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Neural Networks on Graph Data
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input layer output layer

@ Allow to learn feature representations for nodes

@ Allow to propagate information between neighbouring
nodes

@ Allow for efficient training (wrt to e.g. graph kernels)

Image from Kipf et al., 2017
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Neural Networks on Graph Data
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Basic step: graph “convolution”

@ Aggregates information from neghbours to update
information on node

@ Inspired by convolution on pixels in CNN

@ Differs from CNN convolution as neighbourhood has
variable size

v

Image from Wu et al., 2019
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Graph “convolution” operation

@ Aggregate information from neighbouring nodes:

h(kzv) — AGGREGATE( ({hf/kq) P UE N(V)})

@ Combine node information with aggregated neighbour
information:

(k) _ k) ((p(k=1) (k)
h) = ComsINEX) (h hN(V)>

@ k is the index of the layer (operations are layer-dependent)

° h|(,k) is the hidden representation of node v (initialized to
the node features h‘(,o) = Xy)
@ N(v) is the set neighbours of v
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Example: GraphSAGE (Hamilton et al., 2017)

Graph “convolution” operation

@ Mean aggregation

hﬁ\’}gv) = MEAN®) <{hgk_1) P UE N(V)}>

@ Max aggregation (on transformed representation)
k K) (k=1
hilyy = Max®) ({0 (Wéog,hf, s b) L ue N(v)})

@ Combine operation as concatenation + linear mapping +
non-linearity:

HO = (w0 [1e0.49, )
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Node embedding generation

e h\(,o):XVVVEV
2. forkei,...,Kdo
3: forveVdo

: (k) k k—1)
4 h\ity) ¢ AGGREGATE() ({hf, )i ue N(v)})
5 h{) « ComsINE®) (hf,k*”, hﬁx%))
AR A
7 end for
8: end for

9: return h\(,K) Yvey

Graph Neural Networks



Message Passing Neural Networks (MPNN)
| Genericfom |

@ Aggregate messages from neighbouring nodes:

- 3 Mtk (h(k 0 plk=n evu)
ueN (v)

@ Update node information:
pR) — k) (h‘(/k—1)’ m\(/k))
@ ey, are the features associated to edge (v, u)

o M=) is a message function (e.g. an MLP) computing
message from neighbour

e U is a node update function (e.g. an MLP) combining
messages and local information
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Node Classification
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Procedure

@ Compute node embeddings with layerwise architecture

@ Add appropriate output layer on top of each node
embedding (MLP + softmax, MLP + linear)

Image from Wu et al., 2019
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Node classification: scalability
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2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Sampling node neighbourhood

Replace N (v) with a layer-dependent sampling function N (v)
that takes a random sample of a node’s neighbourhood.

Image from Hamilton et al., 2017
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GNN for graph classification

Basic approaches

@ Apply final aggregation (READOUT) to combine all nodes in
a single representation (mean, sum).

@ Introduce a “virtual node” connected to all nodes in the
graph

@ No hierarchical structure is learned.

@ Lack of “pooling” operation which is effective in CNNs to
learn complex pattern.
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Graph classification with Hierachical Pooling

Gconv Gconv
Graph X 3
Pooling . Readout MLP Y
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@ Alternate convolutional and pooling layers as in CNN.

@ Progressively reduce number of nodes.
@ Pool all nodes in last layer into a single representation.

Problem
How to decide which nodes to pool together

Image from Wu et al., 2019
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Graph classification with Differentiable Pooling

Original Pooled network Pooled network Pooled network Graph
network atlevel 1 at level 2 atlevel 3 classification

@ Use standard GNN module to obtain embedding of nodes

@ Perform graph pooling using a differentiable soft cluster
assignment module

@ Repeat the process for K layers
@ Aggregate in single cluster in the last layer
@ Use final representation to classify graph

V.

Image from Ying et al., 2018
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Graph classification with Differentiable Pooling

Pooled network Pooled network  Pooled network Graph
atlevel 1 atlevel 2 atlevel 3 classification

Components

@ Layerwise soft cluster assignment matrix: S*) ¢ R+
@ Layerwise input embedding matrix: Z(K) € R™xd

@ Layerwise soft adjacency matrix: AK+1)

@ Layerwise output embedding matrix: X(k+1) ¢ Rk+1xd

Image from Ying et al., 2018
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Graph classification with Differentiable Pooling

Compute Ak x(k+1) given Sk, z(k)

@ Computer Akt based on connectivity strength between
nodes in cluster

Ak+1) — gk p(k) (k)

e Compute X(*t1) as weighted combination of cluster (soft)
members

X(k+1) — g7 Z(K)
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Graph classification with Differentiable Pooling

Compute S0, z(K) given AK), x(¥)
@ Computer Z(¥) using a standard GNN module

Zk) GNNﬁmbed(A(k)’X(k))

@ Computer S(¥) using a second standard GNN module
followed by a per-row softmax

S*) = soFTMAX <GNN$°°’(A("), X(k)))
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Graph classification with Differentiable Pooling

Pooling at Layer 1 Pooling at Layer 2

The maximal number of clusters in the following layer (ng..1) is
a hyper-parameter of the model (typically 10-25% of ny).

Image from Ying et al., 2018
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Graph classification with Differentiable Pooling

Side objectives

Training using only graph classification loss can be difficult
(very indirect signal). Two side objectives are introduced at
each layer k:

link prediction Encourage nearby nodes to be pooled together:

Lip = ||A%) — 80807

where ||M[|¢ = /27y 74 M2
cluster entropy Encourage hard assignment of nodes to
clusters:

1 o)
Lr = — H(S:
£ nk; (5)

where H(S") is the entropy of the i row of S(K).
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Attention Mechanisms for GNN

What is Attention

@ Attention is a mechanism that allows a network to focus on
certain parts of the input when processing it

@ In multi-layered networks attention mechanisms can be
applied at all layers

@ It is useful to deal with variable-sized inputs (e.g.
sequences)
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Attention Mechanisms for GNN

Why Attention in GNN

@ GNN compute node representations from representations
of neighbours

@ Nodes can have largely different neighbourhood sizes

@ Not all neighbours have relevant information for a certain
node

@ Attention mechanism allow to adaptively weight the
contribution of each neighbour when updating a node
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Graph Attention Networks (GAT)

Attention coefficients

f(Wh;, Why)
Qi =
T Y reny F(Whi, Why)

@ Models importance of node j for i as a function of their
representations

@ Node representations are first transformed using W

@ An attentional mechanism f, shared for all nodes computes
attention of / for j

@ Attention coefficient is normalized over neighbours of /
(including i itself)
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Graph Attention Networks (GAT)

Image from VeliCkovi¢, et al., 2018

Attention mechanism

f(Whi, Why) = LEAKYRELU (a” [Wh;; Wh))
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Graph Attention Networks (GAT)

Node update
hk) = o ( 3 a,-,Wh](k”)

JEN(i)

@ Node is updated as the sum of neighbour (updated)
representations, each weighted by its attention coefficient

@ A non-linearity o is (possibly) applied to this updated
representation
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Graph Attention Networks (GAT)

Multi-head attention
H") = CONCAT [a ( > ajj.wfh}“)) 0= 1,...,L]

JEN(i)
@ Multi-head attention works by having multiple (L)
simultaneous attention mechanisms

@ Can be beneficial to stabilize learning (see Transformers)

@ Updated node representation is concatenation of
representations from different heads.

@ CONCAT is replaced by MEAN in output layer
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Representational power of GNN

Weistfeiler-Lehman (WL) isomorphism test

Given G= (V,€)and G' = (V', &), with n= V| = |V'|. Let
L(G) = {l(v)|v € V} be the set of labels in G, and let
L(G) == L(G). Let label(s) be a function assigning a unique
label to a string.
@ Set lp(v) = I(v) for all v.
@ Forie[1,n—1]
@ For each node vin Gand G
Q  Let Mi(v) = {l1(u)|u € neigh(v)}
©  Concatenate the sorted labels of M;(v) into s;(v)
Q Let/i(v) = label(li_1(v) o si(v)) (o is concatenation)
Q If L(GNL(G)
@ Return Fail
@ Return Pass
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WL isomorphism test: string determination
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WL isomorphism test: relabeling
GED, 26> G Gz

| |

= P

26 —» 7 5,26 —
4,1 —» 8 6,12 —> 14
51 — 6,135 —>
2,14 — 10 1,2346 —> 16
412 — 11 13456 — 17
16 —> 12
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Representational power of GNN

Theorem (Xu et al., 2019)

Let F : G — R be a GNN. With enough GNN layers, F maps
any graphs Gy and G, judged non-isomorphic by the
Weisfeiler-Lehman test to different embeddings if:

@ F aggregates and updates node features iteratively with

Ak — 4 (h(v"*”, f ({h(u"*” ue N(v)}))

where f and ¢ are injective functions

@ F computes the graph-level readout using an injective
function over node features {hf,k)}

No (first-order) GNN can have a higher representational power
than the Weisfeiler-Lehman test of isomorphism.
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Representational power of GNN

Any function g(c, X) with c € X and X C X can be
decomposed as:

g(c, X) = ¢ ((1 +e)f(e) + f(X)>

xeX

for some functions f and ¢ and infinitely many choices of ¢

V.

Problem
@ Assumes countable X' (no real values).

@ Leverages universal approximation theorem of MLPs,
learnability can be hard in practice.
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Graph Isomorphism Networks (GIN)

@ Update node representation by:

) = MLPW | (14 W)alD 4 5™ Y
UeN (v)

kzO,...,K)

@ Compute graph readout as:

he = CONCAT <Z h)

veG

Definition guarantees maximal representational power
achievable for a GNN (other choices are possible)
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Graph Isomorphism Networks (GIN)

@ The MLP® jointly models <) o () (universal
approximator)

@ (9 can be replaced by a fixed scalar

@ CONCAT is used to collect all structural information. It
could be replaced by the latest representation (layer K).
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Representational power of GNN

=
Un

input graph WL colouring colour histogram

Limitations of the WL isomorphism test

@ The WL isomorphism test is limited in the graph
substructures it can count

@ The WL isomorphism test fails to recognize the two input
graphs as non-isomorphic

Image from Bronstein, 2021
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Higher-order GNN

2 2

3 3
K ={1,2,3,4,12,13,23,34, 123} K ={1,2,3,4,12,13,24, 34}

Simplician complex
@ A simplex is the generalization of a triangle to arbitrary
dimensions (0O=point, 1=line, 2=triangle, 3=tetrahedron, ..)
@ A simplicial complex K is a set of simplices such that:

e Every face of a simplex from K'is also in K
e The non-empty intersection of any two simplices o1,02 € K
is a face of both o1 and 3.

Images (from here onwards) from Bodnar et al., 2021
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Higher-order GNN

Simplician Weisfeiler-Lehman (SWL) Test
Let K be a simplicial complex. SWL proceeds as follows:
@ Assign each simplex s € K an initial colour.

© Compute the new colour of each simplex s by hashing the
concatenation of its color and the colours of its
neighbouring simplices.

© Repeat until a stable coloring is obtained

Two simplicial complexes are considered non-isomorphic if the
colour histograms at any level of the complex are different.
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Types of adjacencies: face adjacencies

1 1

set of faces

(o) = fie o € Flo))

multiset of face colours
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Types of adjacencies: coface adjacencies

- . N
U\l
/\ 9 2/ \3 r C(o)

2 3

~ 7

set of cofaces

ce(o) = {ci, we o))

multiset of coface colours
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Types of adjacencies: lower adjacencies

shared face ( 1 A
3 \ 3 Ny (o)
2 3
shared face
set of lower-neighbours Two d-simplices are
lower adjacent if they
ci (o) = f{(ct, coro)lw € Ni(o)}}

share a common face of

multiset of lower-neighbours colour-tuples dimension d-1
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Types of adjacencies: upper adjacencies

1 1
o shared coface
< 3 N (o)
2 3 2e——3
set of upper-neighbours Two d-simplices are upper
’ ) adjacent if they share a
t _ t ot
CT(U) = {{(co) couw)lw € Ni(o)} common coface of

- — dimension d+1
multiset of upper-neighbours colour-tuples
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SWL coloring

co' ' = HASH{cr, ¢ (0), cg(0), | (0), ¢h(0)}

/

old colour upper adj + shared co-faces

d-1)-dim faces i
(d-1)-di (d+1)-dim cofaces  |ower adj + shared faces
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Message Passing Simplician Networks

m'j:‘H (U) e AGG'IUE]:('”) (A[J: (hi h:”)>
7ntc+1 (U) = AGGurec(“) (]\Jc (hqt” h:”))
m 1 (v) = AGGuen, (v (M (L, by b))

7”’?»1 (U) = AGGUJGNT(U) <A[T (hfn h:uv h:;uw))

Message & Aggregate

Rt = U(hfj,mt;(v),mtc(v),miﬂ(v),m%ﬂ(v)) } Update

hG = READOUT({hf Jucr,. - {1 Juex,) | Readout
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Message Passing Simplician Networks

Message passing examples

@ Messages from upper adjacencies for vertex v»
@ Messages from upper and face adjacencies for edge
(vs,v7)
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