
Deep Learning

PROs

• Efficient processing of high-dimensional data

• Robust to noise and ambiguity

• Does not require extensive background knowledge and feature engineering

CONs

• Data hungry (large training sets needed)

• Non-interpretable models and predictions

• Hard to incorporate complex domain knowledge

Symbolic Reasoning

PROs

• Expressive, can formalize complex domain knowledge

• Interpretable, inference can be explained in terms reasoning steps (proofs)

• Can generalize from few examples

CONs

• Inefficient, inference is typically expensive

• No support for noise or ambiguity

• Difficult to deal with high-dimensional data

Neuro-Symbolic Integration (NeSy)

Published as a conference paper at ICLR 2019

Q: What’s the color of the object?

A: Red.

Q: Is there any cube?

A: Yes.

Q: What’s the color of the object?

A: Green.

Q: Is there any cube?

A: Yes.

Q: How many objects are right of the red object?

A: 2.

Q: How many objects have the same material as the cube?

A: 2

Q: How many objects are both right of the green cylinder

and have the same material as the small blue ball?

A: 3

I. Learning basic, object-based concepts. II. Learning relational concepts based on referential expressions.

III. Interpret complex questions from visual cues.

Figure 1: Humans learn visual concepts, words, and semantic parsing jointly and incrementally.
I. Learning visual concepts (red vs. green) starts from looking at simple scenes, reading simple
questions, and reasoning over contrastive examples (Fazly et al., 2010). II. Afterwards, we can
interpret referential expressions based on the learned object-based concepts, and learn relational
concepts (e.g., on the right of, the same material as). III Finally, we can interpret complex questions
from visual cues by exploiting the compositional structure.

NS-CL learns from natural supervision (i.e., images and QA pairs), requiring no annotations on
images or semantic programs for sentences. Instead, analogical to human concept learning, it learns
via curriculum learning. NS-CL starts by learning representations/concepts of individual objects from
short questions (e.g., What’s the color of the cylinder?) on simple scenes (3 objects). By doing
so, it learns object-based concepts such as colors and shapes. NS-CL then learns relational concepts
by leveraging these object-based concepts to interpret object referrals (e.g., Is there a box right of a
cylinder?). The model iteratively adapts to more complex scenes and highly compositional questions.

NS-CL’s modularized design enables interpretable, robust, and accurate visual reasoning: it achieves
state-of-the-art performance on the CLEVR dataset (Johnson et al., 2017a). More importantly, it
naturally learns disentangled visual and language concepts, enabling combinatorial generalization
w.r.t. both visual scenes and semantic programs. In particular, we demonstrate four forms of
generalization. First, NS-CL generalizes to scenes with more objects and longer semantic programs
than those in the training set. Second, it generalizes to new visual attribute compositions, as
demonstrated on the CLEVR-CoGenT (Johnson et al., 2017a) dataset. Third, it enables fast adaptation
to novel visual concepts, such as learning a new color. Finally, the learned visual concepts transfer to
new tasks, such as image-caption retrieval, without any extra fine-tuning.

2 RELATED WORK

Our model is related to research on joint learning of vision and natural language. In particular, there
are many papers that learn visual concepts from descriptive languages, such as image-captioning
or visually-grounded question-answer pairs (Kiros et al., 2014; Shi et al., 2018; Mao et al., 2016;
Vendrov et al., 2016; Ganju et al., 2017), dense language descriptions for scenes (Johnson et al.,
2016), video-captioning (Donahue et al., 2015) and video-text alignment (Zhu et al., 2015).

Visual question answering (VQA) stands out as it requires understanding both visual content and
language. The state-of-the-art approaches usually use neural attentions (Malinowski & Fritz, 2014;
Chen et al., 2015; Yang et al., 2016; Xu & Saenko, 2016). Beyond question answering, Johnson
et al. (2017a) proposed the CLEVR (VQA) dataset to diagnose reasoning models. CLEVR contains
synthetic visual scenes and questions generated from latent programs. Table 1 compares our model
with state-of-the-art visual reasoning models (Andreas et al., 2016; Suarez et al., 2018; Santoro et al.,
2017) along four directions: visual features, semantics, inference, and the requirement of extra labels.

For visual representations, Johnson et al. (2017b) encoded visual scenes into a convolutional feature
map for program operators. Mascharka et al. (2018); Hudson & Manning (2018) used attention as
intermediate representations for transparent program execution. Recently, Yi et al. (2018) explored an
interpretable, object-based visual representation for visual reasoning. It performs well, but requires
fully-annotated scenes during training. Our model also adopts an object-based visual representation,
but the representation is learned only based on natural supervision (questions and answers).

Anderson et al. (2018) also proposed to represent the image as a collection of convolutional object
features and gained substantial improvements on VQA. Their model encodes questions with neural

2

Best of both worlds

• Deep networks for low-level data processing and “atomic” predictions

• Symbolic approaches for reasoning on top of atomic predictions

• Probabilities (or scores) for dealing with uncertainty

Image from Mao et al. 2019

1

Dimensions: directed vs undirected models

Directed models

• Generalize Bayesian Networks to deal with (first-order) logic

• Generalize Logic Programs to deal with probabilities

• Incorporare Neural “primitives” (e.g., predicates)

Undirected models

• Generalize Markov Networks to deal with (first-order) logic

• Enforce logical constraints over neural predictions

• Relax logical constraints to deal with uncertainty

Dimensions: integration vs regularization

Integration

• Neural primitives inside reasoning framework (typically logic program)

• Differentiability via probability of worlds or proof score.

Regularization

• Logical Constraints are used as regularizers for neural network training

• Differentiability by relaxed constraints or consistency in expectation

Dimensions: semantics

Probabilistic semantics

• Extends Boolean logic with probabilities

• Defines a probability distribution over possible worlds

• Allows to perform inference under uncertainty (expensive)

Fuzzy semantics

• Relax Boolean variables in [0,1] interval

• Relies on t-norms for relaxing Boolean connectives

• Efficient inference, Boolean semantics not preserved

2

Semantic-based Regularization

Setting

• Model problems with multiple related predictions

• Incorporate knowledge as constraints over related predictions

Solution

• Model each prediction task with a statistical learner (kernel machine, neural network)

• Represent constraints over predictions in fuzzy logic

• Combine regularization with loss on fuzzy constraint satisfaction (including label supervision)

Semantic-based Regularization: Fuzzy logic
Boolean Gödel Product Łukasiewicz
X ∧ Y min (X,Y) X Y max (0, X + Y − 1)
X ∨ Y max (X,Y) 1− (1−X) (1− Y) min (1, X + Y)
¬X 1−X 1−X 1−X

Fuzzy logic

• Boolean variables relaxed into real variables in [0, 1].

• Conjunction relaxed using t-norm

• Disjunction relaxed using t-conorm

• Existential quantifier relaxed as maximum (over dataset)

• Universal quantifier relaxed as minimum (over dataset, usually replaced by average)

Semantic-based Regularization: formulation

L(f ,Φ) =
|f |∑

k=1

||fk||2 +
|Φ|∑

h=1

λh(1− Φ̂h(f))

Objective function

• f is a vector of parameterized predictors (one per task)

• Φ is a set of logic formulas (the constraints)

• ||fk|| is the norm of fk (e.g. norm of the weights for kernel machines)

• λh is a weight associated to constraint h

• Φ̂h is the fuzzy version of formula Φh

3

Semantic-based Regularization: example
152 M. Diligenti et al. / Artificial Intelligence 244 (2017) 143–165

Fig. 2. Multi-layer network that is encoded by SBR for the KB = {F , F R } where F R implements manifold regularization and F supervised learning for the
positive supervisions. The KB has been grounded with the constants (patterns) C = {d1, d2 }.

where the first contribution comes from the 3 groundings for which the R predicate is false and the rule trivially verified.
This contribution does not affect the training process and can be dropped. This constraint can be plugged into Equation (4)
to get the cost function to optimize. Fig. 2 shows the encoded network after FROG-preprocessing for this learning task with
also added one positive supervision expressed by a formula indicated as F . This rule is in the form that can also account
for any unsupervised data as previously described. FROG-preprocessing keeps in the network only the groundings for which
either P A or R are true, as the rules F and F R are always verified based on the evidence predicates otherwise. Similar rules
could be added to express manifold regularization for the other classes B, C, D .

5.3. Case 3: hierarchical classification

Complex classification tasks often involve a large number of classes organized into a hierarchy. Typically, a hierarchy can
be represented as a Directed Ordered Acyclic Graph (DOAG), where each node corresponds to a class. A single root node is
provided as starting point of the classification process, from where all other nodes can be reached. The classification process
explores a set of paths on the graph, where each path ends with a leaf node. A two level-hierarchical classification with n
classes at the first level can be expressed by the rules:

∀x p1(x) ∨ . . . ∨ pn(x)

∀x pi(x) ⇒ pc
i1(x) ∨ . . . ∨ pc

ini
(x) i = 1, . . . ,n

where pi, i = 1, . . . , n are the father classes at the first level of the hierarchy, ni is the number of child classes of class pi
and pc

i j, j = 1, . . . , ni are the child classes of pi . Class priors for each category can also be expressed via the rules:

∃mi x pi(x) i = 1, . . . ,n

∃mij x pc
i j(x) i = 1, . . . ,n j = 1, . . . ,ni

where mi and mij can estimated from the supervised data. This schema can be recursively generalized to taxonomies of
arbitrary depth.

Example 5.3. For the text categorization example, we assume that C is the only child class of A in the taxonomy. Therefore,
the formula F T := ∀d A(d) ⇒ C(d) expresses the taxonomical information that any document belonging to class A belongs
also to class C . The resulting constraint obtained from the fuzzy FOL generalization !F T of the formula over the set D of
available documents is:

manifold regularisationpositive supervision

Image adapted from Diligenti et al., 2017

Semantic-based Regularization: learning

∂L(f ,Φ)
∂wk,j

=
∂||fk||2
∂wk,j

+

|Φ|∑

h=1

λh
∂(1− Φ̂h)

∂Φ̂h

·


∑

tΦh

∂tΦh

∂fk
· ∂fk
∂wk,j




Gradient-based learning

• wk,j is a parameter of a predictor fk

• tΦh
is a grounding of formula Φh

Note
Learning problem is convex if:

• fk are kernel machines (or similar)

• A convex fragment of the Łukasiewicz logic is used

4

Semantic-based Regularization: MAP inference

L(f̄(X),f(X)) =
1

2
||f̄(X)− f(X)||2 +

∑

h

λh

(
1− Φ̂h(f̄(X))

)

Gradient-based MAP inference

• X set of (related) test examples

• f(X) set of independent predictions over test examples

• f̄(X) set of collective predictions over test examples (accounting for constraints)

• Inference of f̄(X) is performed by gradient descent:

L(f̄(X),f(X))

∂f̄k(Xi)
= f̄k(Xi)− fk(Xi) +

∑

h

λh

(
∂1− Φ̂h(f̄(X))

∂f̄k(Xi)

)

Semantic-based Regularization: dimensions
dimensions

• Undirected model: constraints as set of FOL formulas (probabilistc variant as deep Markov Logic Network
exists)

• Regularization approach: soft consistency is a regularization term in training loss

• Fuzzy semantics: fuzzy logic is employed as relaxation

Knowledge distillation

extra features from domain knowledge (Collobert et al., 2011), while producing improved
results, does not go beyond the data-label paradigm. Kulkarni et al. (2015) uses a specialized
training procedure with careful ordering of training instances to obtain an interpretable
neural layer of an image network. Karaletsos et al. (2016) develops a generative model jointly
over data-labels and similarity knowledge expressed in triplet format to learn improved
disentangled representations.

Though there do exist general frameworks that allow encoding various structured constraints
on latent variable models (Ganchev et al., 2010; Zhu et al., 2014; Liang et al., 2009), they
either are not directly applicable to the NN case, or could yield inferior performance as in
our empirical study. Liang et al. (2008) transfers predictive power of pre-trained structured
models to unstructured ones in a pipelined fashion.

Our proposed approach is distinct in that we use an iterative rule distillation process to
e↵ectively transfer rich structured knowledge, expressed in the declarative first-order logic
language, into parameters of general neural networks. We show that the proposed approach
strongly outperforms an extensive array of other either ad-hoc or general integration meth-
ods.

3 Method

In this section we present our framework which encapsulates the logical structured knowl-
edge into a neural network. This is achieved by forcing the network to emulate the predic-
tions of a rule-regularized teacher, and evolving both models iteratively throughout training
(section 3.2). The process is agnostic to the network architecture, and thus applicable to gen-
eral types of neural models including CNNs and RNNs. We construct the teacher network
in each iteration by adapting the posterior regularization principle in our logical constraint
setting (section 3.3), where our formulation provides a closed-form solution. Figure 1 shows
an overview of the proposed framework.

loss

labeled data

logic rules

𝑞(𝑦|𝑥)
𝑝𝜃 (𝑦|𝑥)

projection

unlabeled data

teacher network construction rule knowledge distillation

back
propagationteacher

𝑞(𝑦|𝑥)
student
𝑝𝜃 (𝑦|𝑥)

Figure 1: Framework Overview. At each iteration, the teacher network is obtained by
projecting the student network to a rule-regularized subspace (red dashed arrow); and
the student network is updated to balance between emulating the teacher’s output and
predicting the true labels (black/blue solid arrows).

3

Teacher-student distillation

• Student learns to fit data and satisfy rules

• Teacher “shows” student how to change predictions to satisfy rules (projection in feasible space)

• Student should learn to implicitly satisfy rules (no rule enforcement at prediction time)

Image from Hu at al., 2016

5

Knowledge distillation: learning

L(D; Φ) =
∑

(xn,yn)∈D
(1− π)ℓ(yn, fp(xn)) + πℓ(fq(xn), fp(xn))

Iterative procedure

• fp(xn) are the student predictions for xn (i.e., according to pθ(y|xn))

• fq(xn) is the teacher projection of those predictions in the feasible space Φ (i.e., according to q(y|xn))

• π is a parameter trading-off data fitting and constraint satisfaction (possibly on unlabelled data too)

• At each iteration θ is updated minimizing the loss

Knowledge distillation: teacher projection

min
q,ξ

KL(q(Y |X)||pθ(Y |X)) + C
∑

h

∑
g ξh,g

s.t. λh(1− Eq[Φ̂h,g(X,Y)]) ≤ ξh,g

Projection as constrained optimization

• KL divergence between student and teacher predictions

• Φ̂h,g(X,Y) is the g-th grounding of a fuzzy version of formula Φh on (X,Y).

• Eq[Φ̂h,g(X,Y)] is satisfaction of Φ̂h,g(X,Y) in expectation over q(Y |X).

• λh is the weight of formula Φh

• ξh,g is a slack variable to penalize unsatisfied constraints

• C is a parameter trading-off divergence with student prediction and satisfaction of formulas

Knowledge distillation: teacher projection

q∗(Y |X) ∝ pθ(Y |X) · exp
(
−
∑

h

∑

g

Cλh(1− Φ̂h,g(X,Y))

)

Closed form solution

• The constrained otimization problem has a closed form solution.

• The normalization term is computed by dynamic programming if relationship between constraints allows for it,
or approximated with sampling approaches otherwise.

6

Knowledge distillation: dimensions

dimensions

• Undirected model: constraints as set of FOL formulas

• Regularization approach: projection on consistent predictions is a regularization term in training loss

• Fuzzy semantics: fuzzy logic is employed as relaxation

Semantic Loss Regularization

Semantic Loss

Ls(ϕ,p) ∝ − log
∑

y|=ϕ

∏

y|=Yi

pi
∏

y|=¬Yi

(1− pi)

• ϕ is a propositional formula (a constraint that should hold)

• p is a vector of probabilities associated to Y variables (e.g. outputs of a neural network)

• The semantic loss is proportional to the negative logarithm of the probability that sampling Y according to p
produces a value y satisfying the constraint ϕ.

Semantic Loss Regularization A Semantic Loss Function for Deep Learning with Symbolic Knowledge

(a) Trained w/o semantic loss (b) Trained with semantic loss

Figure 2: Binary classification toy example: a linear clas-
sifier without and with semantic loss.

alleviate the need for more labeled data, there is a growing
interest into utilizing unlabeled data to augment the predic-
tive power of classifiers (Stewart & Ermon, 2017; Bilenko
et al., 2004). This section shows why semantic loss natu-
rally qualifies for this task.

Illustrative Example To illustrate the benefit of semantic
loss in the semi-supervised setting, we begin our discussion
with a small toy example. Consider a binary classification
task; see Figure 2. Ignoring the unlabeled examples, a sim-
ple linear classifier learns to distinguish the two classes by
separating the labeled examples (Figure 2a). However, the
unlabeled examples are also informative, as they must carry
some properties that give them a particular label. This is
the crux of semantic loss for semi-supervised learning: a
model must confidently assign a consistent class even to
unlabeled data. Encouraging the model to do so results in
a more accurate decision boundary (Figure 2b).

4.1. Method

Our proposed method intends to be generally applicable
and compatible with any feedforward neural net. Semantic
loss is simply another regularization term that can directly
be plugged into an existing loss function. More specifically,
with some weight w, the new overall loss becomes

existing loss + w · semantic loss.

When the constraint over the output space is simple (for
example, there is a small number of solutions x |= ↵), se-
mantic loss can be directly computed using Definition 1.
Concretely, for the exactly-one constraint used in n-class
classification, semantic loss reduces to

Ls(exactly-one, p) / � log
nX

i=1

pi

nY

j=1,j 6=i

(1 � pj),

where values pi denote the probability of class i as pre-
dicted by the neural net. Semantic loss for the exactly-one
constraint is efficient and causes no noticeable computa-
tional overhead in our experiments.

In general, for arbitrary constraints ↵, semantic loss is not
efficient to compute using Definition 1, and more advanced
automated reasoning is required. Section 5 discusses this
issue in more detail. For example, using automated reason-
ing can reduce the time complexity to compute semantic
loss for the exactly-one constraint from O(n2) (as shown
above), to O(n).

4.2. Experimental Evaluation

In this section, we evaluate semantic loss in the semi-
supervised setting by comparing it with several compet-
itive models.2 As most semi-supervised learners build
on a supervised learner, changing the underlying model
significantly affects the semi-supervised learner’s perfor-
mance. For comparison, we add semantic loss to the same
base models used in ladder nets (Rasmus et al., 2015),
which currently achieves state-of-the-art results on semi-
supervised MNIST and CIFAR-10 (Krizhevsky, 2009).
Specifically, the MNIST base model is a fully-connected
multilayer perceptron (MLP), with layers of size 784-1000-
500-250-250-250-10. On CIFAR-10, it is a 10-layer con-
volutional neural network (CNN) with 3-by-3 padded fil-
ters. After every 3 layers, features are subject to a 2-by-
2 max-pool layer with strides of 2. Furthermore, we use
ReLu (Nair & Hinton, 2010), batch normalization (Ioffe
& Szegedy, 2015), and Adam optimization (Kingma & Ba,
2015) with a learning rate of 0.002. We refer to Appendix B
and C for a specification of the CNN model and additional
details about hyper-parameter tuning.

For all semi-supervised experiments, we use the stan-
dard 10,000 held-out test examples provided in the orig-
inal datasets and randomly pick 10,000 from the standard
60,000 training examples (50,000 for CIFAR-10) as valida-
tion set. For values of N that depend on the experiment, we
retain N randomly chosen labeled examples from the train-
ing set, and remove labels from the rest. We balance classes
in the labeled samples to ensure no particular class is over-
represented. Images are preprocessed for standardization
and Gaussian noise is added to every pixel (� = 0.3).

MNIST The permutation invariant MNIST classification
task is commonly used as a test-bed for general semi-
supervised learning algorithms. This setting does not use
any prior information about the spatial arrangement of the
input pixels. Therefore, it excludes many data augmenta-
tion techniques that involve geometric distortion of images,
as well as convolutional neural networks.

When evaluating on MNIST, we run experiments for 20
epochs, with a batch size of 10. Experiments are repeated

2The code to reproduce all the experiments in this paper
can be found at https://github.com/UCLA-StarAI/
Semantic-Loss/.

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw, �(x)i

x⇤ = argmax
x2Xfeasible

hw, �(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

wi ⇠ N (25, 25/3) 8i

max
x2Xfeasible

(u(x)� u(x⇤))

1

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

hw, x̄h
+ � x̄h

�i = 0

hw, x1 � x2i = 0

U(x) = hw, �(x)i

x⇤ = argmax
x2Xfeasible

hw, �(x)i

U(x, y) = hw,'(x, y)i

y⇤ = argmax
y2Yfeasible

hw,'(x, y)i

wi ⇠ N (25, 25/3) 8i

max
x2Xfeasible

(u(x)� u(x⇤))

1

Regularizing with semantic Loss

Lreg = traning loss+ λ semantic loss

• Semantic loss as regularizer of training loss (encourages predictions satisfying constraints)

7

Semantic Loss Regularization
A Semantic Loss Function for Deep Learning with Symbolic Knowledge

p0

p1

p2

p3

One-Hot
Encoding

Preference
Ranking

Path in
Graph

1. Sake
2. Unagi
3. Ika

Figure 1: Outputs of a neural network feed into semantic loss functions for constraints representing a one-hot encoding, a
total ranking of preferences, and paths in a grid graph.

the actual classification function within that space. By cap-
turing the structure of the output space with logical con-
straints, and minimizing semantic loss for this constraint
during learning, we are able to learn networks that are much
more likely to correctly predict structured objects.

2. Background and Notation
To formally define semantic loss, we make use of concepts
in propositional logic. We write uppercase letters (X ,Y)
for Boolean variables and lowercase letters (x,y) for their
instantiation (X = 0 or X = 1). Sets of variables are writ-
ten in bold uppercase (X,Y), and their joint instantiation
in bold lowercase (x,y). A literal is a variable (X) or its
negation (¬X). A logical sentence (↵ or �) is constructed
in the usual way, from variables and logical connectives (^,
_, etc.), and is also called a formula or constraint. A state
or world x is an instantiation to all variables X. A state x
satisfies a sentence ↵, denoted x |= ↵, if the sentence eval-
uates to be true in that world, as defined in the usual way.
A sentence ↵ entails another sentence �, denoted ↵ |= �
if all worlds that satisfy ↵ also satisfy �. A sentence ↵ is
logically equivalent to sentence �, denoted ↵ ⌘ �, if both
↵ |= � and � |= ↵.

The output row vector of a neural net is denoted p. Each
value in p represents the probability of an output and falls in
[0, 1]. We use both softmax and sigmoid units for our out-
put activation functions. The notation for states x is used
to refer the an assignment, the logical sentence enforcing
that assignment, or the binary output vector capturing that
same assignment, as these are all equivalent notions.

Figure 1 illustrates the three different concrete output con-
straints of varying difficulty that are studied in our ex-
periments. First, we examine the exactly-one or one-
hot constraint capturing the encoding used in multi-class
classification. It states that for a set of indicators X =
{X1, . . . , Xn}, one and exactly one of those indicators
must be true, with the rest being false. This is enforced
through a logical constraint ↵ by conjoining sentences of
the form ¬X1 _¬X2 for all pairs of variables (at most one
variable is true), and a single sentence X1 _ · · · _ Xn (at

least one variable is true). Our experiments further exam-
ine the valid simple path constraint. It states for a given
source-destination pair and edge indicators that the edge
indicators set to true must form a valid simple path from
source to destination. Finally, we explore the ordering con-
straint, which requires that a set of n2 indicator variables
represent a total ordering over n variables, effectively en-
coding a permutation matrix. For a full description of the
path and ordering constraints, we refer to Section 5.

3. Semantic Loss
In this section, we formally introduce semantic loss. We
begin by giving the definition and our intuition behind it.
This definition itself provides all of the necessary mechan-
ics for enforcing constraints, and is sufficient for the under-
standing of our experiments in Sections 4 and 5. We also
show that semantic loss is not just an arbitrary definition,
but rather is defined uniquely by a set of intuitive assump-
tions. After stating the assumptions formally, we then pro-
vide an axiomatic proof of the uniqueness of semantic loss
in satisfying these assumptions.

3.1. Definition

The semantic loss Ls(↵, p) is a function of a sentence
↵ in propositional logic, defined over variables X =
{X1, . . . , Xn}, and a vector of probabilities p for the same
variables X. Element pi denotes the predicted probabil-
ity of variable Xi, and corresponds to a single output of
the neural net. For example, the semantic loss between the
one-hot constraint from the previous section, and a neural
net output vector p, is intended to capture how close the
prediction p is to having exactly one output set to true (i.e.
1), and all others set to false (i.e. 0), regardless of which
output is correct. The formal definition of this is as follows:

Definition 1 (Semantic Loss). Let p be a vector of proba-
bilities, one for each variable in X, and let ↵ be a sentence
over X. The semantic loss between ↵ and p is

Ls(↵, p) / � log
X

x|=↵

Y

i:x|=Xi

pi

Y

i:x|=¬Xi

(1 � pi).

End-to-end training with semantic Loss

• Semantic loss can be compiled into an arithmetic circuit

• Partial derivatives can be computed on the circuit (see e.g. Deep ProbLog)

Semantic Loss Regularization: dimensions

dimensions

• Undirected model: constraints as set of propositional formulas

• Regularization approach: semantic loss is additional term to training loss

• Probabilistic semantics: constraints are enforced in expectation over probabilities of possible worlds

Deep ProbLog

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

From ProbLog to Deep ProbLog

• Introduce neural networks to process low-level data (softmax output layer)

• neural annotated disjunction (nAD) maps inputs to distributions over candidate outputs

• nn is a reserved word (stands for neural network)

• m digit is the identifier of a neural network (CNN classifying digit images)

• digit is a neural predicate evaluated via m digit.

8

Deep ProbLog: nAD example

The nn(mr,~i, dj) term in the definition can be considered a function that
returns the probability of class dj when evaluating the network mr on input ~i.
As such, a ground nAD can be instantiated into a normal AD by evaluating the
neural network and replacing the functor with the calculated probability. For
instance, in the MNIST addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. Grounding this on an
input image would result in a ground nAD:

nn(m_digit, [], 0) :: digit(, 0) ; . . . ; nn(m_digit, [], 9) :: digit(, 9).

Evaluating this would result in a ground AD:

p0 :: digit(, 0) ; . . . ; p9 :: digit(, 9).

Where [p0, . . . , p9] is the output vector of the m_digit network when evaluated
on .
The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output
layer, which feeds the corresponding neural predicate, needs to be normalized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, ~I) :: r(~I).

where nn is a reserved functor, mr uniquely identifies a neural network model
defining a probability distribution over n classes, ~I = I1, ..., Ik is a sequence of
input variables and r is a predicate.

A ground neural fact is an expression of the form

nn(mr,~i) :: r(~i).

where ~i = i1, ..., ik is a sequence of ground terms (the input to the neural
network). /

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X, Y]) :: similar(X, Y).

10

The nn(mr,~i, dj) term in the definition can be considered a function that
returns the probability of class dj when evaluating the network mr on input ~i.
As such, a ground nAD can be instantiated into a normal AD by evaluating the
neural network and replacing the functor with the calculated probability. For
instance, in the MNIST addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. Grounding this on an
input image would result in a ground nAD:

nn(m_digit, [], 0) :: digit(, 0) ; . . . ; nn(m_digit, [], 9) :: digit(, 9).

Evaluating this would result in a ground AD:

p0 :: digit(, 0) ; . . . ; p9 :: digit(, 9).

Where [p0, . . . , p9] is the output vector of the m_digit network when evaluated
on .
The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output
layer, which feeds the corresponding neural predicate, needs to be normalized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, ~I) :: r(~I).

where nn is a reserved functor, mr uniquely identifies a neural network model
defining a probability distribution over n classes, ~I = I1, ..., Ik is a sequence of
input variables and r is a predicate.

A ground neural fact is an expression of the form

nn(mr,~i) :: r(~i).

where ~i = i1, ..., ik is a sequence of ground terms (the input to the neural
network). /

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X, Y]) :: similar(X, Y).

10

evaluate m_digit on

The nn(mr,~i, dj) term in the definition can be considered a function that
returns the probability of class dj when evaluating the network mr on input ~i.
As such, a ground nAD can be instantiated into a normal AD by evaluating the
neural network and replacing the functor with the calculated probability. For
instance, in the MNIST addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. Grounding this on an
input image would result in a ground nAD:

nn(m_digit, [], 0) :: digit(, 0) ; . . . ; nn(m_digit, [], 9) :: digit(, 9).

Evaluating this would result in a ground AD:

p0 :: digit(, 0) ; . . . ; p9 :: digit(, 9).

Where [p0, . . . , p9] is the output vector of the m_digit network when evaluated
on .
The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output
layer, which feeds the corresponding neural predicate, needs to be normalized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, ~I) :: r(~I).

where nn is a reserved functor, mr uniquely identifies a neural network model
defining a probability distribution over n classes, ~I = I1, ..., Ik is a sequence of
input variables and r is a predicate.

A ground neural fact is an expression of the form

nn(mr,~i) :: r(~i).

where ~i = i1, ..., ik is a sequence of ground terms (the input to the neural
network). /

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X, Y]) :: similar(X, Y).

10

The nn(mr,~i, dj) term in the definition can be considered a function that
returns the probability of class dj when evaluating the network mr on input ~i.
As such, a ground nAD can be instantiated into a normal AD by evaluating the
neural network and replacing the functor with the calculated probability. For
instance, in the MNIST addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. Grounding this on an
input image would result in a ground nAD:

nn(m_digit, [], 0) :: digit(, 0) ; . . . ; nn(m_digit, [], 9) :: digit(, 9).

Evaluating this would result in a ground AD:

p0 :: digit(, 0) ; . . . ; p9 :: digit(, 9).

Where [p0, . . . , p9] is the output vector of the m_digit network when evaluated
on .
The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output
layer, which feeds the corresponding neural predicate, needs to be normalized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, ~I) :: r(~I).

where nn is a reserved functor, mr uniquely identifies a neural network model
defining a probability distribution over n classes, ~I = I1, ..., Ik is a sequence of
input variables and r is a predicate.

A ground neural fact is an expression of the form

nn(mr,~i) :: r(~i).

where ~i = i1, ..., ik is a sequence of ground terms (the input to the neural
network). /

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X, Y]) :: similar(X, Y).

10

ground on

The nn(mr,~i, dj) term in the definition can be considered a function that
returns the probability of class dj when evaluating the network mr on input ~i.
As such, a ground nAD can be instantiated into a normal AD by evaluating the
neural network and replacing the functor with the calculated probability. For
instance, in the MNIST addition example, we would specify the nAD

nn(m_digit, [X], Y, [0, . . . , 9]) :: digit(X, Y).

where m_digit is a network that classifies MNIST digits. Grounding this on an
input image would result in a ground nAD:

nn(m_digit, [], 0) :: digit(, 0) ; . . . ; nn(m_digit, [], 9) :: digit(, 9).

Evaluating this would result in a ground AD:

p0 :: digit(, 0) ; . . . ; p9 :: digit(, 9).

Where [p0, . . . , p9] is the output vector of the m_digit network when evaluated
on .
The neural network could take any shape, e.g., a convolutional network for image
encoding, a recurrent network for sequence encoding, etc. However, its output
layer, which feeds the corresponding neural predicate, needs to be normalized.

We consider an output domain size of two as a special case. Instead of the
neural network having two probabilities at the output that sum to one, we can
simplify this to a single probability, with the second one the complement of that
probability. This difference coincides with the difference between a softmax and
single-neuron sigmoid layer in a neural network. We call such an expression a
neural fact.
Definition 3 (Neural fact)
A neural fact is an expression of the form

nn(mr, ~I) :: r(~I).

where nn is a reserved functor, mr uniquely identifies a neural network model
defining a probability distribution over n classes, ~I = I1, ..., Ik is a sequence of
input variables and r is a predicate.

A ground neural fact is an expression of the form

nn(mr,~i) :: r(~i).

where ~i = i1, ..., ik is a sequence of ground terms (the input to the neural
network). /

To exemplify, we use a neural network that gives a measure of the similarity
between two input images. We can encode this with the following neural fact:

nn(m, [X, Y]) :: similar(X, Y).

10

Deep ProbLog: inference

Inference by knowledge compilation

1. Ground relevant part of the program to answer query (including nADs).

2. Run forward step in neural nets to turn ground nAD into ground AD.

3. Compile resulting formula (same as ProbLog)

4. convert into AC (same as ProbLog)

5. evaluate AC (same as ProbLog)

Deep ProbLog: grounding example

9

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(b) The ground DeepProbLog program.

0.8 :: digit(,0); 0.1 :: digit(,1).
0.2 :: digit(,0); 0.6 :: digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(c) The ground ProbLog program.

Figure 2: Inference in DeepProbLog (Example 3)

instantiated ADs do not sum to one, as the irrelevant terms (digit(, 2),
...,digit(, 9) and digit(, 2), ..., digit(, 9)) have been dropped in
the grounding process, although the neural network still assigns probabil-
ity mass to them. Inference then proceeds identically to that of ProbLog:
the ground program is rewritten into a logical formula, this formula is com-
piled and transformed into an AC. Finally, this AC is evaluated to calculate
the query probability.

5. Learning in DeepProbLog

We now introduce our approach to learn the parameters in DeepProbLog
programs. The parameters include the learnable parameters of the neural net-
work (which we will call neural parameters from now on) and the learnable
parameters in the logic program (which we will refer to as probabilistic param-
eters). We use the learning from entailment setting [20]

Definition 5
Learning from entailment Given a DeepProbLog program with parameters ⇥,
a set Q of pairs (q, p) with q a query and p its desired success probability, and
a loss function L, compute:

arg min
⇥

1

|Q|
X

(q,p)2Q
L(P (q|⇥), p)

14

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(b) The ground DeepProbLog program.

0.8 :: digit(,0); 0.1 :: digit(,1).
0.2 :: digit(,0); 0.6 :: digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(c) The ground ProbLog program.

Figure 2: Inference in DeepProbLog (Example 3)

instantiated ADs do not sum to one, as the irrelevant terms (digit(, 2),
...,digit(, 9) and digit(, 2), ..., digit(, 9)) have been dropped in
the grounding process, although the neural network still assigns probabil-
ity mass to them. Inference then proceeds identically to that of ProbLog:
the ground program is rewritten into a logical formula, this formula is com-
piled and transformed into an AC. Finally, this AC is evaluated to calculate
the query probability.

5. Learning in DeepProbLog

We now introduce our approach to learn the parameters in DeepProbLog
programs. The parameters include the learnable parameters of the neural net-
work (which we will call neural parameters from now on) and the learnable
parameters in the logic program (which we will refer to as probabilistic param-
eters). We use the learning from entailment setting [20]

Definition 5
Learning from entailment Given a DeepProbLog program with parameters ⇥,
a set Q of pairs (q, p) with q a query and p its desired success probability, and
a loss function L, compute:

arg min
⇥

1

|Q|
X

(q,p)2Q
L(P (q|⇥), p)

14

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
nn(m_digit,[],0)::digit(,0);nn(m_digit,[], 1)::digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(b) The ground DeepProbLog program.

0.8 :: digit(,0); 0.1 :: digit(,1).
0.2 :: digit(,0); 0.6 :: digit(,1).
addition(, ,1) :- digit(,0), digit(,1).
addition(, ,1) :- digit(,1), digit(,0).

(c) The ground ProbLog program.

Figure 2: Inference in DeepProbLog (Example 3)

instantiated ADs do not sum to one, as the irrelevant terms (digit(, 2),
...,digit(, 9) and digit(, 2), ..., digit(, 9)) have been dropped in
the grounding process, although the neural network still assigns probabil-
ity mass to them. Inference then proceeds identically to that of ProbLog:
the ground program is rewritten into a logical formula, this formula is com-
piled and transformed into an AC. Finally, this AC is evaluated to calculate
the query probability.

5. Learning in DeepProbLog

We now introduce our approach to learn the parameters in DeepProbLog
programs. The parameters include the learnable parameters of the neural net-
work (which we will call neural parameters from now on) and the learnable
parameters in the logic program (which we will refer to as probabilistic param-
eters). We use the learning from entailment setting [20]

Definition 5
Learning from entailment Given a DeepProbLog program with parameters ⇥,
a set Q of pairs (q, p) with q a query and p its desired success probability, and
a loss function L, compute:

arg min
⇥

1

|Q|
X

(q,p)2Q
L(P (q|⇥), p)

14

DeepProbLog
program

ground
DeepProbLog

program

ground
ProbLog
program

more succinct than OBDDs (Darwiche [19]).

The fourth and final step transforms the SDD into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their
negations on the leaves, replacing the OR nodes with addition and the AND
nodes by multiplication. The WMC is then calculated with an evaluation of the
AC.

Example 2
In Figure 1, we apply the four steps of ProbLog inference on the earthquake
example with query calls(mary).
In the first step, the non-ground program (Figure 1a) is grounded with
respect to the query calls(mary). The result is shown in Figure 1b: the
irrelevant fact hears_alarm(john) is omitted and the variable X in the
calls rule is substituted with the constant mary. The resulting formula in
the second step is

calls(mary)$ hears_alarm(mary) ^ (burglary _ earthquake)

The WMC of this formula is shown in Figure 1c. However, it is not cal-
culated by enumeration as shown here, but an AC is used instead. The
AC derived in step four is shown in Figure 1d, where rounded grey rectan-
gles depict variables corresponding to probabilistic facts, and the rounded
red rectangle denotes the query atom defined by the formula. The white
rectangles correspond to logical operators applied to their children. The
intermediate results are shown in black next to the nodes in Figure 1d.

4.2. DeepProbLog Inference
The only change required for DeepProbLog inference is that we need to

instantiate the ground nADs and neural facts into the corresponding ground
ADs and ground facts. This is done in a separate step after grounding, where
the parameters for the regular AD are determined by making a forward pass on
the relevant neural network with the ground input.

Example 3
We illustrate this by evaluating the MNIST addition example (Figure 2a).
The DeepProbLog program requires two lines: the first line defining the
neural predicate, and the second line defining the addition. We evaluate it
on the query addition(, , 1). In the first step, the DeepProbLog pro-
gram is grounded into a ground DeepProbLog Program (Figure 2b). Note
that the nADs are now all ground. As ProbLog only grounds the relevant
part of the program, i.e. the part that can be used to prove the query, only
the digits 0 and 1 are retained as the larger digits cannot sum to 1. The
next step is the only difference between ProbLog and DeepProbLog infer-
ence: instantiating the ground nADs into regular ground ADs, which could,
for instance, produce an AD as shown in Figure 2c. The probabilities in the

12

ground on

more succinct than OBDDs (Darwiche [19]).

The fourth and final step transforms the SDD into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their
negations on the leaves, replacing the OR nodes with addition and the AND
nodes by multiplication. The WMC is then calculated with an evaluation of the
AC.

Example 2
In Figure 1, we apply the four steps of ProbLog inference on the earthquake
example with query calls(mary).
In the first step, the non-ground program (Figure 1a) is grounded with
respect to the query calls(mary). The result is shown in Figure 1b: the
irrelevant fact hears_alarm(john) is omitted and the variable X in the
calls rule is substituted with the constant mary. The resulting formula in
the second step is

calls(mary)$ hears_alarm(mary) ^ (burglary _ earthquake)

The WMC of this formula is shown in Figure 1c. However, it is not cal-
culated by enumeration as shown here, but an AC is used instead. The
AC derived in step four is shown in Figure 1d, where rounded grey rectan-
gles depict variables corresponding to probabilistic facts, and the rounded
red rectangle denotes the query atom defined by the formula. The white
rectangles correspond to logical operators applied to their children. The
intermediate results are shown in black next to the nodes in Figure 1d.

4.2. DeepProbLog Inference
The only change required for DeepProbLog inference is that we need to

instantiate the ground nADs and neural facts into the corresponding ground
ADs and ground facts. This is done in a separate step after grounding, where
the parameters for the regular AD are determined by making a forward pass on
the relevant neural network with the ground input.

Example 3
We illustrate this by evaluating the MNIST addition example (Figure 2a).
The DeepProbLog program requires two lines: the first line defining the
neural predicate, and the second line defining the addition. We evaluate it
on the query addition(, , 1). In the first step, the DeepProbLog pro-
gram is grounded into a ground DeepProbLog Program (Figure 2b). Note
that the nADs are now all ground. As ProbLog only grounds the relevant
part of the program, i.e. the part that can be used to prove the query, only
the digits 0 and 1 are retained as the larger digits cannot sum to 1. The
next step is the only difference between ProbLog and DeepProbLog infer-
ence: instantiating the ground nADs into regular ground ADs, which could,
for instance, produce an AD as shown in Figure 2c. The probabilities in the

12

more succinct than OBDDs (Darwiche [19]).

The fourth and final step transforms the SDD into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their
negations on the leaves, replacing the OR nodes with addition and the AND
nodes by multiplication. The WMC is then calculated with an evaluation of the
AC.

Example 2
In Figure 1, we apply the four steps of ProbLog inference on the earthquake
example with query calls(mary).
In the first step, the non-ground program (Figure 1a) is grounded with
respect to the query calls(mary). The result is shown in Figure 1b: the
irrelevant fact hears_alarm(john) is omitted and the variable X in the
calls rule is substituted with the constant mary. The resulting formula in
the second step is

calls(mary)$ hears_alarm(mary) ^ (burglary _ earthquake)

The WMC of this formula is shown in Figure 1c. However, it is not cal-
culated by enumeration as shown here, but an AC is used instead. The
AC derived in step four is shown in Figure 1d, where rounded grey rectan-
gles depict variables corresponding to probabilistic facts, and the rounded
red rectangle denotes the query atom defined by the formula. The white
rectangles correspond to logical operators applied to their children. The
intermediate results are shown in black next to the nodes in Figure 1d.

4.2. DeepProbLog Inference
The only change required for DeepProbLog inference is that we need to

instantiate the ground nADs and neural facts into the corresponding ground
ADs and ground facts. This is done in a separate step after grounding, where
the parameters for the regular AD are determined by making a forward pass on
the relevant neural network with the ground input.

Example 3
We illustrate this by evaluating the MNIST addition example (Figure 2a).
The DeepProbLog program requires two lines: the first line defining the
neural predicate, and the second line defining the addition. We evaluate it
on the query addition(, , 1). In the first step, the DeepProbLog pro-
gram is grounded into a ground DeepProbLog Program (Figure 2b). Note
that the nADs are now all ground. As ProbLog only grounds the relevant
part of the program, i.e. the part that can be used to prove the query, only
the digits 0 and 1 are retained as the larger digits cannot sum to 1. The
next step is the only difference between ProbLog and DeepProbLog infer-
ence: instantiating the ground nADs into regular ground ADs, which could,
for instance, produce an AD as shown in Figure 2c. The probabilities in the

12

forward step of nn

query

Image adapted from Manhaeve et al., 2019

Deep ProbLog: learning

Learning by gradient descent in ProbLog

• Gradient computation can be done over arithmetic circuit used for inference.

• Need to replace probability semiring used for inference with gradient semiring (algebraic Problog)

• Gradient update followed by normalization to get valid probabilities

Deep ProbLog: probability vs gradient semiring
probability gradient
a⊕ b = a+ b (a,a∇)⊕ (b, b∇) = (a+ b,a∇ + b∇)
a⊗ b = a b (a,a∇)⊗ (b, b∇) = (a b, a b∇ + ba∇)
e⊕ = 0 e⊕ = (0, 0∇)
e⊗ = 1 e⊕ = (1, 0∇)
L(f) = p L(f) = (p, 0∇) (fixed p)
L(fi) = pi L(fi) = (pi, ei) (learnable pi)
L(¬f) = 1− p L(¬f) = (1− p,−∇p) (with L(f) = (p,∇p))

10

ProbLog: gradient semiring example

AND AND

AND

OR

calls(mary)

￢earthquake

0.8, [-1,0]

0.08, [-0.1,0.8]

burglary

0.1, [0,1]

hears_alarm(mary)

0.5, [0,0]

earthquake

0.2, [1,0]

0.1, [0.5,0]

0.04, [-0.05,0.4]

0.14, [0.45,0.4]

Figure 3: The AC evaluated using the gradient semiring. (Example 4)

the partial derivative of the query is 0.45 and 0.4 w.r.t. the earthquake and
burglary parameters respectively.

5.2. Gradient descent for DeepProbLog
Just as the only difference between inference in ProbLog and DeepProbLog

is the evaluation of the nADs, the only difference between gradient descent in
ProbLog and DeepProbLog is optimizing the neural parameters alongside the
probabilistic parameters. As mentioned in the previous section, the probabilistic
parameters pi in the logic program can be optimized by using the gradient
semiring, which allows us to calculate @P (q)/@pi. This gradient is then used
to perform the update by using gradient descent. Note that since the outputs
of the neural network are used as probabilities in the logic program and can be
learned, we can view them as a kind of abstract parameters. However, although
we can derive a gradient for these abstract parameters, we cannot optimize them
directly, as the logic is unaware of the neural parameters that determine the
value of these abstract parameters. Recall from Equation (1) that the gradient of
the internal (neural) parameters in standard supervised learning can be derived
using the chain rule in backpropagation. Below, we show how we can derive the
gradient for these neural parameters of the loss applied to P (q) (Definition 5),
rather than a loss function defined directly on the output of the neural network.

Specifically, consider the case of a single neural annotated disjunction, with
probabilities p̂i (i.e., the aforementioned abstract parameters), calculated by
evaluating a neural network with softmax output. The predicted probability
that the query holds true, based on the current values of the neural and proba-
bilistic parameters, is written P (q). While training, true examples should yield
a predicted query probability close to the expected query probability, which is
expressed by means of a loss function L as introduced in Definition 5.

Application of the chain rule leads to

dL
d✓k

=
@L

@P (q)

X

i

@P (q)

@p̂i

@p̂i

@✓k

where the derivative of the loss with respect to any trainable parameter ✓k in
the neural network is decomposed into the partial derivative of the loss with

17

0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,hears_alarm(X).

(a) The ProbLog program.

0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).

alarm :- earthquake.
alarm :- burglary.
calls(mary):-alarm,hears_alarm(mary).

(b) The relevant ground program.

Models of calls(mary) $ hears_alarm(mary) ^ (burglary _ earthquake) w
{} 0.36
{hears_alarm(mary)} 0.36
{earthquake} 0.09
{earthquake, hears_alarm(mary),calls(mary)} 0.09
{burglary} 0.04
{burglary, hears_alarm(mary),calls(mary)} 0.04
{burglary, earthquake} 0.01
{burglary, earthquake, hears_alarm(mary),calls(mary)} 0.01P

calls(mary)2model 0.14

(c) The weighted count of the models where calls(mary) is true.

(d) The AC for query calls(mary).

Figure 1: Inference in ProbLog using query calls(mary) and the program in (a). (Example 2)

13

0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,hears_alarm(X).

(a) The ProbLog program.

0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).

alarm :- earthquake.
alarm :- burglary.
calls(mary):-alarm,hears_alarm(mary).

(b) The relevant ground program.

Models of calls(mary) $ hears_alarm(mary) ^ (burglary _ earthquake) w
{} 0.36
{hears_alarm(mary)} 0.36
{earthquake} 0.09
{earthquake, hears_alarm(mary),calls(mary)} 0.09
{burglary} 0.04
{burglary, hears_alarm(mary),calls(mary)} 0.04
{burglary, earthquake} 0.01
{burglary, earthquake, hears_alarm(mary),calls(mary)} 0.01P

calls(mary)2model 0.14

(c) The weighted count of the models where calls(mary) is true.

(d) The AC for query calls(mary).

Figure 1: Inference in ProbLog using query calls(mary) and the program in (a). (Example 2)

13

more succinct than OBDDs (Darwiche [19]).

The fourth and final step transforms the SDD into an arithmetic circuit
(AC). This is done by putting the probabilities of the probabilistic facts or their
negations on the leaves, replacing the OR nodes with addition and the AND
nodes by multiplication. The WMC is then calculated with an evaluation of the
AC.

Example 2
In Figure 1, we apply the four steps of ProbLog inference on the earthquake
example with query calls(mary).
In the first step, the non-ground program (Figure 1a) is grounded with
respect to the query calls(mary). The result is shown in Figure 1b: the
irrelevant fact hears_alarm(john) is omitted and the variable X in the
calls rule is substituted with the constant mary. The resulting formula in
the second step is

calls(mary)$ hears_alarm(mary) ^ (burglary _ earthquake)

The WMC of this formula is shown in Figure 1c. However, it is not cal-
culated by enumeration as shown here, but an AC is used instead. The
AC derived in step four is shown in Figure 1d, where rounded grey rectan-
gles depict variables corresponding to probabilistic facts, and the rounded
red rectangle denotes the query atom defined by the formula. The white
rectangles correspond to logical operators applied to their children. The
intermediate results are shown in black next to the nodes in Figure 1d.

4.2. DeepProbLog Inference
The only change required for DeepProbLog inference is that we need to

instantiate the ground nADs and neural facts into the corresponding ground
ADs and ground facts. This is done in a separate step after grounding, where
the parameters for the regular AD are determined by making a forward pass on
the relevant neural network with the ground input.

Example 3
We illustrate this by evaluating the MNIST addition example (Figure 2a).
The DeepProbLog program requires two lines: the first line defining the
neural predicate, and the second line defining the addition. We evaluate it
on the query addition(, , 1). In the first step, the DeepProbLog pro-
gram is grounded into a ground DeepProbLog Program (Figure 2b). Note
that the nADs are now all ground. As ProbLog only grounds the relevant
part of the program, i.e. the part that can be used to prove the query, only
the digits 0 and 1 are retained as the larger digits cannot sum to 1. The
next step is the only difference between ProbLog and DeepProbLog infer-
ence: instantiating the ground nADs into regular ground ADs, which could,
for instance, produce an AD as shown in Figure 2c. The probabilities in the

12

grounding for

compilation using
gradient semiring

learnable
parameters

}
Z

P (x, y)L(h(x), y)dx dy

x

ŷ

F (x)

E(F (x), ŷ)

ŷT B F (x) + cT
2 g(C1ŷ)

g(A2g(A1x))

E(x, y)

yi

ȳi

E(xi, y; w)

� = >

� = ¬Y1 _ ¬Y2

max
w,x,µ,"

µ � ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi, xii

s.t. hwi, x̄h
+ � x̄h

�i � µ � "i
h

hwi, xi � xji � µ

wi 2 Wfeasible

xi 2 Xfeasible , "i � 0

8i, j 2 [1, k], i 6= j, h 2 [1, |D|]

1

Deep ProbLog: learning

Learning by gradient descent in DeepProbLog

• Use gradient semiring as for ProbLog (considering outputs of neural predicates as abstract parameters).

• Backpropagate gradient from abstract parameters into the corresponding neural network

dL
dθk

=
dL

dP (q)

m∑

i=1

dP (q)

dp̂i

dp̂i
dθk

• L is a loss function

• P (q) is the probability of a traning example q (query)

• m is the number of outputs of a neural network (alternatives)

• p̂i is the i-th output of the network for example q.

• θk is the k-th parameter of a neural network

11

Deep ProbLog: learning pipeline

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.
nn(classifier,[a],0) :: digit(a,0); nn(classifier,[a],1) :: digit(a,1).
nn(classifier,[b],0) :: digit(b,0); nn(classifier,[b],1) :: digit(b,1).
t(0.2)::noisy.

1/19::uniform(a,b,1).
addition(a,b,1) :- noisy, uniform(a,b,1).

addition(a,b,1) :- \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) :- \+noisy, digit(a,1), digit(b,0).

(b) The ground DeepProbLog program.

noisy

0.2,
[1,
 0,0,..
 0,0,..]

⨂

addition(a,b,1)

⨁ p,
[∂p/∂pnoisy,

∂p/∂pdigit(a,0),...,∂p/∂pdigit(a,9),
∂p/∂pdigit(b,0),...,∂p/∂pdigit(b,9)]

¬noisy

0.8,
[-1,
 0,0,..
 0,0,..]

digit(a,0)

0.8,
[0,
 1,0,..
 0,0,..]

digit(b,1)

0.6,
[0,
 0,0,..
 0,1,..]

digit(a,1)

0.1,
[0,
 0,1,..
 0,0,..]

digit(b,0)

0.2,
[0,
 0,0,..
 1,0,..]

uniform(a,b,1)

0.053,
[0,
 0,0,..
 0,0,..]

⨂ ⨂

⨁

⨂

0.011,
[0.053,
 0,0,..
 0,0,..]

0.02,
[0,
 0,0.2,..
 0.1,0,..]

0.48,
[0,
 0.6,0,..
 0,0.8,..]

0.5,
[0,
 0.6,0.2,..
 0.1,0.8,..]

0.4,
[-0.5,
 0.48,0.16,..
 0.08,0.64,..]

0.411,
[-0.447,
 0.48,0.16,..
 0.08,0.64,..]

Legend

(c) The AC for query addition(a,b,1).

Figure 4: Parameter learning in DeepProbLog. (Example 5)

DeepProbLog Program

t(0.2) :: noisy.
nn(classifier,[X],…
…
addition(X,Y,Z):- …

Loss
L,∇L

grounding rewrite /
compilation

p,∇p

Query
addition(a,b,1)

S
oftm

ax

digit(a,N1)
digit(b,N2)

0.8 :: digit(a,0);
0.1 :: digit(a,1);

… Ground
DeepProblog Program

t(0.2) :: noisy.
nn(classifier,[a],0);…
nn(classifier,[b],0);…
…
addition(a,b,1):- …

Figure 5: The learning pipeline.

19

Deep ProbLog: dimensions

dimensions

• Directed model: probabilistic logic program (definite clauses)

• Integration approach: probabilistic logic program enriched with neural predicates

• Probabilistic semantics: constraints are enforced in expectation over probabilities of possible worlds

Neural Theorem Proving

Motivation

• Theorem proving allows to infer novel facts entailed by a KB, but fails with noisy or ambiguous knowledge (e.g.
slightly different names for the same relation)

• Neural models are robust to noise and ambiguity but have limited reasoning capabilities

• Neural theorem proving aims at combining the best of both worlds

Neural Theorem Proving

In a nutshell

• End-to-end differentiable deductive reasoner

• Use Prolog backward-chaining algorithm for proving goals

• Replace symbolic unification between atoms with a differantiable similarity between their embeddings

• Collect the highest scoring proof as the goal proof

• Embeddings are learned by gradient descent over goal proofs for true (positive) and false (negative) facts.

12

Neural Theorem Proving: Prolog backward chaining

grandfatherOf(X, Y) :- fatherOf(X, Z), fatherOf(Z, Y).
grandfatherOf(X, Y) :- fatherOf(X, Z), motherOf(Z, Y).
fatherOf(tom, ann).
motherOf(ann, bart).

OR / AND search

• OR iterates over all rules and unifies the rule head with the goal (one rule suffice)

• AND iterates over all atoms in the body of the rule (all atoms should be proved)

• OR is recursively applied to each atom in the body

Prolog backward chaining: example

X/Q, Y/bart

[fatherOf,Q,Z]

Q/tom, Z/ann

[fatherOf,ann,bart]

[grandfatherOf,Q,bart]

FALSE

X/Q, Y/bart

[motherOf,ann,bart]

TRUE

grandfatherOf(X, Y) :-
 fatherOf(X, Z), fatherOf(Z, Y).

grandfatherOf(X, Y) :-
 fatherOf(X, Z), motherOf(Z, Y).

fatherOf(X, Z), fatherOf(Z, Y)

fatherOf(tom, ann)

motherOf(Z, Y)

motherOf(ann, bart)

[fatherOf,Q,Z]

Q/tom, Z/ann

fatherOf(X, Z),

fatherOf(tom, ann)

OR

ANDAND

grandfatherOf(X, Y) :- fatherOf(X, Z), fatherOf(Z, Y).
grandfatherOf(X, Y) :- fatherOf(X, Z), motherOf(Z, Y).
fatherOf(tom, ann)
motherOf(ann, bart)

OR OR OR OR

Neural Theorem Proving: unification

13

order matters, i.e., if arguments match a line, subsequent lines are not evaluated.

1. unify✓([], [], S) = S

2. unify✓([], _, _) = FAIL
3. unify✓(_, [], _) = FAIL

4. unify✓(h : H, g : G, S) = unify✓(H, G, S0) = (S0
 , S0

⇢) where

S0
 =

8
<
:

S [{h/g} if h 2 V
S [{g/h} if g 2 V, h 62 V
S otherwise

9
=
; , S0

⇢ = min

S⇢,

(
exp

⇣
�k✓h:�✓g:k2

2µ2

⌘
if h, g 62 V

1 otherwise

)!

Here, S0 refers to the new proof state, V refers to the set of variable symbols, h/g is a substitution
from the variable symbol h to the symbol g, and ✓g: denotes the embedding lookup of the non-variable
symbol with index g. unify is parameterized by an embedding matrix ✓ 2 R|Z|⇥k where Z is the set
of non-variables symbols and k is the dimension of vector representations of symbols. Furthermore,
FAIL represents a unification failure due to mismatching arity of two atoms. Once a failure is reached,
we abort the creation of the neural network for this branch of proving. In addition, we constrain
proofs to be cycle-free by checking whether a variable is already bound. Note that this is a simple
heuristic that prohibits applying the same non-ground rule twice. There are more sophisticated ways
for finding and avoiding cycles in a proof graph such that the same rule can still be applied multiple
times (e.g. [31]), but we leave this for future work.

Example Assume that we are unifying two atoms [grandpaOf, ABE, BART] and [s, Q, i] given an
upstream proof state S = (?, ⇢) where the latter input atom has placeholders for a predicate s
and a constant i, and the neural network ⇢ would output 0.7 when evaluated. Furthermore, assume
grandpaOf, ABE and BART represent the indices of the respective symbols in a global symbol
vocabulary. Then, the new proof state constructed by unify is:

unify✓([grandpaOf, ABE, BART], [s, Q, i], (?, ⇢)) = (S0
 , S0

⇢) =
�
{Q/ABE}, min

�
⇢, exp(�k✓grandpaOf: � ✓s:k2), exp(�k✓BART: � ✓i:k2)

��

Thus, the output score of the neural network S0
⇢ will be high if the subsymbolic representation of the

input s is close to grandpaOf and the input i is close to BART. However, the score cannot be higher
than 0.7 due to the upstream proof success score in the forward pass of the neural network ⇢. Note
that in addition to extending the neural networks ⇢ to S0

⇢, this module also outputs a substitution set
{Q/ABE} at graph creation time that will be used to instantiate submodules.

3.2 OR Module

Based on unify, we now define the or module which attempts to apply rules in a KB. The signature
of or is L ⇥ N⇥S ! SN where L is the domain of goal atoms and N is the domain of integers used
for specifying the maximum proof depth of the neural network. Furthermore, N is the number of
possible output proof states for a goal of a given structure and a provided KB.3 We implement or as

1. orK
✓ (G, d, S) = [S0 | S0 2 andK

✓ (B, d, unify✓(H, G, S)) for H :– B 2 K]

where H :– B denotes a rule in a given KB K with a head atom H and a list of body atoms B. In
contrast to the symbolic OR method, the or module is able to use the grandfatherOf rule above
for a query involving grandpaOf provided that the subsymbolic representations of both predicates
are similar as measured by the RBF kernel in the unify module.

Example For a goal [s, Q, i], or would instantiate an and submodule based on the rule
[grandfatherOf, X, Y] :– [[fatherOf, X, Z], [parentOf, Z, Y]] as follows

orK
✓ ([s, Q, i], d, S) = [S0|S0 2 andK

✓ ([[fatherOf, X, Z], [parentOf, Z, Y]], d, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify

), . . .]

3The creation of the neural network is dependent on the KB but also the structure of the goal. For instance,
the goal s(Q, i) would result in a different neural network, and hence a different number of output proof states,
than s(i, j).

4

embeddingssoft unificationsvariable unification

previous variable
unifications

previous soft
unifications (neural)

Soft unification

• Variables unify with variables or symbols as in Prolog

• Constants and predicates unify softly via similarity of their embeddings

Neural Theorem Proving: OR

order matters, i.e., if arguments match a line, subsequent lines are not evaluated.

1. unify✓([], [], S) = S

2. unify✓([], _, _) = FAIL
3. unify✓(_, [], _) = FAIL

4. unify✓(h : H, g : G, S) = unify✓(H, G, S0) = (S0
 , S0

⇢) where

S0
 =

8
<
:

S [{h/g} if h 2 V
S [{g/h} if g 2 V, h 62 V
S otherwise

9
=
; , S0

⇢ = min

S⇢,

(
exp

⇣
�k✓h:�✓g:k2

2µ2

⌘
if h, g 62 V

1 otherwise

)!

Here, S0 refers to the new proof state, V refers to the set of variable symbols, h/g is a substitution
from the variable symbol h to the symbol g, and ✓g: denotes the embedding lookup of the non-variable
symbol with index g. unify is parameterized by an embedding matrix ✓ 2 R|Z|⇥k where Z is the set
of non-variables symbols and k is the dimension of vector representations of symbols. Furthermore,
FAIL represents a unification failure due to mismatching arity of two atoms. Once a failure is reached,
we abort the creation of the neural network for this branch of proving. In addition, we constrain
proofs to be cycle-free by checking whether a variable is already bound. Note that this is a simple
heuristic that prohibits applying the same non-ground rule twice. There are more sophisticated ways
for finding and avoiding cycles in a proof graph such that the same rule can still be applied multiple
times (e.g. [31]), but we leave this for future work.

Example Assume that we are unifying two atoms [grandpaOf, ABE, BART] and [s, Q, i] given an
upstream proof state S = (?, ⇢) where the latter input atom has placeholders for a predicate s
and a constant i, and the neural network ⇢ would output 0.7 when evaluated. Furthermore, assume
grandpaOf, ABE and BART represent the indices of the respective symbols in a global symbol
vocabulary. Then, the new proof state constructed by unify is:

unify✓([grandpaOf, ABE, BART], [s, Q, i], (?, ⇢)) = (S0
 , S0

⇢) =
�
{Q/ABE}, min

�
⇢, exp(�k✓grandpaOf: � ✓s:k2), exp(�k✓BART: � ✓i:k2)

��

Thus, the output score of the neural network S0
⇢ will be high if the subsymbolic representation of the

input s is close to grandpaOf and the input i is close to BART. However, the score cannot be higher
than 0.7 due to the upstream proof success score in the forward pass of the neural network ⇢. Note
that in addition to extending the neural networks ⇢ to S0

⇢, this module also outputs a substitution set
{Q/ABE} at graph creation time that will be used to instantiate submodules.

3.2 OR Module

Based on unify, we now define the or module which attempts to apply rules in a KB. The signature
of or is L ⇥ N⇥S ! SN where L is the domain of goal atoms and N is the domain of integers used
for specifying the maximum proof depth of the neural network. Furthermore, N is the number of
possible output proof states for a goal of a given structure and a provided KB.3 We implement or as

1. orK
✓ (G, d, S) = [S0 | S0 2 andK

✓ (B, d, unify✓(H, G, S)) for H :– B 2 K]

where H :– B denotes a rule in a given KB K with a head atom H and a list of body atoms B. In
contrast to the symbolic OR method, the or module is able to use the grandfatherOf rule above
for a query involving grandpaOf provided that the subsymbolic representations of both predicates
are similar as measured by the RBF kernel in the unify module.

Example For a goal [s, Q, i], or would instantiate an and submodule based on the rule
[grandfatherOf, X, Y] :– [[fatherOf, X, Z], [parentOf, Z, Y]] as follows

orK
✓ ([s, Q, i], d, S) = [S0|S0 2 andK

✓ ([[fatherOf, X, Z], [parentOf, Z, Y]], d, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify

), . . .]

3The creation of the neural network is dependent on the KB but also the structure of the goal. For instance,
the goal s(Q, i) would result in a different neural network, and hence a different number of output proof states,
than s(i, j).

4

max proof depth

grandfatherOf(X, Y) :- fatherOf(X, Z), parentOf(Z, Y).

other rules
matching the goal

head unification body matching
current state

(possible unifications)

OR module

• The goal is (soft) unified with the head of a rule (for all possible rules that soft unify)

• The AND module is called for all atoms in the body

14

Neural Theorem Proving: AND

OR called
on first atom

3.3 AND Module

For implementing and we first define an auxiliary function called substitute which applies substitu-
tions to variables in an atom if possible. This is realized via

1. substitute([], _) = []

2. substitute(g : G,) =

⇢
x if g/x 2
g otherwise

�
: substitute(G,)

For example, substitute([fatherOf, X, Z], {X/Q, Y/i}) results in [fatherOf, Q, Z].

The signature of and is L ⇥ N ⇥ S ! SN where L is the domain of lists of atoms and N is the
number of possible output proof states for a list of atoms with a known structure and a provided KB.
This module is implemented as

1. andK
✓ (_, _, FAIL) = FAIL

2. andK
✓ (_, 0, _) = FAIL

3. andK
✓ ([], _, S) = S

4. andK
✓ (G : G, d, S) = [S00 | S00 2 andK

✓ (G, d, S0) for S0 2 orK
✓ (substitute(G, S), d � 1, S)]

where the first two lines define the failure of a proof, either because of an upstream unification
failure that has been passed from the or module (line 1), or because the maximum proof depth has
been reached (line 2). Line 3 specifies a proof success, i.e., the list of subgoals is empty before the
maximum proof depth has been reached. Lastly, line 4 defines the recursion: The first subgoal G is
proven by instantiating an or module after substitutions are applied, and every resulting proof state
S0 is used for proving the remaining subgoals G by again instantiating and modules.

Example Continuing the example from Section 3.2, the and module would instantiate submodules
as follows:
andK

✓ ([[fatherOf, X, Z], [parentOf, Z, Y]], d, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify in or

) =

[S00|S00 2 andK
✓ ([[parentOf, Z, Y]], d, S0) for S0 2 orK

✓ ([fatherOf, Q, Z]| {z }
result of substitute

, d � 1, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify in or

)]

3.4 Proof Aggregation

Finally, we define the overall success score of proving a goal G using a KB K with parameters ✓ as

ntpK
✓ (G, d) = arg max

S 2 orK
✓ (G,d,(?,1))

S 6=FAIL

S⇢

where d is a predefined maximum proof depth and the initial proof state is set to an empty substitution
set and a proof success score of 1.

Example Figure 2 illustrates an examplary NTP computation graph constructed for a toy KB. Note
that such an NTP is constructed once before training, and can then be used for proving goals of the
structure [s, i, j] at training and test time where s is the index of an input predicate, and i and j are
indices of input constants. Final proof states which are used in proof aggregation are underlined.

3.5 Neural Inductive Logic Programming

We can use NTPs for ILP by gradient descent instead of a combinatorial search over the space of
rules as, for example, done by the First Order Inductive Learner (FOIL) [32]. Specifically, we are
using the concept of learning from entailment [9] to induce rules that let us prove known ground
atoms, but that do not give high proof success scores to sampled unknown ground atoms.

Let ✓r:,✓s:,✓t: 2 Rk be representations of some unknown predicates with indices r, s and t respec-
tively. The prior knowledge of a transitivity between three unknown predicates can be specified via

5

max depth is
reduced

AND called
on remaining atoms

AND module

• The AND module fails if the maximum depth is reached (or the upstream OR failed)

• The AND module succeeds if it reaches the end of the list of atoms

• Otherwise it recurs over the atoms substituting variables wherever possible and calling OR

Neural Theorem Proving: Proof

3.3 AND Module

For implementing and we first define an auxiliary function called substitute which applies substitu-
tions to variables in an atom if possible. This is realized via

1. substitute([], _) = []

2. substitute(g : G,) =

⇢
x if g/x 2
g otherwise

�
: substitute(G,)

For example, substitute([fatherOf, X, Z], {X/Q, Y/i}) results in [fatherOf, Q, Z].

The signature of and is L ⇥ N ⇥ S ! SN where L is the domain of lists of atoms and N is the
number of possible output proof states for a list of atoms with a known structure and a provided KB.
This module is implemented as

1. andK
✓ (_, _, FAIL) = FAIL

2. andK
✓ (_, 0, _) = FAIL

3. andK
✓ ([], _, S) = S

4. andK
✓ (G : G, d, S) = [S00 | S00 2 andK

✓ (G, d, S0) for S0 2 orK
✓ (substitute(G, S), d � 1, S)]

where the first two lines define the failure of a proof, either because of an upstream unification
failure that has been passed from the or module (line 1), or because the maximum proof depth has
been reached (line 2). Line 3 specifies a proof success, i.e., the list of subgoals is empty before the
maximum proof depth has been reached. Lastly, line 4 defines the recursion: The first subgoal G is
proven by instantiating an or module after substitutions are applied, and every resulting proof state
S0 is used for proving the remaining subgoals G by again instantiating and modules.

Example Continuing the example from Section 3.2, the and module would instantiate submodules
as follows:
andK

✓ ([[fatherOf, X, Z], [parentOf, Z, Y]], d, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify in or

) =

[S00|S00 2 andK
✓ ([[parentOf, Z, Y]], d, S0) for S0 2 orK

✓ ([fatherOf, Q, Z]| {z }
result of substitute

, d � 1, ({X/Q, Y/i}, Ŝ⇢)| {z }
result of unify in or

)]

3.4 Proof Aggregation

Finally, we define the overall success score of proving a goal G using a KB K with parameters ✓ as

ntpK
✓ (G, d) = arg max

S 2 orK
✓ (G,d,(?,1))

S 6=FAIL

S⇢

where d is a predefined maximum proof depth and the initial proof state is set to an empty substitution
set and a proof success score of 1.

Example Figure 2 illustrates an examplary NTP computation graph constructed for a toy KB. Note
that such an NTP is constructed once before training, and can then be used for proving goals of the
structure [s, i, j] at training and test time where s is the index of an input predicate, and i and j are
indices of input constants. Final proof states which are used in proof aggregation are underlined.

3.5 Neural Inductive Logic Programming

We can use NTPs for ILP by gradient descent instead of a combinatorial search over the space of
rules as, for example, done by the First Order Inductive Learner (FOIL) [32]. Specifically, we are
using the concept of learning from entailment [9] to induce rules that let us prove known ground
atoms, but that do not give high proof success scores to sampled unknown ground atoms.

Let ✓r:,✓s:,✓t: 2 Rk be representations of some unknown predicates with indices r, s and t respec-
tively. The prior knowledge of a transitivity between three unknown predicates can be specified via

5

Proof with maximal score

• The search is initialized with an empty substitution set and a score of 1

• The maximization is over all possible goal proofs

• The score of a proof is the minimal score of all soft unifications in the proof

Neural Theorem Proving: proof example

15

orK
✓ ([s, i, j], 2, (?, 1))

unify✓([fatherOf, ABE, HOMER], [s, i, j], (?, 1)) unify✓([grandfatherOf, X, Y], [s, i, j], (?, 1))

1. 3.

S1 = (?, ⇢1) S2 = (?, ⇢2)

2.
. . .

andK
✓ ([[fatherOf, X, Z], [parentOf, Z, Y]], 2, S3)

S3 = ({X/i, Y/j}, ⇢3)

orK
✓ ([fatherOf, i, Z], 1, S3)

substitute

unify✓([fatherOf, ABE, HOMER], [fatherOf, i, Z], S3) unify✓([parentOf, HOMER, BART], [fatherOf, i, Z], S3)

1. 2.

S33 = FAIL

3.
. . .

andK
✓ ([parentOf, Z, Y], 2, S31)

S31 = ({X/i, Y/j, Z/HOMER}, ⇢31)

orK
✓ ([parentOf, HOMER, j], 1, S31)

substitute

S311 = ({X/i, Y/j, Z/HOMER}, ⇢311)

S312 = ({X/i, Y/j, Z/HOMER}, ⇢312)

S313 = FAIL

1.. . . 2.
. . .

3. . . .

andK
✓ ([parentOf, Z, Y], 2, S32)

S32 = ({X/i, Y/j, Z/BART}, ⇢32)

orK
✓ ([parentOf, BART, j], 1, S32)

substitute

S321 = ({X/i, Y/j, Z/BART}, ⇢321)

S322 = ({X/i, Y/j, Z/BART}, ⇢322)

S323 = FAIL

1. . . .2.
. . .

3.. . .

Example Knowledge Base:
1. fatherOf(ABE, HOMER).
2. parentOf(HOMER, BART).
3. grandfatherOf(X, Y) :–

fatherOf(X, Z),
parentOf(Z, Y).

Figure 2: Exemplary construction of an NTP computation graph for a toy knowledge base. Indices
on arrows correspond to application of the respective KB rule. Proof states (blue) are subscripted
with the sequence of indices of the rules that were applied. Underlined proof states are aggregated to
obtain the final proof success. Boxes visualize instantiations of modules (omitted for unify). The
proofs S33, S313 and S323 fail due to cycle-detection (the same rule cannot be applied twice).

r(X, Y) :– s(X, Z), t(Z, Y). We call this a parameterized rule as the corresponding predicates are
unknown and their representations are learned from data. Such a rule can be used for proofs at training
and test time in the same way as any other given rule. During training, the predicate representations
of parameterized rules are optimized jointly with all other subsymbolic representations. Thus, the
model can adapt parameterized rules such that proofs for known facts succeed while proofs for
sampled unknown ground atoms fail, thereby inducing rules of predefined structures like the one
above. Inspired by [33], we use rule templates for conveniently defining the structure of multiple
parameterized rules by specifying the number of parameterized rules that should be instantiated for
a given rule structure (see appendix E for examples). For inspection after training, we decode a
parameterized rule by searching for the closest representations of known predicates. In addition,
we provide users with a rule confidence by taking the minimum similarity between unknown and
decoded predicate representations using the RBF kernel in unify. This confidence score is an upper
bound on the proof success score that can be achieved when the induced rule is used in proofs.

4 Optimization

In this section, we present the basic training loss that we use for NTPs, a training loss where a neural
link prediction models is used as auxiliary task, as well as various computational optimizations.

4.1 Training Objective

Let K be the set of known facts in a given KB. Usually, we do not observe negative facts and thus
resort to sampling corrupted ground atoms as done in previous work [34]. Specifically, for every
[s, i, j] 2 K we obtain corrupted ground atoms [s, î, j], [s, i, ĵ], [s, ĩ, j̃] 62 K by sampling î, ĵ, ĩ and j̃
from the set of constants. These corrupted ground atoms are resampled in every iteration of training,
and we denote the set of known and corrupted ground atoms together with their target score (1.0 for
known ground atoms and 0.0 for corrupted ones) as T . We use the negative log-likelihood of the
proof success score as loss function for an NTP with parameters ✓ and a given KB K

LntpK
✓

=
X

([s,i,j],y) 2 T
�y log(ntpK

✓ ([s, i, j], d)⇢) � (1 � y) log(1 � ntpK
✓ ([s, i, j], d)⇢)

where [s, i, j] is a training ground atom and y its target proof success score. Note that since in our
application all training facts are ground atoms, we only make use of the proof success score ⇢ and not

6

Image from Rocktäschel and Riedel, 2017

Neural Theorem Proving: prediction examples

QUERY: part of(CONGO.N.03,AFRICA.N.01)
Score Proofs
0.995 part of(X, Y) :- has part(Y, X)

has part(AFRICA.N.01, CONGO.N.03)
0.787 part of(X, Y) :- instance hyponym(Y, X)

instance hyponym(AFRICAN COUNTRY.N.01, CONGO.N.03)

QUERY: hyponym(EXTINGUISH.V.04, DECOUPLE.V.03)
Score Proofs
0.987 hyponym(X, Y) :- hypernym(Y, X)

hypernym(DECOUPLE.V.03, EXTINGUISH.V.04)

Neural Theorem Proving: dimensions

dimensions

• Directed model: logic program (definite clauses)

• Integration approach: logic program enriched with neural similarity in place of symbolic unification

• “Fuzzy” semantics: a score is associated to a proof, no explicit probabilistic interpretation

References

Bibliography
• Luc de Raedt, Sebastijan Dumancic, Robin Manhaeve, Giuseppe Marra, From Statistical Relational to Neuro-Symbolic Artificial Intelli-

gence, In IJCAI 2020.

• Michelangelo Diligenti, Marco Gori, Claudio Saccà, Semantic-based regularization for learning and inference, Artificial Intelligence,
Volume 244, 2017.

• Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric Xing, Harnessing Deep Neural Networks with Logic Rules, Proc. of ACL,
2016.

16

• Xu, J., Zhang, Z., Friedman, T., Liang, Y. and Van den Broeck, G., A Semantic Loss Function for Deep Learning with Symbolic Knowledge.
In ICML 2018.

• Manhaeve R., Dumancic S., Kimmig A., Demeester T. and De Raedt, Luc., DeepProbLog: Neural Probabilistic Logic Programming. In
NeurIPS 2018.

• T. Rocktäschel and S. Riedel, End-to-End Differentiable Proving, Proc. of NIPS 2017.

References

Software Libraries

• Semantic-based regularization (SBR) [https://sites.google.com/site/semanticbasedregularization/
home/software]

• Deep ProbLog [https://bitbucket.org/problog/deepproblog/src/master/]

• Greedy Neural Theorem Provers (GNTP) [https://github.com/uclnlp/gntp]

17

https://sites.google.com/site/semanticbasedregularization/home/software
https://sites.google.com/site/semanticbasedregularization/home/software
https://bitbucket.org/problog/deepproblog/src/master/
https://github.com/uclnlp/gntp

