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Deep Learning

@ Efficient processing of high-dimensional data
@ Robust to noise and ambiguity

@ Does not require extensive background knowledge and
feature engineering

@ Data hungry (large training sets needed)

@ Non-interpretable models and predictions
@ Hard to incorporate complex domain knowledge




Symbolic Reasoning

@ Expressive, can formalize complex domain knowledge

@ Interpretable, inference can be explained in terms
reasoning steps (proofs)

@ Can generalize from few examples

@ Inefficient, inference is typically expensive

@ No support for noise or ambiguity
@ Difficult to deal with high-dimensional data




Neuro-Symbolic Integration (NeSy)

Q: How many objects are both right of the green cylinder
and have the same material as the small blue ball?
A:3

Best of both worlds

@ Deep networks for low-level data processing and “atomic”
predictions

@ Symbolic approaches for reasoning on top of atomic
predictions

@ Probabilities (or scores) for dealing with uncertainty

Image from Mao et al. 2019



Dimensions: directed vs undirected models

Directed models Undirected models

@ Generalize Bayesian @ Generalize Markov
Networks to deal with Networks to deal with
(first-order) logic (first-order) logic

@ Generalize Logic Programs @ Enforce logical constraints
to deal with probabilities over neural predictions

@ Incorporare Neural @ Relax logical constraints to
“primitives” (e.g., predicates) deal with uncertainty

v




Dimensions: integration vs regularization

Integration Regularization

@ Neural primitives inside
reasoning framework
(typically logic program)

@ Differentiability via
probability of worlds or
proof score.

@ Logical Constraints are
used as regularizers for
neural network training

@ Differentiability by relaxed

constraints or consistency
in expectation




Dimensions: semantics

Probabilistic semantics

@ Extends Boolean logic with @ Relax Boolean variables in
probabilities [0,1] interval

@ Defines a probability @ Relies on t-norms for
distribution over possible relaxing Boolean
worlds connectives

@ Allows to perform inference @ Efficient inference,
under uncertainty Boolean semantics not
(expensive) preserved




Semantic-based Regularization

@ Model problems with multiple related predictions

@ Incorporate knowledge as constraints over related
predictions

@ Model each prediction task with a statistical learner (kernel
machine, neural network)

@ Represent constraints over predictions in fuzzy logic

@ Combine regularization with loss on fuzzy constraint
satisfaction (including label supervision)




Semantic-based Regularization: Fuzzy logic

Boolean | Gédel Product tukasiewicz
XANY min(X,Y) XY max (0, X+ Y —1)
XVY | max(X,Y) 1-(1-X)(A-Y) min(1,X+Y)
=X 1-X 1-X 1-X

@ Boolean variables relaxed into real variables in [0, 1].

@ Conjunction relaxed using t-norm

@ Disjunction relaxed using t-conorm

@ Existential quantifier relaxed as maximum (over dataset)

@ Universal quantifier relaxed as minimum (over dataset,
usually replaced by average)




Semantic-based Regularization: formulation

L kd
L(F,0) = [[flP+ > An(1 — dn(F))
k=1 h=1

Objective function
@ fis a vector of parameterized predictors (one per task)

@ ¢ is a set of logic formulas (the constraints)

@ ||fx|| is the norm of fx (e.g. norm of the weights for kernel
machines)

@ )\, is a weight associated to constraint h
@ & is the fuzzy version of formula @,




Semantic-based Regularization: example

ositive supervision . -
P P manifold regularisation

F = Vd Pa(d)= A(d) / Evidence Predicate

Fr = VdVd R(d,d) = ((A(d) ANA(d)) V (~A(d) A —A(d))) Groundings

C = {dy,dy} Pa(d) =1
R(dy,d) =1

Output
Output Layer

Quantifier Layers

Propositional Layer tp (PA(dl)7 fa(dy ))

d, representation d, representation

Image adapted from Diligenti et al., 2017

NeSy



Semantic-based Regularization: learning

|®]
OL(F,®)  dIfl? (1 — by) q>,,) o, O
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h=1

Gradient-based learning

@ wy ; is a parameter of a predictor f,
@ fy, is a grounding of formula 4

Learning problem is convex if:
@ fx are kernel machines (or similar)
@ A convex fragment of the tukasiewicz logic is used




Semantic-based Regularization: MAP inference

£(F(X). 1(2)) = JIF(Y) r|2+ZAh( - By(f(1)))

Gradient-based MAP inference
@ X set of (related) test examples

@ f(X) set of independent predictions over test examples
@ f(X) set of collective predictions over test examples

(accounting for constraints)

@ Inference of f(X') is performed by gradient descent:

01 — du(F(X))
— (X Ap [ Z— M)
k(X)"‘; h( Fe(X)




Semantic-based Regularization: dimensions

@ Undirected model: constraints as set of FOL formulas
(probabilistc variant as deep Markov Logic Network exists)

@ Regularization approach: soft consistency is a
regularization term in training loss

@ Fuzzy semantics: fuzzy logic is employed as relaxation




Knowledge distillation

teacher network construction rule knowledge distillation
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Teacher-student distillation
@ Student learns to fit data and satisfy rules

@ Teacher “shows” student how to change predictions to
satisfy rules (projection in feasible space)

@ Student should learn to implicitly satisfy rules (no rule
enforcement at prediction time)




Knowledge distillation: learning

LD;®)= D (1 =m)Yn, To(Xn)) + 7L(Tq(Xn), fo(Xn))
(Xn.Y,)eD

Iterative procedure
@ f»(Xxp) are the student predictions for x,, (i.e., according to

Po(Y|Xn))
@ fy(xn) is the teacher projection of those predictions in the
feasible space ¢ (i.e., according to q(y|xn))

@ r is a parameter trading-off data fitting and constraint
satisfaction (possibly on unlabelled data too)

@ At each iteration 6 is updated minimizing the loss




Knowledge distillation: teacher projection

min KL(@(YIX)llpo(Y1X)) + C2p 2ogng

s.t. An(1 = Eq[®ng(X, )]) < éng

Projection as constrained optimization
@ KL divergence between student and teacher predictions

° &)h,g(X, Y) is the g-th grounding of a fuzzy version of
formula ¢, on (X, Y).

° Eq[éh,g(x, Y)] is satisfaction of &Jh,g(X? Y) in expectation
over q(Y|X).

@ )\, is the weight of formula &4,

@ &p g is a slack variable to penalize unsatisfied constraints

@ Cis a parameter trading-off divergence with student
prediction and satisfaction of formulas




Knowledge distillation: teacher projection

g (Y[X) < pa(Y[X) - exp (— YD Can(1 = dpg(X, Y)))

h g

Closed form solution
@ The constrained otimization problem has a closed form
solution.
@ The normalization term is computed by dynamic
programming if relationship between constraints allows for
it, or approximated with sampling approaches otherwise.




Knowledge distillation: dimensions

@ Undirected model: constraints as set of FOL formulas

@ Regularization approach: projection on consistent
predictions is a regularization term in training loss

@ Fuzzy semantics: fuzzy logic is employed as relaxation




Semantic Loss Regularization

Ls(d,p)ox—logd_ [[ o J[ (1 —p)

YEOYEY  YEY
@ ¢ is a propositional formula (a constraint that should hold)

@ pis a vector of probabilities associated to Y variables (e.g.
outputs of a neural network)

@ The semantic loss is proportional to the negative logarithm

of the probability that sampling Y according to p produces
a value y satisfying the constraint ¢.




Semantic Loss Regularization

o Class1 e Class1
4 Class 2 * . 4 Class 2 4 -

= Unlabeled -t = Unlabeled -t

Regularizing with semantic Loss

Lreg = traning_loss + X semantic_loss

@ Semantic loss as regularizer of training loss (encourages
predictions satisfying constraints)




Semantic Loss Regularization
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End-to-end training with semantic Loss

@ Semantic loss can be compiled into an arithmetic circuit

@ Partial derivatives can be computed on the circuit (see e.g.
Deep ProbLog)




Semantic Loss Regularization: dimensions

@ Undirected model: constraints as set of propositional
formulas

@ Regularization approach: semantic loss is additional
term to training loss

@ Probabilistic semantics: constraints are enforced in
expectation over probabilities of possible worlds




Deep ProbLog

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

From ProbLog to Deep ProblLog

@ Introduce neural networks to process low-level data
(softmax output layer)

@ neural annotated disjunction (nAD) maps inputs to
distributions over candidate outputs

@ nn is a reserved word (stands for neural network)

@ m_digit is the identifier of a neural network (CNN
classifying digit images)

@ digit is a neural predicate evaluated via m_digit.




Deep ProbLog: nAD example

nn(m_digit,[X],Y,[0,...,9]):digit(X,Y).

ground on
\J
nn(m_digit, [EJ,0)::digit(E],0); ... ; nn(m_digit, [EJ,9)::digit(E]},9).

evaluate m_digit on

\J
po::digit(E]0); ... ;pe::digit(E] 9).



Deep ProbLog: inference

Inference by knowledge compilation

@ Ground relevant part of the program to answer query
(including nADs).

© Run forward step in neural nets to turn ground nAD into
ground AD.

© Compile resulting formula (same as ProbLog)
© convert into AC (same as ProbLog)
@ evaluate AC (same as ProbLog)

.




Deep ProbLog: grounding example

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).

DeepProbLog
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2. program
query
addition(fe), k¥, 1
groundon [ W any
nn(m_digit, [J&1,0): :digit(Jd,0) ;nn(m_digit, [1, 1)::digit(@d,1). round
nn(m_digit, (J§]1,0)::digit(0,0) ;nn(m_digit, (W1, 1)::digit(Hl,1). Deeg ProblLo
addition(fg,M.1) :- digit(fd,0), digit(H.1). P 9
addition(@, 1) :- digit(@,1), digit(,0). program
forward step of nn
0.8 :: digit(E,O); 0.1 :: digit(m,l).
0.2 :: digit(n,o); 0.6 :: digit(“,l). Pgl’:.?tthnC?
addition (@, I, 1) :- digit(@,0), digit(§l,1). 9
addition(fg,IM.1) :- digit(@,1), digit(H,0). program

Image adapted from Manhaeve et al., 2019



Deep ProbLog: learning

Learning by gradient descent in ProbLog

@ Gradient computation can be done over arithmetic circuit
used for inference.

@ Need to replace probability semiring used for inference
with gradient semiring (algebraic Problog)

@ Gradient update followed by normalization to get valid
probabilities




Deep ProbLog: probability vs gradient semiring

probability gradient

adb=a+b (aav)®(bby)=(a+b,ay+ by)
a®b=ab (a,av) ® (b,by) = (ab,aby + bay)

e? =0 e® =(0,0v)

e¥ =1 e® =(1,0v)

L(f)=p L(f) = (p,0v) (fixed p)

L(fi) = pi L(f) = (pr, €j) (learnable p;)

L(=f)=1-p L(=f)=(1—-p,—Vp) (with L(f) = (p,VP))



ProbLog: gradient semiring example

0.2::earthquake. } 0.2::earthquake.

0.1::burglary. Mo 0.1::burglary.
0.5::hears_alarm(mary). N grounding for  0.5::hears_alarm(mary) .
0.4::hears_alarm(john). N

alarm :- earthquake. M. calls(mary) alarm :- earthquake.

alarm :- burglary. AN alarm :- burglary.
calls(X):-alarm,hears_alarm(X). AN calls(mary) :-alarm,hears_alarm(mary) .

AN
N

N

N
N
lear nal.: e compilation using
N . )
parameters = gradient semiring
N
N
N
N
\\
A

0.14, [0.45,0.4]

0.04, [-0.05,0.4]

0.1, [0.5,0
0.08, [-0.1,0.8] [ ]

[ —earthquake ][ burglary ][ hears_alarm(mary) ] [ earthquake ]
0.8, [-1,0] 0.1, [0,1] 0.5, [0,0] 0.2, [1,0]




Deep ProbLog: learning

Learning by gradient descent in DeepProbLog

@ Use gradient semiring as for ProbLog (considering outputs
of neural predicates as abstract parameters).

@ Backpropagate gradient from abstract parameters into the

corresponding neural network
m

S _ d£ Z (q) dbi
dok dP/ dbk

@ L is aloss function
@ P(q) is the probability of a traning example g (query)

@ mis the number of outputs of a neural network
(alternatives)

@ p; is the i-th output of the network for example g.
@ 0 is the k-th parameter of a neural network




Deep ProbLog: learning pipeline

digit(a,N1)
digit(b,N2)

Query Ground
addition(a,b,1 DeepProblog Program
. rewrite / p,Vp Loss
L, VL

DeepProbLog Program - £(8.2) :: noisy.
grounding

nn(classifier, [a],0);.. ilati
nn(classifier, [b].0).. | compilation

t(0.2) :: noisy.
nn(classifier, [X],

addition(a,b,1):- .

addition(X,Y,2) - -

T




Deep ProbLog: dimensions

@ Directed model: probabilistic logic program (definite
clauses)

@ Integration approach: probabilistic logic program
enriched with neural predicates

@ Probabilistic semantics: constraints are enforced in
expectation over probabilities of possible worlds




Neural Theorem Proving

@ Theorem proving allows to infer novel facts entailed by a
KB, but fails with noisy or ambiguous knowledge (e.g.
slightly different names for the same relation)

@ Neural models are robust to noise and ambiguity but have
limited reasoning capabilities

@ Neural theorem proving aims at combining the best of both
worlds J




Neural Theorem Proving

@ End-to-end differentiable deductive reasoner
@ Use Prolog backward-chaining algorithm for proving goals

@ Replace symbolic unification between atoms with a
differantiable similarity between their embeddings

@ Collect the highest scoring proof as the goal proof

@ Embeddings are learned by gradient descent over goal
proofs for true (positive) and false (negative) facts.




Neural Theorem Proving: Prolog backward chaining

grandfatherOf (X, Y) :— fatherOf(X, Z2), fatherOf(z, Y).
grandfatherOf (X, Y) :— fatherOf(X, Z), motherOf(zZ, Y).
fatherOf (tom, ann).
motherOf (ann, bart).

OR / AND search

@ OR iterates over all rules and unifies the rule head with the
goal (one rule suffice)

@ AND iterates over all atoms in the body of the rule (all
atoms should be proved)

@ ORis recursively applied to each atom in the body




Prolog backward chaining: example

grandfatherOf(X, Y) :- fatherOf(X, Z), fatherOf(Z, Y).
grandfatherOf(X, Y) :- fatherOf(X, Z), motherOf(Z, Y)

fatherOf(tom, ann)

[grandfatherOf,Q,bart]

motherOf(ann, bart)

grandfatherOf(X, Y) :-
fatherOf(X, Z), fatherOf(Z, Y)

grandfatherOf(X, Y) :-
fatherOf(X, Z), motherOf(Z, Y).

X/Q, Y/bart X/Q, Y/bart

fatherOf(X, 2), fatherOf(Z, Y)

AND fatherOf(X, Z) motherOf(Z, Y)

AND

[fatherOf,Q,Z] [fatherOf,ann,bart]
OR OR

[fatherOf,Q,Z] [motherOf,ann,bart]
OR OR

fatherOf(tom, ann) fatherOf(tom, ann) motherOf(ann, bart)

Q/tom, Z/ann FALSE

Q/tom, Z/ann




Neural Theorem Proving: unification
previous variable

I previous soft
unifications
\

unifications (neural)
\ ’

\
\ .

\ .

\ .

\ K

1

\

e
uni £y ([grandpadt, ABE, BART], [s, Q. i], (5, ) = (5),,5)) =
({Q/ABE}7 min (P7 exP(—||@grandpacs: — Os:1|2), exp(—||Fparr:
\ N

\

—0:[2)))
r 7

-
\
i

Soft unification

@ Variables unify with variables or symbols as in Prolog

@ Constants and predicates unify softly via similarity of their
embeddings




Neural Theorem Proving: OR

grandfatherOf(X, Y) :- fatherOf(X, Z), parentOf(Z, Y).
/’ ‘\

current state o

(possible u\n|f|cat|ons) body matching head unification

X 7

org([s,Q,i),d,8) = [$'|S’ € and§ ([[father0f, X, Z], [parent0f,
13

\
\

L)

z,Y]],d, ({X/Q, Y/i},5,)), - ]
N———

max proof depth

resultof Unify A

\
\

other rules
matching the goal
OR module

@ The goal is (soft) unified with the head of a rule (for all
possible rules that soft unify)

@ The AND module is called for all atoms in the body




Neural Theorem Proving: AND

and§ ([[father0f, X, Z], [parent0f, Z, Y]], d, ({X/Q, Y /i},S,)) =
—_———
result of Unifyin 0T

[S”|S" € andj ([[parent0t,Z, Y]], d, S') for S’ € orp([tather0f, Q,Z],d — 1, ({X/Q, Y/i}, 5,))]

i‘ [} result of substitute [} result of unify inOT
1 ‘\ ‘\
AND called OR called max depth is
on remaining atoms on first atom reduced
AND module

@ The AND module fails if the maximum depth is reached (or
the upstream OR failed)

@ The AND module succeeds if it reaches the end of the list
of atoms

@ Otherwise it recurs over the atoms substituting variables
wherever possible and calling OR




Neural Theorem Proving: Proof

ntpa(G,d) = arg max S,
S € 0r$(G,d,(2,1))
SAFAIL

Proof with maximal score

@ The search is initialized with an empty substitution set and
a score of 1

@ The maximization is over all possible goal proofs

@ The score of a proof is the minimal score of all soft
unifications in the proof




Neural Theorem Proving: proof example

o omall ]
unifyg([father0f, ABE, HOMER], [s,i, j], (&, 1)) unifyg([grandfather0f, X, Y], [s, 4. j], (&, 1))
S1=(2.p1) = ({X/i,Y/j},ps) 'Example Knowledge Base:
fatherOf (ABE, HOMER). |
3 p v arent0f (HOMER, BART). |
andg ([[fatherOf, X, 7], [parent0f, Z, Y]], 2, 53) grandfatl(qerclf A ™ :
Ysubstitute father0f(X, 4
ory([father0f i, 7),1,53) parent01(Z, V). ¢
|3. —
unifyg([father0Of, ABE, HOMER], [fatherOf, i, 7], S3) . unifyg([parentOf, HOMER, BART], [fatherOf, i, 7], S3)
Ss1 = ({X/i,Y/j,Z/HOMER}, p31) Ss3 = FAIL Sy = ({X/i,Y/j, Z/BART}, p3s)
\
andy ([parent0f, 7, Y], 2, S3;) andf ([parent0f, Z, Y], 2, S32)
Ysubstitute Ysubstitute
org( [parentﬂf HOMER, ]] 1,S31) or;;([parenwf BART, J] 1, S32)
Yy ey
‘/
Ssin = ({X/i, Y /34, //HOMI:R} p311) * S35 = FAIL Sso3 = FAIL * 5%2‘7({\/1 Y /j, Z/BART}, p3p1)
Ss12 = ({X/i, Y /j,7Z/HOMER}, p312) Ssg0 = ({X/i, Y /j,Z/BART}, p3os)

Image from Rocktéaschel and Riedel, 2017



Neural Theorem Proving: prediction examples

QUERY: part_of (CONGO.N.03,AFRICA.N.01)

Score  Proofs

0.995 partof(X, Y) :— haspart (Y, X)
has_part (AFRICA.N.01, CONGO.N.03)
0.787 part.of (X, Y) :— instance_hyponym(Y, X)

instance_hyponym (AFRICAN COUNTRY.N.0l1l, CONGO.N.03)
y

QUERY: hyponym (EXTINGUISH.V.04, DECOUPLE.V.03)

Score  Proofs
0.987 hyponym (X, Y) :- hypernym(Y, X)
hypernym (DECOUPLE.V.03, EXTINGUISH.V.04)




Neural Theorem Proving: dimensions

@ Directed model: logic program (definite clauses)

@ Integration approach: logic program enriched with neural
similarity in place of symbolic unification

@ “Fuzzy” semantics: a score is associated to a proof, no
explicit probabilistic interpretation
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Software Libraries
@ Semantic-based regularization (SBR)
[https://sites.google.com/site/
semanticbasedregularization/home/software]
@ Deep ProblLog [https://bitbucket.org/problog/
deepproblog/src/master/]

@ Greedy Neural Theorem Provers (GNTP)
[https://github.com/uclnlp/gntp]
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