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Logic, Graphs, and Probabilities

Real-world networks

I Social networks
I Knowledge graphs
I Sensor networks
I Traffic networks
I . . .

Model

Abstract: graphs

Semantics

Predicate logic (relational)
∀x(r(x)→ ∃y(e(x , y) ∧ b(y)))
∃z, x , y¬(e(x , y) ∧ e(x , z) ∧ (e(y , z))
. . .

+uncertainty

I Probabilistic Logic
I Statistical (Random) Graph

Theory
I Statistical Relational

Learning (Probabilistic Logic
Learning)

I Graph Learning and Mining
I Graph Neural Networks
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Graph Representations
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Graph Representations Networks as Graphs

Graph: (V ,E)

Attributed graph: (V ,E ,A). Node attributes A: Boolean, categorical, or numeric
Attributed multirelational graph: (V ,E ,A). E : set of different edge relations
Attributed multirelational hyper-graph: (V ,R). R: set of 1,2,3,. . . -ary relations (subsumes A,E)

Examples for higher arity relations (logic, relational databases):

3-ary traffic network relation: on_shortest_path(location,location,location)
3-ary movie data: made_contract(agent,actor,movie)
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Graph Representations Representing Categorical Attributes

Node color
1 blue
2 blue
3 green
4 red

(a)

Node c_blue c_green c_red
1 1 0 0
2 1 0 0
3 0 1 0
4 0 0 1

(b) (c)

(a): unary, categorical values

(b): unary, Boolean/binary values (one-hot encoding)

(c): binary relation between objects and attribute values materialized as nodes
(example: knowledge graphs)
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Graph Representations Representing Hyperedges

(a)

(a): as tuples of nodes

(b): materialize tuples of nodes;

connect tuple-nodes with entity-nodes by binary relations

åCategorical attributes and relations of higher arities can be reduced to Boolean attributes
(one-hot-encodings) and binary relations (but this can be user-unfriendly).
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Graph Representations Notation

N number of nodes/vertices
R a signature of 1,2,3,. . . -ary relation symbols
R specific values of the relations in R in a graph G = (V ,R).
G = (V ,R) a graph with node set V , and relations R
G(V ,R) set of all graphs with node set V , and relations in the signature R
∆G(V ,R) set of all probability distributions over G(V ,R)

Generally assume that V = {1, . . . ,N}, and i, j, . . . ∈ N denote nodes.
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Reasoning
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Reasoning Reasoning Landscape
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Reasoning Model Theory

Given: a probabilistic model for the random generation/evolution of graphs.

Question: what is the probability that the graph becomes (stays) connected, as the number of
nodes goes to infinity?

åOr many other questions about the global properties of a random graph model.

åMostly (human powered) mathematics, not algorithmic reasoning
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Reasoning Deduction

Given: a knowledge base
∀x∃y follows(x , y)
∃y¬∃x follows(x , y)

Question: Does the knowledge base imply a given query statement?

(∃y∃≥2x follows(x , y)) ∨ ∃≥10.000x ?

åReasoning about all possible graphs

åAlgorithmic reasoning implemented by theorem provers.
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Reasoning Model Checking

Given: a generative probabilistic model for graphs.

Question: for a single partially observed graph, what are the probabilties of unobserved features?
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Reasoning Prediction

Given: a descriminative model for specific node label.

Question: for an input graph (edges, node attributes), what are predicted node labels?

åSimilarly: link prediction, graph classification.
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Learning
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Learning Transductive Learning

Learning and Reasoning about a single graph:

Training data Reasoning domain
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Learning Inductive Learning

Learning and Reasoning about different graphs:

Training data Reasoning domains (a.k.a. test cases)
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Graph Neural Networks: Basics
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GNN basics Message passing updates

hk (i): dk -dimensional vector representation of node i at k th iteration (layer).

A basic form of message passing updates:

h0(i) = initial node feature vector of node i
hk+1(i) = f

(
W k hk (i) + Uk ∑

j∈Ni
hk (j)

)
with ingredients:

I W k ,Uk : weight matrices (dimensions: dk+1 × dk )
I f : (nonlinear) activation function (component-wise)

In full matrix notation:

Hk+1 = f
(

Hk (W k )T + EHk (Uk )T
)

with ingredients:

I Hk ,Hk+1: n × dk and n × dk+1 matrices
I E : n × n adjacency matrix

ADVML, Trento, 2024 15 / 42



GNN basics Message passing updates

hk (i): dk -dimensional vector representation of node i at k th iteration (layer).

A basic form of message passing updates:

h0(i) = initial node feature vector of node i
hk+1(i) = f

(
W k hk (i) + Uk ∑

j∈Ni
hk (j)

)
with ingredients:

I W k ,Uk : weight matrices (dimensions: dk+1 × dk )
I f : (nonlinear) activation function (component-wise)

In full matrix notation:

Hk+1 = f
(

Hk (W k )T + EHk (Uk )T
)

with ingredients:

I Hk ,Hk+1: n × dk and n × dk+1 matrices
I E : n × n adjacency matrix

ADVML, Trento, 2024 15 / 42



GNN basics GNN basic architecture

Representation as NN architecture/computation graph:

I At each layer: one vector for each node
(picture: N = 3)

I At top: task-specific (node or graph
classification) transformations of final
node representations

I self, neighbors: dependence of vectors
in following layer on previous layer
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GNN basics GNN reasoning
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GNN basics Initial node features I

Initial features: node identifiers (typically: one-hot encoded).

Can represent/learn classification rule: node is red, if it has distance ≤ 3 to node 26.

åthis only works in transductive settings.
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GNN basics Initial node features II

Initial features: node attributes (e.g. color ∈ {yellow, blue})

Can represent/learn classification rule: node is red, if it has distance ≤ 2 to a blue node.

åthis works in inductive settings: rule can be applied to new graphs with yellow/blue nodes.
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GNN basics Initial node features III

Initial features: none (then can say e.g.: h0(i) = 1 for all i).

Can represent/learn classification rule: node is red, if it has distance ≤ 2 to a node with degree
≥ 5.

åthis works in inductive settings: rule can be applied to new graphs.
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GNN basics GNN Expressivity

Discriminative power: when can two nodes be distinguished by a GNN?

a, b indistinguishable by any GNN.

a, c indistinguishable by 2-layer GNNs, distinguishable by 3-layer GNNs.

ål-layer GNNs can only access information in the l − 1 hop node neighborhood.

I GNNs cannot access “global” graph properties. Examples: cannot recognize whether a graph
is connected/disconnected

I GNNs cannot reason about “identity” of nodes (unless node identifiers provided as initial
features). Example: cannot recognize whether a node is a member of a clique of size ≥ 3.
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GNN basics Logical Expressivity

Main theorem of [Barceló et al.]:

Every node property that can be expressed in the two-variable fragment of first-
order logic with counting quantifiers (FOC2) can be captured by an ACR-GNN.

Example

In FOC2:
α1(X) ≡ ∃[8,10]Y (blue(Y ) ∧ ¬edge(X ,Y ))

(“there exist 8-10 blue nodes that are not neighbors of X ”)

Not in FOC2:

δ(X) ≡ ∃Y ,Z (X 6= Y ∧ X 6= Z ∧ Y 6= Z ∧ edge(X ,Y ) ∧ edge(X ,Z ) ∧ edge(Y ,Z ))

(“ X is part of a triangle “)

[Barceló, Pablo, et al. "The logical expressiveness of graph neural networks." 2020]
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GNN basics RBNs: Expressiveness

Result from [Jaeger, Relational Bayesian Networks, 1997]:
Let φ(x) be a first-order formula over signature R. Then there exists a probability

formula Fφ(x) overR, s.t. for every multi-relational graph G = (V ,R) and every |x |-tuple
v of nodes: Fφ(v) = 1 iff φ(v) holds in G (and Fφ(d) = 0 otherwise).
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Statistical Relational Learning
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SRL SRL frameworks

An SRL framework consists of

I Syntax: a formal representation language over relational signatures R
I Semantics: defines for any domain V , a probability distribution over the space G(V ,R);

formally: a mapping
V 7→ PV ∈ ∆G(V ,R)

I Inference (reasoning): algorithms for the computation of conditional probabilities

PV (A|B) for some A,B ⊆ G(V ,R)

Also: computing most probable explanation (MPE):

max
G∈G(V ,R)

PV (G|B)

I Learning: methods for learning models from graph (relational) data. Typically divided into:
I Structure learning: determines (logical) structure of the model (here also: knowledge-driven design)
I Parameter learning: fitting numerical parameters
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SRL Paradigms

Representatives for main paradigms:

RBN Directed probabilistic graphical models
MLN Undirected probabilistic graphical models
ProbLog (Inductive) logic programming
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Relational Bayesian Networks
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RBNs RBNs: directed factorization I

Chain Rule

For fixed V , PV is a distribution over values R = (R1, . . . ,Rr ). Let R1:h := (R1, . . . ,Rh). This
distribution can be factored as

PV (R) = PV (R1) · PV (R2|R1) · . . . · PV (Rh|R1:h−1) · . . . · PV (Rr |R1,r−1).

Conditional independence of relations

Conditional independencies lead to simplifications:

PV (Rh|R1:h−1) = PV (Rh|Pa(Rh)) for some Pa(Rh) ⊂ R1:h−1

ådirected acyclic graph over relations (relation DAG).

PV (gender, republican, bloodtype, friends) =

PV (gender)PV (republican|gender)PV (bloodtype|republican, gender)PV (friends|bloodtype, republican, gender) assume
=

PV (gender)PV (republican|gender)PV (bloodtype|gender)PV (friends|republican, gender)
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RBNs (Conditional) generative models

I Defines full generative probabilistic model for
graphs in signature R

I Sometimes: assume some relations R ∈ R are
predefined input relations:

R = Rprob ∪Rin

I make these relations roots in the relation DAG
I do not define a distribution PV (Rh) for these

relations
I defines a conditional distribution

PV (Rprob|Rin)

åAll SRL frameworks support divisions R = Rprob ∪Rin
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RBNs RBNs: directed factorization II

Atom independence

Assume atoms of one relation are mutually independent, given the parent relations:

PV (Rh|Pa(Rh)) :=
∏

i∈V arity(Rh)

PV (Rh(i)|Pa(Rh))

As a Bayesian network:

åLeads to limitations for modeling e.g. symmetry constaints friends(1, 2)⇔ friends(2, 1), or
homophily (exist modeling tricks to circumvent this!).
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RBNs RBN: Probability Formulas

A relational Bayesian network for signature R consists of

I a directed acyclic graph whose nodes are the relations R ∈ R,
I for each R ∈ R a probability formula FR in the signature Pa(R) that defines the conditional

probabilities
PV (R(i)|Pa(R))

Probability formulas: semantics

A probability formula F maps tuples of entities i in a graph G = (V ,R) to a probability value

eval(F , i,G) ∈ [0, 1]

[M. Jaeger: Relational Bayesian Networks. UAI 1997]
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RBNs Probability Formulas I

Constants

For any q ∈ [0, 1],
F ≡ q

is a probability formula with
eval(F , i,G) = q

for all i,G.

Example

Let R = {edge}. Then
Fedge(X ,Y ) ≡ 0.5

defines the classic Erdős-Rényi random graph model.
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RBNs Probability Formulas II

Atoms

For any R ∈ R, and variables Y1, . . . ,Yarity(R)

F ≡ R(Y1, . . . ,Yarity(R))

is a probability formula with

eval(F , i,G) =

{
1 if R(i) is true in G
0 if R(i) is false in G

WIF-THEN-ELSE

If F1,F2,F3 are probability formulas, then

F ≡ WIF F1 THEN F2 ELSE F3

is a probability formula with

eval(F , i,G) = eval(F1, i,G)eval(F2, i,G) + (1− eval(F1, i,G))eval(F3, i,G)

åGeneralization of Boolean operations (Fi ∈ {0, 1})
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RBNs Example: Stochastic block model

I Nodes partitioned into blocks
I Probability of edges depends on block

memberships

With the constructs introduced so far:

A. partitioning into red, green, blue nodes:

Fred(X) ≡ 0.5
Fblue(X) ≡ WIF red(X) THEN 0 ELSE 0.7
Fgreen(X) ≡ WIF red(X) ∨ blue(X) THEN 0 ELSE 1.0

B. generating edges:

Fedge(X ,Y ) ≡ WIF red(X) ∧ red(Y ) THEN 0.6 ELSEIF . . .
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RBNs Probability Formulas III

Combination Function

(related to first-order quantifiers ∀, ∃, GNN message passing aggregation, . . . )

If F1, . . . ,Ft are probability formulas, then

F ≡ COMBINE F1, . . . ,Ft
WITH < combination function >
FORALL < variables >
WHERE < logical constraint >

is a probability formula.
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RBNs Example: triangles

R = {red, blue, edge}. In figure: yellow ∼
not blue; black ∼ not red.

PV (red(i)) higher if
I i is blue
I i is part of many triangles

Defining triangles:

Ftriangle(X ,Y ,Z ) ≡

edge(X ,Y ) ∧ edge(X ,Z ) ∧ edge(Y ,Z )

Counting triangles:

Ftriangle_count(X) ≡

COMBINE 1.0
WITH sum
FORALL Y ,Z
WHERE Ftriangle(X ,Y ,Z )(X ,Y ,Z )

Logistic regression of triangle_count and blue feature:

Fred(X) ≡

COMBINE 0.6 · Ftriangle_count(X)(X),

0.3 · blue(X),
−3.0

WITH logistic regression

ADVML, Trento, 2024 34 / 42
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RBNs Probability formulas: neural view

The computation graph of the probabil-
ity formula for red. In green: relations
from R. In gray: synthetic names for
intermediate formulas (“layers”).

I Each probability (sub-)formula defines a feature of
0, 1, 2, . . .-tuples of entities

I Nested formulas give “deep” models
I Aggregation (message passing) along “channels”

defined by the constraints in combination functions
I Scalar features
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GNN-2-RBN
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GNN-2-RBN Example: α1

From [Barceló et al.,2020]:

Input graphs defined by signature:

Rin = {blue, green, red, yellow, purple, edge}

Target concept to represent/learn:

α1(X) ≡ ∃[8,10]Y (blue(Y ) ∧ ¬edge(X ,Y ))

(cf. slide 22)

A GNN α1 classifier defines a conditional distribution P(α1|blue, green, red, yellow, purple, edge)
satisfying the Atom Independence property (slide 28).

åThis distribution can be encoded by a probability formula.
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GNN-2-RBN GNN probability formula

I One-to-one mapping of
representation and
parameterization

I Matrix-vector level GNN
specifications broken
down to the “scalar”
level

I GNN training ∼ RBN
learning (same
objective, same
gradients, . . . )

Yellow highlight: trainable parameters ∼ entries of GNN weight matrices
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GNN-2-RBN Example: learning curves

Learning the α1 target.

Training data: 5000 random graphs of size N ∈ 40..50 (data from [Barceló et al.]).

Pytorch geometric implementation
of ACR-GNN:

Primula implementation of
RBN encoding:

(blue: loss, red: accuracy (on training data); 20 epochs, 10 restarts with random parameter
initializations)

But: Primula takes much longer ...
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GNN-2-RBN Mix-and-match integration

Building a conditional generative model:

Determine relational dependencies and in-
put relations

Rich data, little knowledge: use GNN mod-
ules (many parameters, little structure) to de-
fine conditional distributions

Sparse data, expert knowledge, constraints:
use customized probability formula (few pa-
rameters, highly structured) to define condi-
tional distributions

åNo a-priori distinction of low-level perceptual vs. high-level cognitive reasoning (cf.
DeepProbLog)

åThe resulting neuro-symbolic model supports all types of model checking reasoning.
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GNN-2-RBN Example: MPE with α1

Making the α1 model generative:

Conditional (prediction) model for α1
given all other relations as input.

Generative model for node attributes
and label, given edge as input
Fyellow(X) = 0.18;

Fblue(X) = 0.26;

Fred(X) = 0.18;

Fgreen(X) = 0.18;
Fpurple(X) = 0.18;

MPE task: given observed α1 labels, what is the most probable configuration of the blue attribute?
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GNN-2-RBN MPE inference

I Graph with observed α1 relation (21
nodes)

I

I MAP for blue with RBN-GNN
learned parameters (approximately
implementing logical definition of
α1; test accuracy: 1.0).

åperfect accuracy on primary prediction
task does not guarantee perfect accuracy
for other reasoning tasks.

[R. Pojer, A. Passerini, M. Jaeger: Generalized Reasoning with Graph Neural Networks by Relational Bayesian
Network Encodings. In Learning on Graphs Conference (2023)].
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GNN-2-RBN Take away messages

I There is more to reasoning than prediction!
I GNNs: good at learning accurate predictors from data
I SRL: good at flexible reasoning
I RBNs: the SRL framework most closely related to GNNs
I RBN+GNN: seamless integration of GNN prediction models into SRL model
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