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Graphical models

Why
All probabilistic inference and learning amount at repeated
applications of the sum and product rules
Probabilistic graphical models are graphical
representations of the qualitative aspects of probability
distributions allowing to:

visualize the structure of a probabilistic model in a simple
and intuitive way
discover properties of the model, such as conditional
independencies, by inspecting the graph
express complex computations for inference and learning in
terms of graphical manipulations
represent multiple probability distributions with the same
graph, abstracting from their quantitative aspects (e.g.
discrete vs continuous distributions)
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Bayesian Networks (BN)

BN Semantics

A BN structure (G) is a directed
graphical model
Each node represents a random
variable xi

Each edge represents a direct
dependency between two
variables

x1

x2 x3

x4 x5

x6 x7

The structure encodes these independence assumptions:

Iℓ(G) = {∀i xi ⊥ NonDescendantsxi |Parentsxi}

each variable is independent of its non-descendants
given its parents
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Bayesian Networks

Graphs and Distributions

Let p be a joint distribution over
variables X
Let I(p) be the set of
independence assertions holding
in p
G in as independency map
(I-map) for p if p satisfies the
local independences in G:

Iℓ(G) ⊆ I(p)

x1

x2 x3

x4 x5

x6 x7

Note
The reverse is not necessarily true: there can be
independences in p that are not modelled by G.

Bayesian networks



Bayesian Networks
Factorization

We say that p factorizes
according to G if:

p(x1, . . . , xm) =
m∏

i=1

p(xi |Paxi )

If G is an I-map for p, then p
factorizes according to G
If p factorizes according to G,
then G is an I-map for p

x1

x2 x3

x4 x5

x6 x7

Example

p(x1, . . . , x7) =p(x1)p(x2)p(x3)p(x4|x1, x2, x3)

p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)
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Bayesian Networks
Proof: I-map ⇒ factorization

1 If G is an I-map for p, then p satisfies (at least) these (local)
independences:

{∀i xi ⊥ NonDescendantsxi |Parentsxi}

2 Let us order variables in a topological order relative to G,
i.e.:

xi → xj ⇒ i < j

3 Let us decompose the joint probability using the chain rule
as:

p(x1, . . . , xm) =
m∏

i=1

p(xi |x1, . . . , xi−1)

4 Local independences imply that for each xi :

p(xi |x1, . . . , xi−1) = p(xi |Paxi )
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Bayesian Networks
Proof: factorization ⇒ I-map

1 If p factorizes according to G, the joint probability can be
written as:

p(x1, . . . , xm) =
m∏

i=1

p(xi |Paxi )

2 Let us consider the last variable xm (repeat steps for the
other variables). By the product and sum rules:

p(xm|x1, . . . , xm−1) =
p(x1, . . . , xm)

p(x1, . . . , xm−1)
=

p(x1, . . . , xm)∑
xm

p(x1, . . . , xm)

3 Applying factorization and isolating the only term
containing xm we get:

=

∏m
i=1 p(xi |Paxi )∑

xm

∏m
i=1 p(xi |Paxi )

=
p(xm|Paxm)((((((((∏m−1

i=1 p(xi |Paxi )

((((((((∏m−1
i=1 p(xi |Paxi )���������:1∑

xm
p(xm|Paxm)
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Bayesian Networks

Definition
A Bayesian Network is a pair (G,p) where p factorizes
over G and it is represented as a set of conditional prob-
ability distributions (cpd) associated with the nodes of
G.

Factorized Probability

p(x1, . . . , xm) =
m∏

i=1

p(xi |Paxi )
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Bayesian Networks
Example: toy regulatory network

Genes A and B have independent prior probabilities
Gene C can be enhanced by both A and B

gene value P(value)
A active 0.3
A inactive 0.7

gene value P(value)
B active 0.3
B inactive 0.7

A
active inactive

B B
active inactive active inactive

C active 0.9 0.6 0.7 0.1
C inactive 0.1 0.4 0.3 0.9
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Conditional independence

Introduction
Two variables a,b are independent (written a ⊥ b | ∅ ) if:

p(a,b) = p(a)p(b)

Two variables a,b are conditionally independent given c
(written a ⊥ b | c ) if:

p(a,b|c) = p(a|c)p(b|c)

Independence assumptions can be verified by repeated
applications of sum and product rules
Graphical models allow to directly verify them through the
d-separation criterion
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d-separation

Tail-to-tail

Joint distribution:

p(a,b, c) = p(a|c)p(b|c)p(c)

a and b are not independent
(written a⊤⊤b | ∅ ):

p(a,b) =
∑

c

p(a|c)p(b|c)p(c) ̸= p(a)p(b)

c

a b

a and b are conditionally
independent given c:

p(a,b|c) = p(a,b, c)
p(c)

= p(a|c)p(b|c)

c

a b

c is tail-to-tail wrt to the path a → b as it is
connected to the tails of the two arrows
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d-separation

Head-to-tail

Joint distribution:

p(a,b, c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)

a and b are not independent:

p(a,b) = p(a)
∑

c

p(b|c)p(c|a) ̸= p(a)p(b)

a c b

a and b are conditionally
independent given c:

p(a,b|c) = p(b|c)p(a|c)p(c)
p(c)

= p(b|c)p(a|c)

a c b

c is head-to-tail wrt to the path a → b as it is
connected to the head of an arrow and to the tail
of the other one
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d-separation

Head-to-head

Joint distribution:

p(a,b, c) = p(c|a,b)p(a)p(b)

a and b are independent:

p(a,b) =
∑

c

p(c|a,b)p(a)p(b) = p(a)p(b)
c

a b

a and b are not conditionally
independent given c:

p(a,b|c) = p(c|a,b)p(a)p(b)
p(c)

̸= p(a|c)p(b|c)
c

a b

c is head-to-head wrt to the path a → b as it is
connected to the heads of the two arrows
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d-separation: basic rules summary

c

a b

c

a b

c

a b

c

a b

a c b

a c b

head to headtail to tail head to tail

 independent dependent

no evidence

evidence
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Example of head-to-head connection
Setting

A fuel system in a car:
battery B, either charged (B = 1) or flat (B = 0)
fuel tank F , either full (F = 1) or empty (F = 0)
electric fuel gauge G, either full (G = 1) or empty (G = 0)

Conditional probability tables (CPT)

Battery and tank have
independent prior probabilities:
P(B = 1) = 0.9 P(F = 1) = 0.9

The fuel gauge is conditioned on
both (unreliable!):

G

B F

P(G = 1|B = 1,F = 1) = 0.8 P(G = 1|B = 1,F = 0) = 0.2
P(G = 1|B = 0,F = 1) = 0.2 P(G = 1|B = 0,F = 0) = 0.1
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Example of head-to-head connection

Probability of empty tank

Prior:

P(F = 0) = 1 − P(F = 1) = 0.1

Posterior after observing empty
fuel gauge:

G

B F

P(F = 0|G = 0) =
P(G = 0|F = 0)P(F = 0)

P(G = 0)
≃ 0.257

Note
The probability that the tank is empty increases from observing
that the fuel gauge reads empty (not as much as expected
because of strong prior and unreliable gauge)
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Example of head-to-head connection

Derivation

P(G = 0|F = 0) =
∑

B∈{0,1}

P(G = 0,B|F = 0)

=
∑

B∈{0,1}

P(G = 0|B,F = 0)P(B|F = 0)

=
∑

B∈{0,1}

P(G = 0|B,F = 0)P(B) = 0.81

P(G = 0) =
∑

B∈{0,1}

∑
F∈{0,1}

P(G = 0,B,F )

=
∑

B∈{0,1}

∑
F∈{0,1}

P(G = 0|B,F )P(B)P(F )
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Example of head-to-head connection
Probability of empty tank

Posterior after observing that the
battery is also flat:

P(F = 0|G = 0,B = 0) =
G

B F

P(G = 0|F = 0,B = 0)P(F = 0|B = 0)
P(G = 0|B = 0)

≃ 0.111

Note
The probability that the tank is empty decreases after
observing that the battery is also flat
The battery condition explains away the observation that
the fuel gauge reads empty
The probability is still greater than the prior one, because
the fuel gauge observation still gives some evidence in
favour of an empty tank
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d-separation

General Head-to-head
Let a descendant of a node x be any node which can be
reached from x with a path following the direction of the
arrows
A head-to-head node c unblocks the dependency path
between its parents if either itself or any of its descendants
receives evidence
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General d-separation criterion

d-separation definition
Given a generic Bayesian network
Given A,B,C arbitrary nonintersecting sets of nodes
The sets A and B are d-separated by C (dsep(A;B|C)) if:

All paths from any node in A to any node in B are blocked
A path is blocked if it includes at least one node s.t. either:

the arrows on the path meet tail-to-tail or head-to-tail at the
node and it is in C, or
the arrows on the path meet head-to-head at the node and
neither it nor any of its descendants is in C

d-separation implies conditional independence

The sets A and B are independent given C ( A ⊥ B |C ) if they
are d-separated by C.
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Example of general d-separation

a⊤⊤b|c
Nodes a and b are not d-separated
by c:

Node f is tail-to-tail and not observed
Node e is head-to-head and its child
c is observed

f

e b

a

c

a ⊥ b|f
Nodes a and b are d-separated by f :

Node f is tail-to-tail and observed

f

e b

a

c
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BN independences revisited

Independence assumptions
A BN structure G encodes a set of local independence
assumptions:

Iℓ(G) = {∀i xi ⊥ NonDescendantsxi |Parentsxi}
A BN structure G encodes a set of global (Markov)
independence assumptions:

I(G) = {(A ⊥ B|C) : dsep(A;B|C)}
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BN equivalence classes

I-equivalence
Quite different BN structures can actually encode the exact
same set of independence assumptions
Two BN structures G and G′ are I-equivalent if I(G) = I(G′)

The space of BN structures over X is partitioned into a set
of mutually exclusive and exhaustive I-equivalence classes

A

B

C

A

B

C

A B

CA B

C
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I-maps vs Distributions

Minimal I-maps
For a structure G to be an I-map for p, it does not need to
encode all its independences (e.g. a fully connected graph
is an I-map of any p defined over its variables)
A minimal I-map for p is an I-map G which can’t be
“reduced” into a G′ ⊂ G (by removing edges) that is also an
I-map for p.

Problem
A minimal I-map for p does not necessarily capture all the
independences in p.
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I-maps vs Distributions

Perfect Maps (P-maps)
A structure G is a perfect map (P-map) for p if is captures
all (and only) its independences:

I(G) = I(p)
There exists an algorithm for finding a P-map of a
distribution which is exponential in the in-degree of the
P-map.
The algorithm returns an equivalence class rather than a
single structure

Problem
Not all distributions have a P-map. Some cannot be modelled
exactly by the BN formalism.
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Building Bayesian Networks

Practical Suggestions

Get together with a domain expert
Define variables for entities that can be observed or that
you can be interested in predicting (latent variables can
also be sometimes useful)
Try following causality considerations in adding edges
(more interpretable and sparser networks)
In defining probabilities for configurations (almost) never
assign zero probabilities
If data are available, use them to help in learning
parameters and structure (we’ll see how)
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APPENDIX

Appendix
Additional reference material
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I-equivalence

A B

C

I

J

G

FE

H

D

V-structures

immorality

A B

C

I

J

G

FE

H

D

skeleton

Sufficient conditions
If two structures G and G′ have the same skeleton
and the same set of v-structures then they are I-
equivalent
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I-equivalence

A B

C

I

J

G

FE

H

D

V-structures

immorality

A B

C

I

J

G

FE

H

D

skeleton

Necessary and sufficient conditions

Two structures G and G′ are I-equivalent if and only if
they have the same skeleton and the same set of im-
moralities
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Equivalence class

Partially directed acyclic graph (PDAG)

A PDAG is an acyclic graph with both directed and
undirected edges

Representing an equivalence class
An equivalence class for a structure G can be represented
by a PDAG K such that:

If x → y ∈ K then x → y should appear in all structures
which are I-equivalent to G
If x − y ∈ K then we can find a structure G′ that is
I-equivalent to G such that x → y ∈ G′
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Equivalence class members

A B

C

D

A B

C

D

A B

C

D

A B

C

D

K

G 2 K

G0 2 K

G00 /2 K

1

equivalence class members

A B

C

D

not a member!

Generating members
Representatives from K can be obtained by adding
directions to undirected edges
One needs to check that the resulting structure has the
same set of immoralities as K (otherwise it’s not in the
equivalence class)
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Markov blanket (or boundary)

Definition
Given a directed graph with m nodes
The markov blanket of node xi is the minimal set of nodes
making it xi independent on the rest of the graph:

p(xi |xj ̸=i) =
p(x1, . . . , xm)

p(xj ̸=i)
=

p(x1, . . . , xm)∫
p(x1, . . . , xm)dxi

=

∏m
k=1 p(xk |pak )∫ ∏m

k=1 p(xk |pak )dxi

All components which do not include xi will cancel between
numerator and denominator
The only remaining components are:

p(xi |pai) the probability of xi given its parents
p(xj |paj) where paj includes xi ⇒ the children of xi with their
co-parents
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Markov blanket (or boundary)

d-separation

Each parent xj of xi will be
head-to-tail or tail-to-tail in the path
btw xi and any of xj other
neighbours ⇒ blocked
Each child xj of xi will be head-to-tail
in the path btw xi and any of xj
children ⇒ blocked

xi

Each co-parent xk of a child xj of xi be
head-to-tail or tail-to-tail in the path btw xj and
any of xk other neighbours ⇒ blocked
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Example of i.i.d. samples
Maximum-likelihood

We are given a set of instances
D = {x1, . . . , xN} drawn from an
univariate Gaussian with unknown
mean µ

All paths between xi and xj are
blocked if we condition on µ

The examples are independent of
each other given µ:

p(D|µ) =
N∏

i=1

p(xi |µ)

µ

x1 xN

xn

N

N

µ

A set of nodes with the same variable type and
connections can be compactly represented using
the plate notation
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