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Vector space

Definition (over reals)

A set X is called a vector space over R if addition and scalar
multiplication are defined and satisfy for all x,y,z € X and
A\ peR:
@ Addition:
associative X+ (y+2z)=(x+y)+2z
commutative X+y =Yy + X
identity element 30 € X : x +0 =Xx
inverse element Yx e X X' e X : x+x' =0
@ Scalar multiplication:
distributive over elements A(X +y) = Ax + \y
distributive over scalars (A + p)X = AX + uX
associative over scalars A\(ux) = (Au)x
identity element 31 e R: 1x =X

v

Linear algebrea



Properties and operations in vector spaces

subspace Any non-empty subset of X being itself a vector
space (E.g. projection)
linear combination given \; € R,x; € X

n
Z AiX;
i:1

span The span of vectors X4, ..., X, is defined as the set
of their linear combinations

n
{Z AiXj, Aj € ]R}

i=1
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Basis in vector space

Linear independency

A set of vectors x; is linearly independent if none of them can
be written as a linear combination of the others

@ A set of vectors x; is a basis for X if any element in X can
be uniquely written as a linear combination of vectors x;.

@ Necessary condition is that vectors x; are linearly
independent

@ All bases of X have the same number of elements, called
the dimension of the vector space.
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Linear maps

Definition

Given two vector spaces X, Z, a function f : X — Z is a linear
map if for all x,y € X, A € R:

o f(x+y)=1f(x)+1(y)

@ f(AX) = Af(X)
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Linear maps as matrices

A linear map between two finite-dimensional spaces X, Z of
dimensions n, m can always be written as a matrix:

@ Let {xy,...,x,} and {z4,...,z,} be some bases for X and
Z respectively.

@ For any x € X we have:
n n

= f(z AiXj) = Z Aif(X;)

m,:1 i=1
X)) = ajz;

=1
jn m

= ZZA,aj,-zj = Z Z)\ ajl Z; — Z'U’/z/

i=1 j=1 j=1 i=1
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Linear maps as matrices

@ Matrix of basis transformation

a4 ... ain
Me R™" = :

@ Mapping from basis coefficients to basis coefficients

MX=p
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Change of Coordinate Matrix

o letB= {[ ) ] , [ (1) ]} be the standard basis in IR?

0

1 1
@ The change of coordinate matrix from B’ to B is:

(3 4]

[V]B =P. [V]Bl and [V]Bl =p1. [V]B

@ For arbitrary B and B', P’s columns must be the B’ vectors
written in terms of the B ones (straightforward here)
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o letB = {{ £ ] , [ —2 ]} be an alternative basis

@ So that:




Matrix properties

transpose Matrix obtained exchanging rows with columns
(indicated with MT). Properties:

(MN)T = NTMT
trace Sum of diagonal elements of a matrix

n

tr(M) = Z M;;
i=1

inverse The matrix which multiplied with the original matrix
gives the identity
MM~ = |

rank The rank of an n x m matrix is the dimension of
the space spanned by its columns
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Matrix derivatives

OMx
OX S
oyTMx . r
ox A
oxT Mx
= (M + M)x
T
ox a)l(\ﬂx = 2Mx if M is symmetric
oxTx
X = 2X

Results are column vectors. Transpose them if row vectors are
needed instead.
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Metric structure

A function || - || : X — R is a normif for all X,y € X, A € R:
o [[x+yll < |||+ lyll
o [IAX]| = ] |[x]
@ |x||>0ifx#0

A norm defines ametricd : X x X — ]Raf:

d(x,y) =[x -l

The concept of norm is stronger than that of metric: not any
metric gives rise to a norm
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Dot product

Bilinear form
A function Q : X x X — R is a bilinear form if for all
Xy, 2ze X\, u e R:
0 Q(A\X + uy,z) = AQ(x,2) + nQ(y, z)
@ Q(x,\y + pz) = A\Q(x,y) + nQ(x, z)
A bilinear form is symmetric if for all X,y € X:
° Q(x,y) = Q(y,Xx) |
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Dot product

Dot product
A dot product (-, -) : X x X — R is a symmetric bilinear form
which is positive semi-definite:

(x,X) >0Vxe X

A positive definite dot product satisfies

(X,x) =0iffx=0

Any dot product defines a corresponding norm via:

[IX[[ = v/ {x, %)
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Properties of dot product

angle The angle 6 between two vectors is defined as:

c0oSf =

orthogonal Two vectors are orthogonal if (x,y) =0
orthonormal A set of vectors {X1,...,X,} is orthonormal if

<xia xj> = 5’]

where §; = 1if i = j,0 otherwise.

If x and y are n-dimensional column vectors, their dot product is
computed as:

n
xy) =xTy =3 x

i=1
4
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Eigenvalues and eigenvectors

Given an n x n matrix M, the real value A and (non-zero) vector
X are an eigenvalue and corresponding eigenvector of M if

Mx = \x

Cardinality

@ An n x n matrix has n eigenvalues (roots of characteristic
polynomial)

@ An n x n matrix can have less than n distinct eigenvalues

@ An n x n matrix can have less than n linear independent
eigenvectors (also fewer then the number of distinct
eigenvalues)
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Eigenvalues and eigenvectors

Singular matrices
@ A matrix is singular if it has a zero eigenvalue

Mx=0x=0
@ A singular matrix has linearly dependent columns:
X
[My ... My M,]| © | =0

Xn—1
Xn
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Eigenvalues and eigenvectors

Singular matrices
@ A matrix is singular if it has a zero eigenvalue

Mx=0x=0

@ A singular matrix has linearly dependent columns:

MiXy + -+ + My_1Xa_1 + MpXp = 0

.
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Eigenvalues and eigenvectors

Singular matrices
@ A matrix is singular if it has a zero eigenvalue

Mx=0x=0

@ A singular matrix has linearly dependent columns:

— X —Xn—
Mn:M1 1‘f“"‘f‘/\/ln—1 n-
Xn Xn
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Eigenvalues and eigenvectors

@ A matrix is singular if it has a zero eigenvalue

Mx=0x=0

@ A singular matrix has linearly dependent columns:

X —Xn—
1+"'+Mn71 n—1

Xn n

@ The determinant |M| of a n x n matrix M is the product of
its eigenvalues

@ A matrix is invertible if its determinant is not zero (i.e. it is
not singular)

Mn:M1
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Eigenvalues and eigenvectors

Symmetric matrices

Eigenvectors corresponding to distinct eigenvalues are
orthogonal:

A(X,2) = (AX, z)
= (Ax)z
=x"ATz
=x"Az
= (x, Az)
= pu(X,z)
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Eigen-decomposition
Raleigh quotient

AX = \X

T T
xAx:)\x x:)\
xTx xTx

Finding eigenvector

@ Maximize eigenvalue:

v’ Av
V'V

© Normalize eigenvector (solution is invariant to rescaling)

X
X4 ——
1|
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Eigen-decomposition

Deflating matrix

A=A— xx"

@ Deflation turns x into a zero-eigenvalue eigenvector:

Ax = Ax — Axx"x (X is normalized)
=AX—-Xx=0

@ Other eigenvalues are unchanged as eigenvectors with
distinct eigenvalues are orthogonal (symmetric matrix):

Az = Az — X\xx"z (x and z orthonormal)
Az = Az
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Eigen-decomposition

@ The maximization procedure is repeated on the deflated
matrix (until solution is zero)

@ Minimization is iterated to get eigenvectors with negative
eigevalues

@ Eigenvectors with zero eigenvalues are obtained extending
the obtained set to an orthonormal basis
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Eigen-decomposition
Eigen-decomposition

@ Let V =[vq...v,] be a matrix with orthonormal
eigenvectors as columns

@ Let A be the diagonal matrix of corresponding eigenvalues

@ A square simmetric matrix can be diagonalized as:

VTAV = A

proof follows..

@ A diagonalized matrix is much simpler to manage and has
the same properties as the original one (e.g. same
eigen-decomposition)

@ E.g. change of coordinate system

v
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Eigen-decomposition
Poof |

/\1 O
AlVi...Vp] =[Vy...Vp]
0 An
AV = VA
V-TAV = V-TVA
VTAV = A

V.

V is a unitary matrix (orthonormal columns), for which:

v1i=vT

V.
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Positive semi-definite matrix

Definition
An n x n symmetrix matrix M is positive semi-definite if all its
eigenvalues are non-negative.

Alternative sufficient and necessary conditions

@ forallx € R”
x"Mx >0

@ there exists a real matrix B s.t.

M=B"B |
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Understanding eigendecomposition

Scaling transformation in standard basis

@ let x4 =[1,0],x2 = [0, 1] be the standard orthonormal
basis in IR?
@ let x = [xy, xo] be an arbitrary vector in R?

@ A linear transformation is a scaling transformation if it only
stretches x along its directions

v
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Understanding eigendecomposition

Scaling transformation in eigenbasis

@ let A be a non-scaling linear transformation in R?.
@ let {vq,Vv2} be an eigenbasis for A.

@ By representing vectors in R? in terms of the {vy, vy} basis
(instead of the standard {x1,x2}), A becomes a scaling
transformation

V.
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Principal Component Analysis (PCA)

Y

[
E
d
H
Ul

-2
d

&

L]

Description
@ Let X be a data matrix with correlated coordinates.

@ PCA is a linear transformation mapping data to a system of
uncorrelated coordinates.

@ It corresponds to fitting an ellipsoid to the data, whose
axes are the coordinates of the new space.

V,
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Principal Component Analysis (PCA)

Procedure (1)

Given a dataset X € R™ in d dimensions.
1 Compute the mean of the data (X; is i’ row vector of X):

_ 1
xng

2 Center the data into the origin:

X —
X

3 Compute the data covariance: C = %XTX
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Principal Component Analysis (PCA)

Procedure (2)
4 Compute the (orthonormal) eigendecomposition of C:

vicy = A
5 Use it as the new coordinate system:

X =V 'x=VTx

(V=1 = VT as Vis unitary)

.

@ It assumes linear correlations (and Gaussian distributions)
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Principal Component Analysis (PCA)

Dimensionality reduction

@ Each eigenvalue corresponds to the amount of variance in
that direction

@ Select only the k eigenvectors with largest eigenvalues for
dimensionality reduction (e.g. visualization)

Procedure
1 W= [V1,...,Vk]
2 x = WTx
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