Structured Output Prediction

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Structured Output Prediction: the task

[Obama]running
in the [presidental
election] has
mobilized [many
young voters]
[His] [position] on

[climate change]
was well received

by [this group]

The dog chased the cat.
APPGEAYLQPGEAYLQV

@ The input is (typically) a structured object

@ The output is also a structured-object (rather than a scalar)
e.g.:
e A sequence (part-of-speech tagging, protein secondary
structure prediction)
e A tree (parse-tree prediction)
e A graph (link detection, protein 3D structure prediction)

Image from Joachims et al, 2009

Structured Output Prediction: the issue

@ Standard supervised
learning learns a function

f:x =Y

@ However the space of
candidate outputs is huge
(exponential in the number
of output variables, or even
infinite)

@ The problem cannot be
formalized as multiclass
classification

The dog chased the cat.

Class 1

Forr e
o]

Class?2| == &=

Class 3

Classk| B \

e
]

R

Image from Joachims et al, 2009

Structured Output Prediction: approaches

1
1 [
>

Y y

Energy-based models

y* = argmin, .y E(X, y)
@ An energy function predicts the energy of each
input-output pair
@ Prediction is achieved by getting minimal energy output for
a given input
@ Inference methods are needed to solve the argmin
problem (learning with inference)

R RRRRRERERERERRERERESS———————————mIm—m——

Energy-based models

A
/_ST' push down /é\
= =
:ié w¢ After :zi
& i pull up training =
/2
Y vy Y iy

@ Adjust weights of energy function to drive correct output to
have minimal energy

@ Based on loss functions between correct output and
incorrect ones

@ Typically focus on most offending incorrect answer:

y = argminyeyyy?gy/E(X", y'w)

Structured Output Prediction: approaches

Search-based models

@ State-space search
process

@ Initial state with empty
output

@ Heuristic function to
choose next state (partial
output)

@ Terminal states are states
with complete output

@ No need for global
inference algorithm
(learning for inference)

terminal state

goal state

Search-based models

learning

@ Adjust weights of heuristic function to have high score for
correct moves given current state

@ on-trajectory training, current state is always a correct one.

@ off-trajectory training, current state is highest scoring state
even if incorrect

.

Energy-based models: Structured SVM

M The dog chased the cat ‘ (1) § ;) j;;,lp
fiXx-v 2 |NP — Det N
ﬂ S 1 VP —»V NP
Fxy)= 0| Det — dog
/ \ / 2| Det —> the
Det Det 1| N-—>dog
l 1|V — chased
The dog chased the cat 1) N —cat

Joint input-output feature map
f(x,y) =w'W(x,y) = —E(x,y)

@ Joint input-output feature map W(x, y)

@ Features capture interaction between input and output
variables and between output variables among themselves

@ Energy function is a linear function of the feature map
@ The function can be kernelized

Structured SVM: learning

. 1
miny ¢ EHWH2 + CZfi
i
subject to:
wiU(x;,y) —wiV(x,y') > Ay, y') — &
Vi,y' # i

Max-margin formulation

@ A(y;,y') is the cost for predicting y’ instead of y;
(structured-output loss)

@ The formulation aims at separating correct predictions from
incorrect predictions with a large margin

@ Hard to solve directly (exponential number of constraints!!))

Structured SVM: learning

Cutting plane algorithm

@ Initialize weights and constraints S; = () Vi

© While constraint added
@ For each example i

& = maxpesAWLy)+W (X, y) — W (x,y)

new

i = maxy ., Ay Y) +W (X, y') —w V(X y)

Q Ifgr" —E>e€
© Add constraint and update S;
O retrain

Alternatives
@ Stochastic subgradient descent
@ Block-coordinate Frank-Wolfe optimization

Structured SVM: inference
(Loss augmented) argmax inference

@ inference at prediction time
y* = argmax, ., W' W(X, y)

@ loss augmented inference at training time (most offending
incorrect answer)

y' = argmaxy, ., A(y;, ¥') + wV(x;,y") - wiV(x;,)

Approaches

@ Viterbi algorithm for sequence labelling
@ CYK algorithm for parse tree prediction
@ Loopy belief propagation (approximate)

@ Amortized inference (use previous solutions to speed up
related inference tasks)

Structured SVM: PROs and CONs

@ Max-margin approach

@ Guarantees on number of iterations (depends on e,
independent on number of output structures)

@ Can deal with arbitrary constrains on output structure

@ Inefficient, (loss augmented) inference required at every
training iteration

@ The function to be learned is complex, high-order feature
typically required (making inference even more expensive)

Search-based models: ordered vs unordered

Ordered search space

@ Fixed ordering of decisions (e.g., left-to-right decisions in
sequences)

@ Classifier-based structured prediction (reduction to
multi-class classification task)

Unordered search space

@ Learner dynamically orders decisions

@ Easy-first approach (make easy decisions first)

Search-based models: classifier-based

@ Ordered search space
@ Reduction to multi-class classification on next decision

@ Training examples:
@ input is set of outputs up to position ¢
e output is correct output for position f + 1
@ imitation learning (training examples as expert
demonstrations)

.

Classifier-based structured prediction: exact imitation

Image from Fern et al., 2016

Exact imitation problem: error propagation

"

MNQEN, pray-

NN praua MEOER praup
Lf'—/’ e
predictedoutput

Error propagation

@ Errors in early decisions propagate to down-stream ones

@ System is not trained to deal with decisions given incorrect
states

v
@ Generate trajectories using current policy

@ Use optimal policy to generate optimal next states given
states visited by current policy

DAgger (Dataset Aggregation)

The algorithm

@ Collect training set D of N trajectories using ground-truth
policy 7*
© Repeat
© 7 < LEARNCLASSIFIER(D)

@ Collect set of states S along trajectories computed using =
© Foreachse S

@ D+ DU{(s,7"(9))}
© Return

Search-based models: easy-first approach

CONs of classifier-based approaches
@ Need to define an ordering over output variables

@ Some decision are harder than others — fixed ordering
can be suboptimal

Easy-first approach: rationale
@ Make easy decisions first to constraint harder ones

@ Learn to dynamically order decisions

@ Analogous to constraint satisfaction algorithms

Example: Cross-document coreference

One of the key suspected mafia bosses arrested yesterday had hanged himself.
Doc 1

Police said Lo Presti has hanged himself.
Doc 2

"One of the key suspected mafia bosses l J] had hanged .
Lo Presti je——— , :has hanged

Hard Easy

Easy-first approach: inference

| One of the key suspected mafia bosses | | had hanged |
pAK; [? %

fThe Pollce |,—| Lo Prestl r“~~\\\[has hanged\\l

la=® S~
PEA ~_\
~a

bad actions good actions

Easy action first
@ State s is partial solution
@ Set of possible actions a € A(s) from a state (no ordering)
@ Action scoring function f(s,a) = w’ ¥(s, a)
@ Proceed making highest scoring (most-confident) action
first

Easy-first approach: learning

Easy-first policy learning

while not termination condition do
for (x,y) € D do
s« I(x)
while not ISTERMINAL(S) do
dp < MaXacA(s) WT\U(S, a)
if a, € B(s) then
UPDATE(w, G(S), B(S))
end if
ac < CHOOSEACTION(A(S))
s <+ Apply acon s
end while
end for
end while

Easy-first policy learning

UPDATE(w, G(S), B(S))

@ Highest scoring good action better than highest scoring
bad action (perceptron update)

@ Highest scoring good action better than all bad actions

ac < CHOOSEACTION(A(S))

@ Choose highest scoring good action (a; € G(s),

on-trajectory training)

@ Choose highest scoring action (a; € G(s) U B(s),
off-trajectory training)

Combining energy-based and search-based
approaches

HC-search framework

@ Generate high-quality candidate complete outputs with
search-based approach (H = search heuristic)

@ Score candidates with energy function and select minimal
energy output (C = cost/energy function)

Deep energy-based methods

E(F(x),9)
!

§TBF(2) + c3 9(C1h)

Structured Prediction Energy Networks (SPEN)

@ Energy function modelled as a deep network

@ Replaces outputs y € {0, 1}- with relaxations y < [0, 1]-

@ Training by gradient descent over weights using structured
loss (e.g. as in structured SVM)

@ Inference by gradient descent over y (+ rounding if needed))

SPEN

@ Efficient inference by gradient descent

@ No need to pre-specify input-output features (input-output
representation learning)

@ No algorithmic guarantees (local optimization of energy)
@ No management of explicit constraints
@ No support for hard constraints

Deep search-based methods

THE
TRANSFORMER

Transformers for machine translation

@ Use attention mechanism to learn input word encodings
that depend on other words in the sentence

@ Use attention mechanism to learn output word encodings
that depend on input word encodings and previously
generated output words

@ Predict output words sequentially stopping when the
“word” end-of-sentence is predicted

Images and animations from Jay Allamar’s “The lllustrated Transformer”

Transformer: self-attention (concept)

The_

animal_
didn_

street_
because_
it_

was_

too_
tire

The_

animal_
didn_

|
Cross_
the_
street_

because_

was_
too_
tire

Transformer: self-attention (vectors)

Input

Embedding

Queries

Keys

Values

(50 3 B B

I T

[N

wa

Transformer: self-attention (computation)

softmax(B}}) @) B}}

dy

@ Query vector g; times key vector ko gives importance of
word 2 for encoding word 1

@ Softmax normalizes importances over all words in the
sentence (v/dx helps numerical stability)

@ Result zy is combination of values v; for all words, each
weighted by its normalized importance for 1

v

Transformer: encoder layer

4 4
",(Add & Normalize)
. 4 [
v (FeedForward) (Feed Forward '
AT L)
1111 [IT1]
A 4
. LayerNorm(EEEE + H:H:)
' 4 4
' [1
' C Self-Attention)
. 4 4
‘i (A AR R R R R I I
POSITIONAL é é
ENCODING
[T i

Transformer: encoder-decoder architecture

(Softmax)

:",(Add & Normalize -) (LinZar)
H (Feed Forward) (Feed Forward) L3
g | | >

t t
.,é(; Add & Normalize -) :’(T)

'
:‘~ _(_ ______ T _____ S:e-lf-ét-tt-ar-\t-io-r: o 'T) E‘ (Feed Forward) (Feed Forward)

,»(Add & Normalize) ,*(Add & Normalize)
N B '
H ., |1 [4
v reedForward) Feed Forward) | e > " 7
| (Feed Forward) (Feed Forward) Iy (Encoder-Decoder Attention)
_____________________________________ [SETTTYTTTTTTTTTTTTYY |
] '.>(Add & Normalize) ,»(Add & Normalize)
2 T T : f T
H :
H (Self-Attention) H (Self-Attention)
. Meecececcclecccacacacamamam-—-
=T 7 I T
ENCODING
X X2
Thinking Machines

Transformer: predicting the first word

Decoding time step:(1)2 3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

f

(

ENCODER

Ly

(

ENCODER

Linear + Softmax

D)

T

DECODER

)

7y

C
(
(

DECODER

)

OO OO Oom;

étudiant

Transformer: predicting the following words

Decoding time step: 1(2)3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

[ENCODERS]

)

C

l DECODERS]

7 7 T T
Oo—m OoO0O4@b Oo43 mann|
I R o (AR

étudiant PREVIOUS

su

OUTPUTS

InstructGPT: aligning with the user

Transformer problems

@ Alignment problem: transformer output can easily deviate
from user intent

@ Hard to address it with self-supervision only

@ Fine tune with demonstrations of desired behaviour
@ Fine tune with ranking feedback

€

InstructGPT: Reinforcement Learning with Human

Feedback (RLHF

Step1

Collect demonstration data,
and train a supervised policy.

Apromptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used
tofine-tune GPT-3
with supervised
learning

©

Expian e moon
Ianding 036year

3

step2 Step3
Collect comparison data, Optimize a policy against
and train a reward model. the reward model using

Aprompt and
several model
outputs are
sampled.

Alabeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model

reinforcement leart

9.

Expin the moon

i
L2 L
- ° "

©-0-0-0

Memory augmented Transformer

Transformer problems
@ Cannot access up-to-date information

@ Storing all knowledge in the model parameters does not
scale

¢

@ Give transformers ability to use a key-value memory
@ Encode Q&A pairs in the memory

.

Memory augmented Transformer: architecture

Output

o D) D D)
—>
value layer
concatenate
concat layer
(o] CLLL)
Return Key-Value Pairs key layer

4
%

—J

} PREFIX Input

)

(anal

Key-Value Memory

Toolformer: self-learning to use tools

Transformer problems

@ Problems in performing precise calculations
@ Tendency to hallucinate facts

@ Give transformers ability to use external tools

@ Allow them to learn when and how to use tools (with little
human annotation)

Toolformer: examples

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)
— 0.29] 29%) passed the test.

The name derives from “la tortuga”, the Spanish word for
[MT(“tortuga”) — turtle] turtle.

The Brown Act is California’s law

that requires legislative bodies, like
city councils, to hold their meetings open to the public.

Toolformer: overview

1 2 3 LM Dataset
LMDatasel == qompleAPICalls ExecuteAPICalls FiterAPICalls withAPICalls
X, = Pittsburgh is c;* = What other name is r;* = Steel City Lc;! — Steel City) x" = Pittsburgh is
also known as Pittsburgh known by? < min(L'.(cZ.‘ —g), Ly_(s)) also known as
[QA(What .2
Xy, = the Steel City 2 = which country is r? = United States L{(c?— United States) » Steel City)]
Pittsburgh in? min(L(c? — €), L(e)) the Steel City.

Few-shot driven dataset expansion

@ Sample API calls
© Execute APl calls
© Filter APl calls
©Q Finetune model

Toolformer: sample API calls - 1

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: x

Output:

PROMPT(x)

Create API-specific prompt

PROMPT (x)

Toolformer: sample API calls - 2

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is

[PROMPT(“Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’]

Sample candidate API-call positions according to

pi = P('[|IPROMPT (x), x1,:_+)

Toolformer: sample APl calls - 3

Your task is to add calls to a Question Answering AP to a piece of text. The
questions should help you get information required to complete the text.
You can call the API by writing "[QA(question)]" where "question" is the
question you want to ask. Here are some examples of API calls:

Input: Joe Biden was born in Scranton, Pennsylvania.

Output: Joe Biden was born in [QA("Where was Joe Biden born?")]
Scranton, [QA("In which state is Scranton?")] Pennsylvania.

Input: Coca-Cola, or Coke, is a carbonated soft drink manufactured by the
Coca-Cola Company.

Output: Coca-Cola, or [QA("What other name is Coca-Cola known by?")]
Coke, is a carbonated soft drink manufactured by [QA("Who manufactures
Coca-Cola?")] the Coca-Cola Company.

Input: Pittsburgh is also known as the Steel City

Output: Pittsburgh is also known as [

[PROMPT(‘Pittsburgh is also known as the Steel City’), ‘Pittsburgh is’, []

Sample candidate API calls for i from the sequence

[PROMPT(X), X{:j—1 ,/ [/] up to /]/

Toolformer: execute, filter, finetune

LM Dataset —= 1 .2 ., 3 __, LMDataset
Sample API Calls Execute API Calls Filter API Calls with API Calls
X, = Pittsburgh is c;! = What other name is 1! = Steel City Lc;! — Steel City) x" = Pittsburgh is
also known as Pittsburgh known by? <min(Lc;} — €), L(e)) also known as
[QA(What .2
X;, = the Steel City 2 = which country is 72 = United States L{c?— United States) > Steel City)]
Pittsburgh in? min(L(c? — £), L)) the Steel City.

Execute, filter, finetune

@ Execute API for each sampled call

© Filter results based on whether they reduce loss for
subsequent tokens

© Finetune model with expanded dataset including retained
calls (+ results)

Toolformer: inference

APl-augmented inference

@ Plain decoding until '—’
© Call API

© Insert response + |’

© Continue decoding

References

Bibliography

@ Deshwal, A.; Doppa, J. R.; and Roth, D., Learning and inference for
structured prediction: A unifying perspective, in IJCAI 2019.

@ LeCun, Y.; Chopra, S.; Hadsell, R.; Huang, F. J.; and et al., A tutorial on
energy-based learning, in Predicting Structured Data, MIT Press.

@ Joachims, T.; Hofmann, T.; Yue, Y.; and Yu, C.-N., Predicting structured
objects with support vector machines, in Communications of the ACM,
2009.

@ Daumé, H.; Langford, J.; and Marcu, D., Search-based structured
prediction, in Machine Learning, 2009.

@ Ross, S.; Gordon, G.; and Bagnell, D., A reduction of imitation learning
and structured prediction to no-regret online learning, in AISTATS, 2011.

@ Belanger D. and McCallum, A., Structured prediction energy networks,
in ICML 2016.

@ Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.,
Kaiser L., and Polosukhin 1., Attention is all you need, in NIPS 2017.

@ Schick T., Dwivedi-Yu J., Dessi R., Raileanu R., Lomeli M., Zettlemoyer
L., Cancedda N., Scialom T., Toolformer: Language Models Can Teach

References

Software Libraries

@ PyStruct - Structured prediction in Python (PyStruct)
[http://pystruct.github.io/]

@ Torch-Struct: Structured Prediction Library (Torch-Struct)
[https:
//github.com/harvardnlp/pytorch—struct]

@ PyTorch-Transformers: PyTorch implementations of NLP
Transformers [https://pytorch.org/hub/
huggingface_pytorch-transformers/]

http://pystruct.github.io/
https://github.com/harvardnlp/pytorch-struct
https://github.com/harvardnlp/pytorch-struct
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

Temporary page!

IATEX was unable to guess the total number of pages correcil
As there was some unprocessed data that should have beer
added to the final page this extra page has been added to
receive it.

If you rerun the document (without altering it) this surplus pa
will go away, because IKTEX now knows how many pages to
expect for this document.

	anm1:
	1.333:
	1.332:
	1.331:
	1.330:
	1.329:
	1.328:
	1.327:
	1.326:
	1.325:
	1.324:
	1.323:
	1.322:
	1.321:
	1.320:
	1.319:
	1.318:
	1.317:
	1.316:
	1.315:
	1.314:
	1.313:
	1.312:
	1.311:
	1.310:
	1.309:
	1.308:
	1.307:
	1.306:
	1.305:
	1.304:
	1.303:
	1.302:
	1.301:
	1.300:
	1.299:
	1.298:
	1.297:
	1.296:
	1.295:
	1.294:
	1.293:
	1.292:
	1.291:
	1.290:
	1.289:
	1.288:
	1.287:
	1.286:
	1.285:
	1.284:
	1.283:
	1.282:
	1.281:
	1.280:
	1.279:
	1.278:
	1.277:
	1.276:
	1.275:
	1.274:
	1.273:
	1.272:
	1.271:
	1.270:
	1.269:
	1.268:
	1.267:
	1.266:
	1.265:
	1.264:
	1.263:
	1.262:
	1.261:
	1.260:
	1.259:
	1.258:
	1.257:
	1.256:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

