Graph Neural Networks (GNN)

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Graph Neural Networks

Neural Networks on Graph Data

—_—)

N2
@5 ?Lii::ﬁ%ﬁ\

input layer output layer

@ Allow to learn feature representations for nodes

@ Allow to propagate information between neighbouring
nodes

@ Allow for efficient training (wrt to e.g. graph kernels)

Image from Kipf et al., 2017

Graph Neural Networks

Neural Networks on Graph Data

l/ XIXT ™
SXIAIKT ®

iXi\/'Xl ——)

Basic step: graph “convolution”

@ Aggregates information from neghbours to update
information on node

@ Inspired by convolution on pixels in CNN

@ Differs from CNN convolution as neighbourhood has
variable size

v

Image from Wu et al., 2019

Graph Neural Networks

Graph “convolution” operation

@ Aggregate information from neighbouring nodes:

h(kzv) — AGGREGATE(({hf/kq) P UE N(V)})

@ Combine node information with aggregated neighbour
information:

(k) _ k) ((p(k=1) (k)
h) = ComsINEX) (h hN(V)>

@ k is the index of the layer (operations are layer-dependent)

° h|(,k) is the hidden representation of node v (initialized to
the node features h‘(,o) = Xy)
@ N(v) is the set neighbours of v

Graph Neural Networks

Example: GraphSAGE (Hamilton et al., 2017)

Graph “convolution” operation

@ Mean aggregation

hﬁ\’}gv) = MEAN®) <{hgk_1) P UE N(V)}>

@ Max aggregation (on transformed representation)
k K) (k=1
hilyy = Max®) ({0 (Wéog,hf, s b) L ue N(v)})

@ Combine operation as concatenation + linear mapping +
non-linearity:

HO = (w0 [1e0.49,)

Graph Neural Networks

Node embedding generation

e h\(,o):XVVVEV
2. forkei,...,Kdo
3: forveVdo

: (k) k k—1)
4 h\ity) ¢ AGGREGATE() ({hf,)i ue N(v)})
5 h{) « ComsINE®) (hf,k*”, hﬁx%))
AR A
7 end for
8: end for

9: return h\(,K) Yvey

Graph Neural Networks

Message Passing Neural Networks (MPNN)
| Genericfom |

@ Aggregate messages from neighbouring nodes:

- 3 Mtk (h(k 0 plk=n evu)
ueN (v)

@ Update node information:
pR) — k) (h‘(/k—1)’ m\(/k))
@ ey, are the features associated to edge (v, u)

o M=) is a message function (e.g. an MLP) computing
message from neighbour

e U is a node update function (e.g. an MLP) combining
messages and local information

Graph Neural Networks

Node Classification

Graph G;on\(Gf_:onv
' Outputs
ReLu RelLu -
< - - =T | e e
- — — s
& *|
X — —

Procedure

@ Compute node embeddings with layerwise architecture

@ Add appropriate output layer on top of each node
embedding (MLP + softmax, MLP + linear)

Image from Wu et al., 2019

Graph Neural Networks

Node classification: scalability

Il
\
&

2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Sampling node neighbourhood

Replace N (v) with a layer-dependent sampling function N (v)
that takes a random sample of a node’s neighbourhood.

Image from Hamilton et al., 2017

Graph Neural Networks

GNN for graph classification

Basic approaches

@ Apply final aggregation (READOUT) to combine all nodes in
a single representation (mean, sum).

@ Introduce a “virtual node” connected to all nodes in the
graph

@ No hierarchical structure is learned.

@ Lack of “pooling” operation which is effective in CNNs to
learn complex pattern.

Graph Neural Networks

Graph classification with Hierachical Pooling

Gconv Gconv
Graph X 3
Pooling . Readout MLP Y
. cL oo | . Softmax o
— - — - Y = 3 s
: °

v,
V,

@ Alternate convolutional and pooling layers as in CNN.

@ Progressively reduce number of nodes.
@ Pool all nodes in last layer into a single representation.

Problem
How to decide which nodes to pool together

Image from Wu et al., 2019

Graph Neural Networks

Graph classification with Differentiable Pooling

Original Pooled network Pooled network Pooled network Graph
network atlevel 1 at level 2 atlevel 3 classification

@ Use standard GNN module to obtain embedding of nodes

@ Perform graph pooling using a differentiable soft cluster
assignment module

@ Repeat the process for K layers
@ Aggregate in single cluster in the last layer
@ Use final representation to classify graph

V.

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Pooled network Pooled network Pooled network Graph
atlevel 1 atlevel 2 atlevel 3 classification

Components

@ Layerwise soft cluster assignment matrix: S*) ¢ R+
@ Layerwise input embedding matrix: Z(K) € R™xd

@ Layerwise soft adjacency matrix: AK+1)

@ Layerwise output embedding matrix: X(k+1) ¢ Rk+1xd

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Compute Ak x(k+1) given Sk, z(k)

@ Computer Akt based on connectivity strength between
nodes in cluster

Ak+1) — gk p(k) (k)

e Compute X(*t1) as weighted combination of cluster (soft)
members

X(k+1) — g7 Z(K)

Graph Neural Networks

Graph classification with Differentiable Pooling

Compute S0, z(K) given AK), x(¥)
@ Computer Z(¥) using a standard GNN module

Zk) GNNﬁmbed(A(k)’X(k))

@ Computer S(¥) using a second standard GNN module
followed by a per-row softmax

S*) = soFTMAX <GNN$°°’(A("), X(k)))

Graph Neural Networks

Graph classification with Differentiable Pooling

Pooling at Layer 1 Pooling at Layer 2

The maximal number of clusters in the following layer (ng..1) is
a hyper-parameter of the model (typically 10-25% of ny).

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Side objectives

Training using only graph classification loss can be difficult
(very indirect signal). Two side objectives are introduced at
each layer k:

link prediction Encourage nearby nodes to be pooled together:

Lip = ||A%) — 80807

where ||M[|¢ = /27y 74 M2
cluster entropy Encourage hard assignment of nodes to
clusters:

1 o)
Lr = — H(S:
£ nk; (5)

where H(S") is the entropy of the i row of S(K).

Graph Neural Networks

Attention Mechanisms for GNN

What is Attention

@ Attention is a mechanism that allows a network to focus on
certain parts of the input when processing it

@ In multi-layered networks attention mechanisms can be
applied at all layers

@ It is useful to deal with variable-sized inputs (e.g.
sequences)

Graph Neural Networks

Attention Mechanisms for GNN

Why Attention in GNN

@ GNN compute node representations from representations
of neighbours

@ Nodes can have largely different neighbourhood sizes

@ Not all neighbours have relevant information for a certain
node

@ Attention mechanism allow to adaptively weight the
contribution of each neighbour when updating a node

Graph Neural Networks

Graph Attention Networks (GAT)

Attention coefficients

f(Wh;, Why)
Qi =
T Y reny F(Whi, Why)

@ Models importance of node j for i as a function of their
representations

@ Node representations are first transformed using W

@ An attentional mechanism f, shared for all nodes computes
attention of / for j

@ Attention coefficient is normalized over neighbours of /
(including i itself)

Graph Neural Networks

Graph Attention Networks (GAT)

Image from VeliCkovi¢, et al., 2018

Attention mechanism

f(Whi, Why) = LEAKYRELU (a” [Wh;; Wh))

Graph Neural Networks

Graph Attention Networks (GAT)

Node update
hk) = o (3 a,-,Wh](k”)

JEN(i)

@ Node is updated as the sum of neighbour (updated)
representations, each weighted by its attention coefficient

@ A non-linearity o is (possibly) applied to this updated
representation

Graph Neural Networks

Graph Attention Networks (GAT)

Multi-head attention
H") = CONCAT [a (> ajj.wfh}“)) 0= 1,...,L]

JEN(i)
@ Multi-head attention works by having multiple (L)
simultaneous attention mechanisms

@ Can be beneficial to stabilize learning (see Transformers)

@ Updated node representation is concatenation of
representations from different heads.

@ CONCAT is replaced by MEAN in output layer

Graph Neural Networks

Representational power of GNN

Weistfeiler-Lehman (WL) isomorphism test

Given G= (V,€)and G' = (V', &), with n= V| = |V'|. Let
L(G) = {l(v)|v € V} be the set of labels in G, and let
L(G) == L(G). Let label(s) be a function assigning a unique
label to a string.
@ Set lp(v) = I(v) for all v.
@ Forie[1,n—1]
@ For each node vin Gand G
Q Let Mi(v) = {l1(u)|u € neigh(v)}
© Concatenate the sorted labels of M;(v) into s;(v)
Q Let/i(v) = label(li_1(v) o si(v)) (o is concatenation)
Q If L(GNL(G)
@ Return Fail
@ Return Pass

Graph Neural Networks

WL isomorphism test: string determination

Graph Neural Networks

WL isomorphism test: relabeling
GED, 26> G Gz

| |

= P

26 —» 7 5,26 —
4,1 —» 8 6,12 —> 14
51 — 6,135 —>
2,14 — 10 1,2346 —> 16
412 — 11 13456 — 17
16 —> 12

Graph Neural Networks

Representational power of GNN

Theorem (Xu et al., 2019)

Let F : G — R be a GNN. With enough GNN layers, F maps
any graphs Gy and G, judged non-isomorphic by the
Weisfeiler-Lehman test to different embeddings if:

@ F aggregates and updates node features iteratively with

Ak — 4 (h(v"*”, f ({h(u"*” ue N(v)}))

where f and ¢ are injective functions

@ F computes the graph-level readout using an injective
function over node features {hf,k)}

No (first-order) GNN can have a higher representational power
than the Weisfeiler-Lehman test of isomorphism.

Graph Neural Networks

Representational power of GNN

Any function g(c, X) with c € X and X C X can be
decomposed as:

g(c, X) = ¢ ((1 +e)f(e) + f(X)>

xeX

for some functions f and ¢ and infinitely many choices of ¢

V.

Problem
@ Assumes countable X' (no real values).

@ Leverages universal approximation theorem of MLPs,
learnability can be hard in practice.

Graph Neural Networks

Graph Isomorphism Networks (GIN)

@ Update node representation by:

) = MLPW | (14 W)alD 4 5™ Y
UeN (v)

kzO,...,K)

@ Compute graph readout as:

he = CONCAT <Z h)

veG

Definition guarantees maximal representational power
achievable for a GNN (other choices are possible)

Graph Neural Networks

Graph Isomorphism Networks (GIN)

@ The MLP® jointly models <) o () (universal
approximator)

@ (9 can be replaced by a fixed scalar

@ CONCAT is used to collect all structural information. It
could be replaced by the latest representation (layer K).

Graph Neural Networks

Representational power of GNN

=
Un

input graph WL colouring colour histogram

Limitations of the WL isomorphism test

@ The WL isomorphism test is limited in the graph
substructures it can count

@ The WL isomorphism test fails to recognize the two input
graphs as non-isomorphic

Image from Bronstein, 2021

Graph Neural Networks

Higher-order GNN

2 2

3 3
K ={1,2,3,4,12,13,23,34, 123} K ={1,2,3,4,12,13,24, 34}

Simplician complex
@ A simplex is the generalization of a triangle to arbitrary
dimensions (0O=point, 1=line, 2=triangle, 3=tetrahedron, ..)
@ A simplicial complex K is a set of simplices such that:

e Every face of a simplex from K'is also in K
e The non-empty intersection of any two simplices o1,02 € K
is a face of both o1 and 3.

Images (from here onwards) from Bodnar et al., 2021

Graph Neural Networks

Higher-order GNN

Simplician Weisfeiler-Lehman (SWL) Test
Let K be a simplicial complex. SWL proceeds as follows:
@ Assign each simplex s € K an initial colour.

© Compute the new colour of each simplex s by hashing the
concatenation of its color and the colours of its
neighbouring simplices.

© Repeat until a stable coloring is obtained

Two simplicial complexes are considered non-isomorphic if the
colour histograms at any level of the complex are different.

Graph Neural Networks

Types of adjacencies: face adjacencies

1 1

set of faces

(o) = fie o € Flo))

multiset of face colours

Graph Neural Networks

Types of adjacencies: coface adjacencies

- . N
U\l
/\ 9 2/ \3 r C(o)

2 3

~ 7

set of cofaces

ce(o) = {ci, we o))

multiset of coface colours

Graph Neural Networks

Types of adjacencies: lower adjacencies

shared face (1 A
3 \ 3 Ny (o)
2 3
shared face
set of lower-neighbours Two d-simplices are
lower adjacent if they
ci (o) = f{(ct, coro)lw € Ni(o)}}

share a common face of

multiset of lower-neighbours colour-tuples dimension d-1

Graph Neural Networks

Types of adjacencies: upper adjacencies

1 1
o shared coface
< 3 N (o)
2 3 2e——3
set of upper-neighbours Two d-simplices are upper
’) adjacent if they share a
t _ t ot
CT(U) = {{(co) couw)lw € Ni(o)} common coface of

- — dimension d+1
multiset of upper-neighbours colour-tuples

Graph Neural Networks

SWL coloring

co' ' = HASH{cr, ¢ (0), cg(0), | (0), ¢h(0)}

/

old colour upper adj + shared co-faces

d-1)-dim faces i
(d-1)-di (d+1)-dim cofaces |ower adj + shared faces

Graph Neural Networks

Message Passing Simplician Networks

m'j:‘H (U) e AGG'IUE]:('”) (A[J: (hi h:”)>
7ntc+1 (U) = AGGurec(“) (]\Jc (hqt” h:”))
m 1 (v) = AGGuen, (v (M (L, by b))

7”’?»1 (U) = AGGUJGNT(U) <A[T (hfn h:uv h:;uw))

Message & Aggregate

Rt = U(hfj,mt;(v),mtc(v),miﬂ(v),m%ﬂ(v)) } Update

hG = READOUT({hf Jucr,. - {1 Juex,) | Readout

Graph Neural Networks

Message Passing Simplician Networks

Message passing examples

@ Messages from upper adjacencies for vertex v»
@ Messages from upper and face adjacencies for edge
(vs,v7)

Graph Neural Networks

References

Bibliography

@ Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, Philip S. Yu, A Comprehensive Survey on Graph Neural
Networks, ArXiv, 2019.

@ William L. Hamilton, Rex Ying, Jure Leskovec, Inductive Representation
Learning on Large Graphs. In NIPS 2017.

@ J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl, Neural
message passing for Quantum chemistry. In ICML 2017.

@ R.Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
Hierarchical graph representation learning with differentiable pooling. In
NIPS, 2018.

@ Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How Powerful
are Graph Neural Networks?. In ICLR, 2019.

@ P Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lido and Y.
Bengio, Graph Attention Networks. In ICLR, 2018.

@ C. Bodnar, F. Frasca, N. Otter, Y. Wang, P. Lio, G. Montufar, M.
Bronstein, Weisfeiler and Lehman Go Topological: Message Passing
Simplical Networks. In NeurlPS, 2021.

Graph Neural Networks

References

Software Libraries

@ PyTorch Geometric (PyG) [https:
//github.com/pyg-team/pytorch_geometric]

@ Deep Graph Library (dgl) [www.dgl.ai]

Graph Neural Networks

https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
www.dgl.ai

