(xm, Xml)

Node messages
Each message from node X

m

to factor f

s

is the product of
the factor messages to X

m

coming from factors other than
f

s

:

µ
X

m

!f

s

(X
m

) =
Y

f

l

2ne(X
m

)\f

s

µ
f

l

!X

m

(X
m

)

Inference in Bayesian Networks



Inference

Initialization
Message passing start from leaves, either factors or nodes
Messages from leaf factors are initialized to the factor itself
(there will be no X

m

different from the destination on which
to sum over)

x

f

µ

f!x

(x) = f(x)

Messages from leaf nodes are initialized to 1

x

f

µ

x!f

(x) = 1

Inference in Bayesian Networks



Inference

Message passing scheme
The node X whose marginal has to be computed is
designed as root.
Messages are sent from all leaves to their neighbours
Each internal node sends its message towards the root as
soon as it received messages from all other neighbours
Once the root has collected all messages, the marginal
can be computed as the product of them

Inference in Bayesian Networks



Inference

Full message passing scheme
In order to be able to compute marginals for any node,
messages need to pass in all directions:

1 Choose an arbitrary node as root
2 Collect messages for the root starting from leaves
3 Send messages from the root down to the leaves

All messages passed in all directions using only twice the
number of computations used for a single marginal

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

fa fb

fc

Consider the joint distribution as product of factors

p(X) = f

a

(X1,X2)f
b

(X2,X3)fc(X2,X4)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

fa fb

fc

Choose X3 as root

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send initial messages from leaves

µ
X1!f

a

(X1) = 1
µ

X4!f

c

(X4) = 1

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send messages from factor nodes to X2

µ
f

a

!X2(X2) =
X

X1

f

a

(X1,X2)

µ
f

c

!X2(X2) =
X

X4

f

c

(X2,X4)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send message from X2 to factor node f

b

µ
X2!f

b

(X2) = µ
f

a

!X2(X2)µ
f

c

!X2(X2)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send message from f

b

to X3

µ
f

b

!X3(X3) =
X

X2

f

b

(X2,X3)µ
X2!f

b

(X2)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send message from root X3

µ
X3!f

b

(X3) = 1

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send message from f

b

to X2

µ
f

b

!X2(X2) =
X

X3

f

b

(X2,X3)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send messages from X2 to factor nodes

µ
X2!f

a

(X2) = µ
f

b

!X2(X2)µ
f

c

!X2(X2)

µ
X2!f

c

(X2) = µ
f

b

!X2(X2)µ
f

a

!X2(X2)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

Send messages from factor nodes to leaves

µ
f

a

!X1(X1) =
X

X2

f

a

(X1,X2)µ
X2!f

a

(X2)

µ
f

c

!X4(X4) =
X

X2

f

c

(X2,X4)µ
X2!f

c

(X2)

Inference in Bayesian Networks



Inference example
x1 x2 x3

x4

fa fb

fc

Compute for instance the marginal for X2

p(X2) = µ
f

a

!X2(X2)µ
f

b

!X2(X2)µ
f

c

!X2(X2)

=

2

4
X

X1

f

a

(X1,X2)

3

5

2

4
X

X3

f

b

(X2,X3)

3

5

2

4
X

X4

f

c

(X2,X4)

3

5

=
X

X1

X

X3

X

X4

f

a

(X1,X2)f
b

(X2,X3)fc(X2,X4)

=
X

X1

X

X3

X

X4

p(X)

Inference in Bayesian Networks



Inference

Adding evidence
If some nodes X

e

are observed, we simply use their
observed values instead of summing over all possible
values when computing their messages
After normalization, this gives the conditional probability
given the evidence

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Bayesian network
Take a Bayesian network
Build a factor graph representing it
Compute the marginal for a variable (e.g. B)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

Leaf factor nodes send messages:

µ
f

A

!A

= P(A)

µ
f

D

!D

= P(D)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

A and D send messages:

µ
A!f

A,B,C
(A) = µ

f

A

!A

= P(A)

µ
D!f

C,D
(D) = µ

f

D

!D

= P(D)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

f

C,D sends message:

µ
f

C,D!C

(C) =
X

D

P(C|D)µ
D!f

C,D
(D) =

X

D

P(C|D)P(D)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

C sends message:

µ
C!f

A,B,C
(C) = µ

f

C,D!C

(C) =
X

D

P(C|D)P(D)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

f

A,B,C sends message:

µ
f

A,B,C!B

(B) =
X

A

X

C

P(B|A,C)µ
C!f

A,B,C
(C)µ

A!f

A,B,C
(A)

=
X

A

X

C

P(B|A,C)P(A)
X

D

P(C|D)P(D)

Inference in Bayesian Networks



Inference example

A

B

C D A

B

C D
P(A)

P(B|A,C)

P(C|D) P(D)

P(B|A,C)P(A)P(C|D)P(D)

Compute the marginal for B

The desired marginal is obtained:

P(B) = µ
f

A,B,C!B

(B) =
X

A

X

C

P(B|A,C)P(A)
X

D

P(C|D)P(D)

=
X

A

X

C

X

D

P(B|A,C)P(A)P(C|D)P(D)

=
X

A

X

C

X

D

P(A,B,C,D)

Inference in Bayesian Networks



Inference

Finding the most probable configuration
Given a joint probability distribution p(X)

We wish to find the configuration for variables X having the
highest probability:

X

max = argmax

X

p(X)

for which the probability is:

p(Xmax) = max
X

p(X)

Note
We want the configuration which is jointly maximal for all
variables
We cannot simply compute p(X

i

) for each i (using the
sum-product algorithm) and maximize it

Inference in Bayesian Networks



Inference

The max-product algorithm

p(Xmax) = max
X

p(X) = max
X1

· · ·max
X

M

p(X)

As for the sum-product algorithm, we can exploit the
distribution factorization to efficiently compute the
maximum
It suffices to replace sum with max in the sum-product
algorithm

Linear chain

max
X

p(X) = max
X1

· · ·max
X

N

[p(X1)p(X2|X1) · · · p(X
N

|X
N�1)]

= max
X1


p(X1)p(X2|X1)


· · ·max

X

N

p(X
N

|X
N�1)

��

Inference in Bayesian Networks



Inference

Message passing
As for the sum-product algorithm, the max-product can be
seen as message passing over the graph.
The algorithm is thus easily applied to tree-structured
graphs via their factor trees:

µ
f!X

(X ) = max
X1,....X

M

2

4
f (X ,X1, . . . ,X

M

)
Y

X

m

2ne(f )\X

µ
X

m

!f

(X
m

)

3

5

µ
X!f

(X ) =
Y

f

l

2ne(X)\f

µ
f

l

!X

(X )

Inference in Bayesian Networks



Inference

Recoving maximal configuration
Messages are passed from leaves to an arbitrarily chosen
root X

r

The probability of maximal configuration is readily obtained
as:

p(Xmax) = max
X

r

2

4
Y

f

l

2ne(X
r

)

µ
f

l

!X

r

(X
r

)

3

5

The maximal configuration for the root is obtained as:

X

max
r

= argmax

X

r

2

4
Y

f

l

2ne(X
r

)

µ
f

l

!X

r

(X
r

)

3

5

We need to recover maximal configuration for the other
variables

Inference in Bayesian Networks



Inference

Recoving maximal configuration
When sending a message towards x , each factor node
should store the configuration of the other variables which
gave the maximum:

�
f!X

(X ) = argmax

X1,...,X
M

2

4
f (X ,X1, . . . ,X

M

)
Y

X

m

2ne(f )\X

µ
X

m

!f

(X
m

)

3

5

When the maximal configuration for the root node X

r

has
been obtained, it can be used to retrieve the maximal
configuration for the variables in neighbouring factors from:

X

max
1 , . . . ,X max

M

= �
f!X

r

(X max
r

)

The procedure can be repeated back-tracking to the
leaves, retrieving maximal values for all variables

Inference in Bayesian Networks



Recoving maximal configuration

Example for linear chain

X

max
N

= argmax

X

N

µ
f

N�1,N!X

N

(X
N

)

X

max
N�1 = �

f

N�1,N!X

N

(X max
N

)

X

max
N�2 = �

f

N�2,N�1!X

N�1(X
max
N�1)

...
X

max
1 = �

f1,2!X2(X
max
2 )

Inference in Bayesian Networks



Recoving maximal configuration

k = 1

k = 2

k = 3

n� 2 n� 1 n n + 1

Trellis for linear chain
A trellis or lattice diagram shows the K possible states of
each variable X

n

one per row
For each state k of a variable X

n

, �
f

n�1,n!X

n

(X
n

) defines a
unique (maximal) previous state, linked by an edge in the
diagram
Once the maximal state for the last variable X

N

is chosen,
the maximal states for other variables are recovering
following the edges backward.

Inference in Bayesian Networks



Inference

Underflow issues
The max-product algorithm relies on products (no
summation)
Products of many small probabilities can lead to underflow
problems
This can be addressed computing the logarithm of the
probability instead
The logarithm is monotonic, thus the proper maximal
configuration is recovered:

log
✓

max
X

p(X)

◆
= max

X

log p(X)

The effect is replacing products with sums (of logs) in the
max-product algorithm, giving the max-sum one

Inference in Bayesian Networks



Inference
Exact inference on general graphs

The sum-product and max-product algorithms can be
applied to tree-structured graphs
Many applications require graphs with (undirected) loops
An extension of this algorithms to generic graphs can be
achieved with the junction tree algorithm

The algorithm does not work on factor graphs, but on
junction trees, tree-structured graphs with nodes
containing clusters of variables of the original graph
A message passing scheme analogous to the sum-product
and max-product algorithms is run on the junction tree

Problem
The complexity on the algorithm is exponential on the
maximal number of variables in a cluster, making it
intractable for large complex graphs.

Inference in Bayesian Networks



Inference

Approximate inference
In cases in which exact inference is intractable, we resort
to approximate inference techniques
A number of techniques for approximate inference exist:

loopy belief propagation message passing on the original
graph even if it contains loops

variational methods deterministic approximations,
assuming the posterior probability (given the
evidence) factorizes in a particular way

sampling methods approximate posterior is obtained
sampling from the network

Inference in Bayesian Networks



Inference
Loopy belief propagation

Apply sum-product algorithm even if it is not guaranteed to
provide an exact solution
We assume all nodes are in condition of sending
messages (i.e. they already received a constant 1
message from all neighbours)
A message passing schedule is chosen in order to decide
which nodes start sending messages (e.g. flooding, all
nodes send messages in all directions at each time step)
Information flows many times around the graph (because
of the loops), each message on a link replaces the
previous one and is only based on the most recent
messages received from the other neighbours
The algorithm can eventually converge (no more changes
in messages passing through any link) depending on the
specific model over which it is applied

Inference in Bayesian Networks



Approximate inference

Sampling methods
Given the joint probability distribution p(X )

A sample from the distribution is an instantiation of all the
variables X according to the probability p.
Samples can be used to approximate the probability of a
certain assignment Y = y for a subset Y ⇢ X of the
variables:

We simply count the fraction of samples which are
consistent with the desired assignment

We usually need to sample from a posterior distribution
given some evidence E = e

Inference in Bayesian Networks



Sampling methods

Markov Chain Monte Carlo (MCMC)
We usually cannot directly sample from the posterior
distribution (too expensive)
We can instead build a random process which gradually
samples from distributions closer and closer to the
posterior
The state of the process is an instantiation of all the
variables
The process can be seen as randomly traversing the graph
of states moving from one state to another with a certain
probability.
After enough time, the probability of being in any particular
state is the desired posterior.
The random process is a Markov Chain

Inference in Bayesian Networks



Appendix: Sampling methods

Note
The state graph is very different from the graphical model
of the joint distribution:

nodes in the graphical model are variables
nodes in the state graph are instantiations of all the
variables

Inference in Bayesian Networks



Markov chain

Definition
A Markov chain consists of:

A space Val(X ) of possible states (one for each possible
instantiation of all variables X )
A transition probability model defining for each state
x 2 Val(X ) a next-state distribution over Val(X ). We will
represent the transition probability from state x to x

0 as:

T (x ! x

0)

A Markov chain defines a stochastic process that evolves
from state to state

Inference in Bayesian Networks



Markov chain

Homogeneous chains
A Markov chain is homogeneous if its transition probability
model does not change over time
Transition probabilities between states do not depend on
the particular time instant in the process
We will be interested in such chains for sampling

Inference in Bayesian Networks



Markov chain

Chain dynamics

Consider a sequence of states x

(0), x(1), x(2), . . . of the
random process
Being random, the state of the process at time t can be
seen as a random variable X

(t)

Assume the initial state X

(0) is distributed according to
some initial probability p

(0)(X (0))

The distribution over subsequent states can be defined
using the chain dynamics as:

p

(t+1)(X (t+1) = x

0) =
X

x2Val(X )

p

(t)(X (t) = x)T (x ! x

0)

The probability of being in a certain state x at time t is the
sum of the probabilities of being in any possible state x

0 at
time t � 1 times the probability of a transition from x

0 to x

Inference in Bayesian Networks



Markov chain

Convergence

As the process converges, we expect that p

(t+1) becomes
close to p

(t):

p

(t)(x0) ⇡ p

(t+1)(x0) =
X

x2Val(X )

p

(t)(x)T (x ! x

0)

At convergence, we expect to have reached an equilibrium
distribution ⇡(X ):

The probability of being in a state is the same as that of
transitioning into it from a random predecessor

Inference in Bayesian Networks



Markov chain

Stationary distribution
A distribution ⇡(X ) is a stationary distribution for a Markov
Chain T if:

⇡(X = x

0) =
X

x2Val(X )

⇡(X = x)T (x ! x

0)

Requirements
We are interested in Markov Chains with:

a unique stationary distribution
which is reachable from any starting distribution p

(0)

There are various conditions to guarantee this property
(e.g. ergodicity)
For a Markov Chain with a finite state space Val(X ),
regularity is a sufficient and necessary condition

Inference in Bayesian Networks



Markov chain

Regular chains
A Markov chain is regular if there exists a number k such that
for all state pairs x, x0 2 Val(X ) the probability of getting from x

to x

0 in exactly k steps is greater than zero

Conditions ensuring regularity
It is possible to get from any state to any other state using
a positive probability path in the state graph
For every state x there is a positive probability of
transitioning from x to x in one step (self loop)

Inference in Bayesian Networks



Markov chain

Markov chains for graphical models
The typical use is estimating the probability of a certain
instantiation x of the variables X given some evidence
E = e

This requires sampling from the posterior distribution
p(X |E = e)

We wish to define a chain for which p(X |E = e) is the
stationary distribution
States in the chain should be the subset of all possible
instantiations which is consistent with the evidence e:

x 2 val(X ) s.t . x

E

= e

Inference in Bayesian Networks



Markov chain

Transition model
A simple transition model consists of updating variables in
X̂ = X � E one at a time
This can be seen as made of a set of k = |X̂ | local

transition models T
i

, one for each variable X

i

2 X̂

Let U

i

= X � X

i

and u

i

a possible instantiation of U

i

The local transition model T
i

defines transitions between
states (u

i

, x
i

) and (u
i

, x 0
i

)

By defining a transition as a sequence of k local
transitions, one for each variable X

i

, we obtain a
homogeneous (i.e. not time-dependent) global transition
model

Inference in Bayesian Networks



Markov chain

Gibbs Sampling
Gibbs sampling is an efficient and effective simple Markov
chain for factored state spaces (like the ones in graphical
models)
Local transitions T

i

are defined “forgetting” about the value
of X

i

in the current state.
This allows to sample a new value according to the
posterior probability of X

i

given the rest of the current state:

T
i

((u
i

, x
i

) ! (u
i

, x 0
i

)) = p(x 0
i

|u
i

)

The Gibbs chain samples a new state performing k

subsequent local moves
We only take samples after a full round of local moves

Inference in Bayesian Networks



Gibbs Sampling

Regularity of Gibbs chains
Gibbs chains are ensured to be regular if the distribution is
strictly positive: every value of X

i

given any instantiation of
U

i

has non-zero probability
In this case we can get from any state to any state in at
most k = |X̂ | local steps
Gibbs chains have the desired posterior p(X |E = e) as
stationary distribution

Positivity
Positivity of the distributions is guaranteed if no conditional
probability distribution (for BN) or clique potential (for MN)
has zero value for any configuration of the variables

Inference in Bayesian Networks



Gibbs Sampling

Computing local transition probabilities
Local transition probabilities can be computed very
efficiently for discrete graphical models.
Only the Markov blanket of X

i

is needed in order to
compute its posterior p(X

i

|u
i

)

Inference in Bayesian Networks



Gibbs Sampling

Generating samples
In order to generate samples from the correct posterior
distribution, we need to wait until the Markov chain has
converged to the stationary distribution
Once at convergence, all subsequent samples could be
used to estimate the desired probability
However, consecutive samples are definitely not
independent
A possible approach consists of letting an interval of d

samples before collecting the next sample
In practice it is often the case that using all samples leads
to better estimates if a fixed amount of time is provided
(simply because they are based on more even if less
independent samples)

Inference in Bayesian Networks



Gibbs Sampling

Limitations
It requires posterior p(X

i

|u
i

) to be efficiently computable
(this can be difficult in e.g. continuous models)
The transition model produces very incremental “local”
moves, mixing time for convergence of the chain can be
very long.

Inference in Bayesian Networks



Metropolis-Hastings

In a nutshell
Generate next state according to an easy to compute
proposal distribution

Decide whether to accept the move or stay in the previous
state according to an acceptance probability that accounts
for the difference between proposal and target distribution

Note
Depending on the proposal distribution, it can move in the
space much faster than Gibbs Sampling
Gibbs Sampling is a special case of Metropolis Hastings
for a particular choice of the proposal distribution

Inference in Bayesian Networks



Metropolis-Hastings

Reversible chains
A finite-state Markov chain T is reversible if there exists a
unique distribution ⇡ such that, for all x, x0 2 Val(X ):

⇡(x)T (x ! x

0) = ⇡(x0)T (x0 ! x)

The equation is called detailed balance

Note
This means that if we start sampling a state using ⇡ and move
according to T , the probability of going from x to x

0 is the same
as the one of going from x

0 to x.

Inference in Bayesian Networks



Metropolis-Hastings

Regular reversible chains
If a regular Markov chain T satisfies the detailed balance
equation relative to ⇡, then ⇡ is its unique stationary distribution.

Constructive approach
Metropolis-Hastings is a constructive approach where we
choose a proposal distribution and select the acceptance
probabilities allowing to obtain the target distribution as the
stationary one.

Inference in Bayesian Networks



Metropolis-Hastings

Proposal distribution

An arbitrary distribution T Q inducing a regular chain.
E.g., sequence of local transition models T Q

i

each
sampling from a uniform distribution over the values of X

i

.

Transition model

Let T Q be the proposal distribution
Let A(x ! x

0) be the acceptance probability.
The resulting transition model is:

T (x ! x

0) = T Q(x ! x

0)A(x ! x

0) if x 6= x

0

T (x ! x) = T Q(x ! x) +
X

x 6=x

0

T Q(x ! x

0)(1 �A(x ! x

0))

Inference in Bayesian Networks



Metropolis-Hastings

Acceptance probability
The acceptance probability should be chosen so that the
detailed balance equation holds for the target distribution
⇡:

⇡(x)T Q(x ! x

0)A(x ! x

0) = ⇡(x0)T Q(x0 ! x)A(x0 ! x)

This is achieved by the following acceptance probability:

A(x ! x

0) = min
✓

1,
⇡(x0)T Q(x0 ! x)

⇡(x)T Q(x ! x

0)

◆

Inference in Bayesian Networks



Metropolis-Hastings

Mixing time
The mixing time is the time a chain takes to converge to its
stationary distribution
The mixing time depends on how connected the state
space is
There is no general-purpose theoretical analysis for the
mixing time of graphical models.
A practical solution comes from the observation that
multiple chains sampling the same distribution should yield
similar estimates upon convergence

Inference in Bayesian Networks



Metropolis-Hastings

How to check convergence (1)
Run K independent chains with different starting points in
parallel
Discard the first T samples from each chain
Let X

k

[m] be a sample from chain k after T + m iterations,
and f be an arbitrary function on the samples (e.g.
probability of a certain node taking a certain value)
Let

f̄

k

=
1
M

MX

m=1

f (X
k

[m])

and

f̄ =
1
K

KX

k=1

f̄

k

Inference in Bayesian Networks



Metropolis-Hastings

How to check convergence (2)
The between chain variance of f is:

B =
M

K � 1

KX

k=1

(f̄
k

� f̄ )2

The within chain variance of f is:

W =
1
K

1
M � 1

KX

k=1

MX

m=1

(f (X
k

[m]� f̄

k

)2

Inference in Bayesian Networks



Metropolis-Hastings

How to check convergence (3)
A measure of disagreement between chains is given by:

R̂ =

r
V

W

where V = M�1
M

W + 1
M

B is an overestimate of the variance
of our estimate of f based on the collected samples.
We can stop when R̂ ⇡ 1
For further confidence (all chains could have converged to
the same mode..) we can try different indicator functions f .

Inference in Bayesian Networks


