
Evaluation

Basic concepts

• Evaluation requires to define performance measures to be optimized

• Performance of learning algorithms cannot be evaluated on entire domain (generalization error)→ approxima-
tion needed

• Performance evaluation is needed for:

– tuning hyperparameters of learning method (e.g. type of kernel and parameters, learning rate of perceptron)

– evaluating quality of learned predictor

– computing statistical significance of difference between learning algorithms

Performance measures

Training Loss and performance measures

• The training loss function measures the cost paid for predicting f(x) for output y

• It is designed to boost effectiveness and efficiency of learning algorithm (e.g. hinge loss for SVM):

– it is not necessarily the best measure of final performance

– e.g. misclassification cost is never used as it is piecewise constant (not amenable to gradient descent)

• Multiple performance measures could be used to evaluate different aspects of a learner

Performance measures

Binary classification

True\ Pred Positive Negative
Positive TP FN
Negative FP TN

• The confusion matrix reports true (on rows) and predicted (on column) labels

• Each entry contains the number of examples having label in row and predicted as column:

tp True positives: positives predicted as positives

tn True negatives: negatives predicted as negatives

fp False positives: negatives predicted as positives

fn False negatives: positives predicted as negatives
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Binary classification
Accuracy

Acc =
TP + TN

TP + TN + FP + FN

• Accuracy is the fraction of correctly labelled examples among all predictions

• It is one minus the misclassification cost

Problem

• For strongly unbalanced datasets (typically negatives much more than positives) it is not informative:

– Predictions are dominated by the larger class
– Predicting everything as negative often maximizes accuracy

• One possibility consists of rebalancing costs (e.g. a single positive counts as N/P where N=TN+FP and
P=TP+FN)

Binary classification
Precision

Pre =
TP

TP + FP

• It is the fraction of positives among examples predicted as positives

• It measures the precision of the learner when precting positive

Recall or Sensitivity

Rec =
TP

TP + FN

• It is the fraction of positive examples predicted as positives

• It measures the coverage of the learner in returning positive examples

Binary Classification
F-measure

Fβ =
(1 + β2)(Pre ∗Rec)

β2Pre+Rec

• Precision and recall are complementary: increasing precision typically reduces recall

• F-measure combines the two measures balancing the two aspects

• β is a parameter trading-off precision and recall

F1

F1 =
2(Pre ∗Rec)
Pre+Rec

• It is the F-measure for β = 1

• It is the harmonic mean of precision and recall
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Binary Classification

Precision-recall curve

• Classifiers often provide a confidence in the prediction (e.g. margin of SVM)

• A hard decision is made setting a threshold on the classifier (zero for SVM)

• Acc,Pre,Rec,F1 all measure peformance of a classifier for a specific threshold

• It is possible to change the threshold if interested in maximizing a specific performance (e.g. recall)

Binary Classification

Precision-recall curve

• By varying threshold from min to max possible value, we obtain a curve of performance measures

• This curve can be shown plotting one measure (recall) against the complementary one (precision)

• It is possible to investigate the performance of the learner in different scenarios (e.g. at high precision)

Binary Classification
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Area under Pre-Rec curve

• A single aggregate value can be obtained taking the area under the curve

• It combines the performance of the algorithm for all possible thresholds (without preference)

Performance measures
Multiclass classification

T\P y1 y2 y3
y1 n11 n12 n13
y2 n21 n22 n23
y3 n31 n32 n33

• Confusion matrix is generalized version of binary one

• nij is the number of examples with class yi predicted as yj .

• The main diagonal contains true positives for each class

• The sum of off-diagonal elements along a column is the number of false positives for the column label

• The sum of off-diagonal elements along a row is the number of false negatives for the row label

FPi =
∑
j 6=i

nji FNi =
∑
j 6=i

nij

Performance measures

Multiclass classification

• ACC,Pre,Rec,F1 carry over to a per-class measure considering as negatives examples from other classes.

• E.g.:

Prei =
nii

nii + FPi
Reci =

nii
nii + FNi

• Multiclass accuracy is the overall fraction of correctly classified examples:

MAcc =

∑
i nii∑

i

∑
j nij
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Performance measures
Regression

• Root mean squared error (for dataset D with n = |D|):

RMSE =

√√√√ 1

n

n∑
i=1

(f(xi)− yi)2

• Pearson correlation coefficient (random variables X,Y ):

ρ =
cov(X,Y )

σXσY
=

E[(X − X̄)(Y − Ȳ )]√
E[(X − X̄)2]E[(Y − Ȳ )2]

• Pearson correlation coefficient (for regression on D):

ρ =

∑n
i=1(f(xi)− f̄(xi))(yi − ȳi)√∑n

i=1(f(xi)− f̄(xi))2
∑n
i=1(yi − ȳi)2

• where z̄ is the average of z on D.

Performance estimation
Hold-out procedure

• Computing performance measure on training set would be optimistically biased

• Need to retain an independent set on which to compute performance:

validation set when used to estimate performance of different algorithmic settings (i.e. hyperparameters)

test set when used to estimate final performance of selected model

• E.g.: split dataset in 40%/30%/30% for training, validation and testing

Problem

• Hold-out procedure depends on the specific test (and validation) set chosen (esp. for small datasets)

Performance estimation

k-fold cross validation

• Split D in k equal sized disjoint subsets Di.

• For i ∈ [1, k]

– train predictor on Ti = D \ Di
– compute score S of predictor L(Ti) on test set Di:

Si = SDi
[L(Ti)]

• return average score across folds

S̄ =
1

k

k∑
i=1

Si
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Performance estimation
k-fold cross validation: Variance

• The variance of the average score is computed as (assuming independent folds):

V ar[S̄] = V ar[
S1 + · · ·+ Sk

k
] =

1

k2

k∑
j=1

V ar[Sj ]

• We cannot exactly compute V ar[Sj ], so we approximate it with the unbiased variance across folds:

V ar[Sj ] = V ar[Sh] ≈ 1

k − 1

k∑
i=1

(Si − S̄)2

• giving

V ar[S̄] ≈ 1

k2

k∑
j=1

1

k − 1

k∑
i=1

(Si − S̄)2 =
1

k �2
�k

k − 1

k∑
i=1

(Si − S̄)2

Comparing learning algorithms

Hipothesis testing

• We want to compare generalization performance of two learning algorithms

• We want to know whether observed different in performance is statistically significant (and not due to some
noisy evaluation)

• Hypothesis testing allows to test the statistical significance of a hypothesis (e.g. the two predictors have different
performance)

Hypothesis testing

Test statistic

null hypothesis H0 default hypothesis, for rejecting which evidence should be provided

test statistic Given a sample of k realizations of random variables X1, . . . , Xk, a test statistic is a statistic T =
h(X1, . . . , Xk) whose value is used to decide wether to reject H0 or not.

Example
Given a set of measurements X1, . . . , Xk, decide wether the actual value to be measured is zero.

null hypothesis the actual value is zero

test statistic sample mean:
T = h(X1, . . . , Xk) =

1

k

k∑
i=1

Xi = X̄
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Hypothesis testing

Glossary

tail probability probability that T is at least as great (right tail) or at least as small (left tail) as the observed value t.

p-value the probability of obtaining a value T at least as extreme as the one observed t , in case H0 is true.

Type I error reject the null hypothesis when it’s true

Type II error accept the null hypothesis when it’s false

significance level the largest acceptable probability for committing a type I error

critical region set of values of T for which we reject the null hypothesis

critical values values on the boundary of the critical region

t-test

The test

• The test statistics is given by the standardized (also called studentized) mean:

T =
X̄ − µ0√

˜V ar[X̄]

where ˜V ar[X̄] is the approximated variance (using unbiased sample one)

• Assuming the samples come from an unknown Normal distribution, the test statistics has a tk−1 distribution
under the null hypothesis

• The null hypothesis can be rejected at significance level α if:

T ≤ −tk−1,α/2 or T ≥ tk−1,α/2

t-test
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tk−1 distribution

• bell-shaped distribution similar to the Normal one

• wider and shorter: reflects greater variance due to using ˜V ar[X̄] instead of the true unknown variance of the
distribution.

• k−1 is the number of degrees of freedom of the distribution (related to number of independent events observed)

• tk−1 tends to the standardized normal z for k →∞.
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Comparing learning algorithms

Hypothesis testing

• Run k-fold cross validation procedure for algorithms A and B

• Compute mean performance difference for the two algorithms:

δ̂ =
1

k

k∑
i=1

δi =
1

k

k∑
i=1

SDi
[LA(Ti)]− SDi

[LB(Ti)]

• Null hypothesis is that mean difference is zero

Comparing learning algorithms: t-test

t-test
at significance level α:

δ̄√
˜V ar[δ̄]

≤ −tk−1,α/2 or
δ̄√
˜V ar[δ̄]

≥ tk−1,α/2

where: √
˜V ar[δ̄] =

√√√√ 1

k(k − 1)

k∑
i=1

(δi − δ̄)2

Note

paired test the two hypotheses where evaluated over identical samples

two-tailed test if no prior knowledge can tell the direction of difference (otherwise use one-tailed test)

t-test example

10-fold cross validation

• Test errors:

Di SDi
[LA(Ti)] SDi

[LB(Ti)] δi
D1 0.81 0.80 0.01
D2 0.82 0.77 0.05
D3 0.84 0.70 0.14
D4 0.78 0.83 -0.05
D5 0.85 0.80 0.05
D6 0.86 0.78 0.08
D7 0.82 0.75 0.07
D8 0.83 0.80 0.03
D9 0.82 0.78 0.04
D10 0.81 0.77 0.04

• Average error difference:

δ̄ =
1

10

10∑
i=1

δi = 0.046
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t-test example

10-fold cross validation

• Unbiased estimate of standard deviation:

√
˜V ar[δ̄] =

√√√√ 1

10 · 9

10∑
i=1

(δi − δ̄)2 = 0.0154344

• Standardized mean error difference:

δ̄√
˜V ar[δ̄]

=
0.046

0.0154344
= 2.98

• t distribution for α = 0.05 and k = 10:

tk−1,α/2 = t9,0.025 = 2.262 < 2.98

• Null hypothesis rejected, classifiers are different

t-test example
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t-Distribution Table

t

The shaded area is equal to α for t = tα .

d f t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
32 1.309 1.694 2.037 2.449 2.738
34 1.307 1.691 2.032 2.441 2.728
36 1.306 1.688 2.028 2.434 2.719
38 1.304 1.686 2.024 2.429 2.712
∞ 1.282 1.645 1.960 2.326 2.576

Gilles Cazelais. Typeset with LATEX on April 20, 2006.
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