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Learning and reasoning with graphs: from logic to graph neural networks
A few notes on GNNs

A few notes on SRL

Relational Bayesian Networks

GNN-RBN integration
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Graph Representations Networks as Graphs

(&)

Graph: (V, E)

Attributed graph: (V, E, A). Node attributes A: Boolean, categorical, or numeric

Attributed multirelational graph: (V, E, A).  E: set of different edge relations

Attributed multirelational hyper-graph: (V,R).  R: setof 1,2,3,...-ary relations (subsumes A, E)

Examples for higher arity relations (logic, relational databases):

3-ary traffic network relation: on_shortest path(location,location,location)
3-ary movie data: made_contract(agent,actor,movie)
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Graph Representations Representing Categorical Attributes

Node \ c_blue c_green c_red
1 0 0

1

2 1 0 0
3 0 1 0
4 0 0 1

(a)

. unary, categorical values

—
O
-

: unary, Boolean/binary values (one-hot encoding)

. binary relation between objects and attribute values materialized as nodes
(example: knowledge graphs)

—
(¢}
-
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Graph Representations Representing Hyperedges

(@)

(a): as tuples of nodes

(b): materialize tuples of nodes;
connect tuple-nodes with entity-nodes by binary relations
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Graph Representations Representing Hyperedges

(@)

(a): as tuples of nodes

(b): materialize tuples of nodes;
connect tuple-nodes with entity-nodes by binary relations

= Categorical attributes and relations of higher arities can be reduced to Boolean attributes
(one-hot-encodings) and binary relations (but this can be user-unfriendly).
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Graph Representations

Notation

number of nodes/vertices

a signature of 1,2,3,. .. -ary relation symbols

specific values of the relations in R in a graph G = (V, R).

a graph with node set V, and relations R

set of all graphs with node set V, and relations in the signature R
set of all probability distributions over G(V,R)

Generally assume that V = {1,...,N},and i,j,... € N denote nodes.

ADVML, Trento, 2024



Reasoning



space of
(o)) all graphs
£
C
8 mathematical
© e ————————————————————
(] all graphs algorithmic
o'
Y
o
£
©
E one graph
o at a time
o
1
1
1
1
single graph :
1
I -
>
prediction model checking deduction model theory
Type of Reasoning
= & = = E 9ace



Reasoning Model Theory

Given: a probabilistic model for the random generation/evolution of graphs.

Question: what is the probability that the graph becomes (stays) connected, as the number of
nodes goes to infinity?

= Or many other questions about the global properties of a random graph model.

= Mostly (human powered) mathematics, not algorithmic reasoning
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Reasoning Deduction

Given: a knowledge base
vx3y follows(x, y)
Jy—3x follows(x, y)

Question: Does the knowledge base imply a given query statement?

(3y322x follows(x, y)) v 3210:000x 7

= Reasoning about all possible graphs

= Algorithmic reasoning implemented by theorem provers.

ADVML, Trento, 2024 S osa2



Reasoning Model Checking

Given: a generative probabilistic model for graphs.

Question: for a single partially observed graph, what are the probabilties of unobserved features?

o« 1
« y e
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Given: a generative probabilistic model for graphs.

Question: for a single partially observed graph, what are the probabilties of unobserved features?
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Reasoning Model Checking

Given: a generative probabilistic model for graphs.

Question: for a single partially observed graph, what are the probabilties of unobserved features?

CI.\?dge(w))?
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Reasoning Model Checking

Given: a generative probabilistic model for graphs.

Question: for a single partially observed graph, what are the probabilties of unobserved features?

Most probable coloring

A‘W of nodes 1,2?

<—x_.
P(red(6))?\//\[*
QS"\ . . P(edge(7,9))?
. CI\/
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Reasoning Prediction

Given: a descriminative model for specific node label.

Question: for an input graph (edges, node attributes), what are predicted node labels?

Most probable red/blue
label for all nodes?

®—®

= Similarly: link prediction, graph classification.

ADVML, Trento, 2024 12742



Learning



Learning Transductive Learning

Learning and Reasoning about a single graph:

Training data Reasoning domain
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Learning Inductive Learning

Learning and Reasoning about different graphs:

Training data Reasoning domains (a.k.a. test cases)

&+ ar
S o
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Graph Neural Networks: Basics



GNN basics Message passing updates

h¥ (): d¥-dimensional vector representation of node i at kth iteration (layer).

A basic form of message passing updates:

h(i) = initial node feature vector of node i
(i) = 1 (WHEBK (D) + UK ey, 140))
with ingredients:

> Wk UK: weight matrices (dimensions: d%*1 x dk)
> f: (nonlinear) activation function (component-wise)
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GNN basics Message passing updates

hk(i): d*-dimensional vector representation of node i at kth iteration (layer).

A basic form of message passing updates:
h(i) = initial node feature vector of node i
(i) = 1 (WHEBK (D) + UK ey, 140))
with ingredients:

> Wk UK: weight matrices (dimensions: d%*1 x dk)
> f: (nonlinear) activation function (component-wise)

In full matrix notation:
Hk+1 — f(Hk(Wk)T + EHk(uk)T)

with ingredients:

> HX H*t':nx dk and n x d*+1 matrices

> E: n x nadjacency matrix
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GNN basics GNN basic architecture

Representation as NN architecture/computation graph:

4
/ Task-specific
4
J layers ,
’ Ay
4 N

}

Lt 1 1 1 1 1
I I I I I I I | > At each layer: one vector for each node
B (TTTITII] vJJ XN (picture: N = 3)

T neighbors. self > At top: task-specific (node or graph
9 ' classification) transformations of final
| || || || || || || || || I N node representations
H,y (T T T X > self, neighbors: dependence of vectors

in following layer on previous layer
T neighbors,self
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GNN basics Initial node features |

Initial features: node identifiers (typically: one-hot encoded).

Can represent/learn classification rule: node is red, if it has distance < 3 to node 26.

= this only works in transductive settings.

ADVML, Trento, 2024 S 18ra2



GNN basics Initial node features Il

Initial features: node attributes (e.g. color € {yellow, blue})

Can represent/learn classification rule: node is red, if it has distance < 2 to a blue node.

= this works in inductive settings: rule can be applied to new graphs with yellow/blue nodes.

ADVML, Trento, 2024 S 19/a2



GNN basics Initial node features Ill

Initial features: none (then can say e.g.: h°(i) = 1 for all J).

Can represent/learn classification rule: node is red, if it has distance < 2 to a node with degree
> 5.

wthis works in inductive settings: rule can be applied to new graphs.

ADVML, Trento, 2024 S 20742



GNN basics GNN Expressivity

Discriminative power: when can two nodes be distinguished by a GNN?

a

a, b indistinguishable by any GNN.
a, ¢ indistinguishable by 2-layer GNNs, distinguishable by 3-layer GNNs.

= /-layer GNNs can only access information in the / — 1 hop node neighborhood.

> GNNs cannot access “global” graph properties. Examples: cannot recognize whether a graph
is connected/disconnected

» GNNSs cannot reason about “identity” of nodes (unless node identifiers provided as initial
features). Example: cannot recognize whether a node is a member of a clique of size > 3.

ADVML, Trento, 2024 S 21742



GNN basics Logical Expressivity

Main theorem of [Barcelo et al.]:

Every node property that can be expressed in the two-variable fragment of first-
order logic with counting quantifiers (FOC,) can be captured by an ACR-GNN.

Example

In FOCo,:
aq(X) = 3810y (blue(Y) A —~edge(X, Y))

(“there exist 8-10 blue nodes that are not neighbors of X”)

Not in FOC,:
S(X)=3Y, Z(X#AYANX#AZANY #ZNedge(X,Y) A edge(X,Z) A edge(Y,Z))

(“ X is part of a triangle )

[Barceld, Pablo, et al. "The logical expressiveness of graph neural networks." 2020]

ADVML, Trento, 2024 S 2742



GNN basics RBNs: Expressiveness

Result from [Jaeger, Relational Bayesian Networks, 1997]:
Let ¢(x) be a first-order formula over signature R. Then there exists a probability
formula Fy,(x) over R, s.t. for every multi-relational graph G = (V, R) and every |x|-tuple
v of nodes: F,(v) = 1 iff $(v) holds in G (and F4(d) = 0 otherwise).

ADVML, Trento, 2024 S 2342



Statistical Relational Learning



SRL SRL frameworks

An SRL framework consists of

» Syntax: a formal representation language over relational signatures R

> Semantics: defines for any domain V, a probability distribution over the space G(V, R);
formally: a mapping
Vs Py € AG(V,R)

> Inference (reasoning): algorithms for the computation of conditional probabilities
Py(A|B) for some A,B C G(V,R)
Also: computing most probable explanation (MPE):

max Py(G|B
GeG(V,R) v(GIB)
»> Learning: methods for learning models from graph (relational) data. Typically divided into:

> Structure learning: determines (logical) structure of the model (here also: knowledge-driven design)
P Parameter learning: fitting numerical parameters

ADVML, Trento, 2024 S 2442



SRL Paradigms

Representatives for main paradigms:

RBN Directed probabilistic graphical models
MLN Undirected probabilistic graphical models
ProbLog (Inductive) logic programming

ADVML, Trento, 2024 S 2s/a2
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RBNs RBNs: directed factorization |
Chain Rule

For fixed V, Py is a distribution over values R = (Ry, ..., Rr). Let Ry., := (R, ..., Rp). This
distribution can be factored as

Py(R) = Py(R1) - Py(Rz|Ry) - ... - Py(Rn|R1.n—1) - - .. - Pv(Rr|Ry r—1).

Conditional independence of relations

Conditional independencies lead to simplifications:

Py (Rp|R1.n—1) = Py(Rn|Pa(Rp)) for some Pa(Rp) C Ry.pn—1
= directed acyclic graph over relations (relation DAG).

Py (gender, republican, bloodtype, friends) =

P\ (gender)P\, (republican| gender) P\, (bloodtype| republican, gender)P\, (friends| bloodtype, republican, gender) assume

Py (gender)Py, (republican| gender) P\, (bloodtype|gender) P\, (friends| republican, gender)

bloodtype

I —

ADVML, Trento, 2024 S 2s/42



RBNs (Conditional) generative models

» Defines full generative probabilistic model for
graphs in signature R
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RBNs (Conditional) generative models

» Defines full generative probabilistic model for
graphs in signature R

» Sometimes: assume some relations R € R are
predefined input relations:

R =RprobY Rin

> make these relations roots in the relation DAG

> do not define a distribution Py (R)) for these
relations

> defines a conditional distribution

PV(Rprob|Rin)
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RBNs (Conditional) generative models

» Defines full generative probabilistic model for
graphs in signature R

» Sometimes: assume some relations R € R are
predefined input relations:

R =RprobY Rin

> make these relations roots in the relation DAG

> do not define a distribution Py (R)) for these
relations

> defines a conditional distribution

PV(Rprob|Rin)

= All SRL frameworks support divisions R = Rprop U R

ADVML, Trento, 2024 S a7/42



RBNs RBNs: directed factorization Il

Atom independence
Assume atoms of one relation are mutually independent, given the parent relations:

Py(RulPa(Rn)) .= []  Pv(Ra(i)|Pa(Rn))
ievarity(Rh)

As a Bayesian network:

(some edges omitted)

S DD
Crienas3.11

= | eads to limitations for modeling e.g. symmetry constaints friends(1,2) < friends(2, 1), or
homophily (exist modeling tricks to circumvent this!).

ADVML, Trento, 2024 S 2842



RBNs RBN: Probability Formulas

A relational Bayesian network for signature R consists of

> adirected acyclic graph whose nodes are the relations R € R,

> for each R € R a probability formula Fpg in the signature Pa(R) that defines the conditional
probabilities
Pv(R(i)|Pa(R))

Probability formulas: semantics

A probability formula F maps tuples of entities i in a graph G = (V, R) to a probability value

eval(F,i,G) € [0,1]

[M. Jaeger: Relational Bayesian Networks. UAI 1997]

ADVML, Trento, 2024 S 29742



RBNs Probability Formulas |

Constants

Forany g € [0, 1],
F=q
is a probability formula with
eval(F,i,G) = q

forall i, G.
Example
Let R = {edge}. Then
F edge(x,y) = 0.5

defines the classic Erdés-Rényi random graph model.

ADVML, Trento, 2024



RBNs Probability Formulas II

Atoms

Forany R € R, and variables Yi, ..., Yarity(n)

F= R(Y1,. ey Yarity(n))
is a probability formula with

1 if R(i)istruein G

eval(F, i, G) :{ 0 if R(i)is false in G

WIF-THEN-ELSE

If F1, Fo, F3 are probability formulas, then
F=wWIF Fy THEN F, ELSE F3
is a probability formula with

eval(F,i,G) = eval(Fy, i, G)eval(Fp, i, G) + (1 — eval(Fy, i, G))eval(F3, i, G)

= Generalization of Boolean operations (F; € {0,1})

ADVML, Trento, 2024 S sta2



RBNs Example: Stochastic block model

»> Nodes partitioned into blocks

> Probability of edges depends on block
memberships

With the constructs introduced so far:

A. partitioning into red, green, blue nodes:

Fredx) = 05 C ble D
Fblue(X) = WIF red(X) THEN 0 ELSE 0.7
Fgreenxy = WIF red(X)V blue(X) THEN 0 ELSE 1.0 areen J

B. generating edges:

Fedge(x,Y) = WIF red(X) Ared(Y) THEN 0.6 ELSEIF ...

ADVML, Trento, 2024 S s2ia2



RBNs Probability Formulas 11l

Combination Function
(related to first-order quantifiers v, 3, GNN message passing aggregation, ...)
If Fq, ..., F are probability formulas, then

F = COMBINE Fy,...,F;
WITH < combination function >
FORALL < variables >
WHERE < logical constraint >

is a probability formula.

ADVML, Trento, 2024 S s3/42



RBNs Example: triangles

R = {red, blue, edge}. In figure: yellow ~
not blue; black ~ not red.

Py (red(i)) higher if
> jis blue
> jis part of many triangles

@
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RBNs Example: triangles
Defining triangles:

F triangle(x,v,z) =
edge(X,Y) A edge(X,Z) A edge(Y, Z)

R = {red, blue, edge}. In figure: yellow ~
not blue; black ~ not red.

Py (red(i)) higher if
> jis blue
> jis part of many triangles

@
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RBNs Example: triangles

Defining triangles:

F triangle(x,v,z) =
edge(X,Y) A edge(X,Z) A edge(Y, Z)

Counting triangles:

F triangle_count(x) =

R = {red, blue, edge}. In figure: yellow ~ COMBINE 1.0
not blue; black ~ not red. WITH sum
FORALL Y,Z
Py(red(i)) higher if WHERE Firiangle(x,v.z)(X: Y: Z)
> jis blue

> jis part of many triangles

@

ADVML, Trento, 2024 S sara2



RBNs Example: triangles

Defining triangles:

F triangle(x,v,z) =
edge(X,Y) A edge(X,Z) A edge(Y, Z)

Counting triangles:

F triangle_count(x) =

R = {red, blue, edge}. In figure: yellow ~ COMBINE 1.0
not blue; black ~ not red. WITH sum
FORALL Y,Z
Py(red(i)) higher if WHERE Firiangle(x,v.z)(X: Y: Z)
> jis blue

Logistic regression of triangle_count and blue feature:
> jis part of many triangles

F red(x)

COMBINE 0.6 - Fyriangle countix)(X)»

C e D 0.3 - blue(X),

-3.0

¢ WITH logistic regression

ADVML, Trento, 2024 S sara2



RBNs Probability formulas: neural view

The computation graph of the probabil-
ity formula for red. In green: relations
from R. In gray: synthetic names for
intermediate formulas (“layers”).

x N
triangle_count
blue

T
o

ADVML, Trento, 2024

> Each probability (sub-)formula defines a feature of
0,1,2,...-tuples of entities

» Nested formulas give “deep” models

> Aggregation (message passing) along “channels”
defined by the constraints in combination functions

» Scalar features
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GNN-2-RBN Example: a4

From [Barcel6 et al.,2020]:
Input graphs defined by signature:

Rin = {blue, green, red, yellow, purple, edge}

Target concept to represent/learn:

aq(X) = 3810y (blue(Y) A —edge(X, Y))

(cf. slide 22)

A GNN a4 classifier defines a conditional distribution P(«1|blue, green, red, yellow, purple, edge)
satisfying the Atom Independence property (slide 28).

yellow blue  red green purple edge

(0%]

= This distribution can be encoded by a probability formula.

ADVML, Trento, 2024 S sera2



GNN-2-RBN GNN probability formula

L

Tidentity
IIIIIIIIIIIIIIIIII
|||||||||HJXN
Tedge
IIIIIIIIIIIIIIIIII
|||||||||>JJ><N
Tedge

CTTTH
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GNN-2-RBN GNN probability formula

Node attributes

@layer_0_0([node]v)= blue(v);
@layer_0_1([node]v)= green(v);
@layer_0_2([node]v)= red(v);
@layer_0_3([node]v)= yellow(v);
@layer_0_4([node]v)= purple(v);

ADVML, Trento, 2024
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GNN-2-RBN GNN probability formula

Linear combination and activation ﬁ XN

@layer_1_0([node]v)= COMBINE
($c_1_0_0*@layer_0_0(v)), . .
($c_1_6_1*@layer_06_1(v)), Zdentzty
($c_1_0_2*@layer_0_2(v)),

($c_1_0_3*@layer_0_3(v)), [ T I T T T I I T

($c_1_0_4*@layer_0_4(v)),

($A_1_0_8*@agg_0_0(v)), L 1 1 T 1T 1 I 1 < N

Ghimdy [(IIITTTI1

($A_1_0_2*@agg_0_2(v)),

($A_1_6_3*@agg_0_3(v)),
4

WITH 1- reg

Aggregation T edge

@agg_0_1([node]v) = COMBINE @layer_0_1(w)
WITH sum
FORALL w
WHERE (edge(v,w)|edge(w,v)); X N

ADVML, Trento, 2024 S aTia2



GNN-2-RBN GNN probability formula

Linear combination and activation ﬁ XN

@layer_1_0([node]v)= COMBINE

($c_1_0_6*@layer_6_0(v)), . .

($c_1_0_1*@layer_0_1(v)), T identity

(Sc_1_0_2*@layer_6_2(v)),

($c_1_0_3*@layer_0_3(v)), [ T I T T T T I T

(A0 0mgage. 0-00uY) O I N

_1_6_0*@agg_0_0(v)),

ciimmaey [IITTTITTE °

($A_1_6_2*@agg_0_2(v)),

($A_1_0_3*@agg_0_3(v)),
4

| X N
Aggregation T edge
@agg_0_1([node]v) = COMBINE @layer_0_1(w)
WITH sum
FORALL w
WHERE (edge(v,w)|edge(w,v)); X N

Yellow highlight: trainable parameters ~ entries of GNN weight matrices

ADVML, Trento, 2024 S aTia2



GNN-2-RBN GNN probability formula

(Sw_6*@layer_1_6(v)),
(Sw_1*@layer_1_1(v)), - -
(Sw_2*@layer_1_2(v)), T Zdentzty

($w_3*@layer_1_3(v)),

e [T T T T T T 11
(TTTITIITF N

Linear classifier ﬁ x N
alphai([node]v)= COMBINE ‘

Yellow highlight: trainable parameters ~ entries of GNN weight matrices

ADVML, Trento, 2024 S aTia2



GNN-2-RBN GNN probability formula

L

T identity

»> One-to-one mapping of T T T T 1T 1T T 1
representation and |I|I|I|I|I|I|I|I|I’_'JXN

parameterization

» Matrix-vector level GNN
specifications broken edge

down to the “scalar” T T T 1T 1T 1T 11
level L 1 1 1 1 1 [ | N
> GNN training ~ RBN LT T T X

learning (same

objective, same T edge
gradients, ...) J

Yellow highlight: trainable parameters ~ entries of GNN weight matrices

ADVML, Trento, 2024 S aTia2



GNN-2-RBN Example: learning curves

Learning the a4 target.
Training data: 5000 random graphs of size N € 40..50 (data from [Barcel6 et al.]).

Pytorch geometric implementation Primula implementation of
of ACR-GNN: RBN encoding:

150000

160000

140000 w0000

20000

120000

100000 100000

Loss
Accuracy
Loss

w00

a0

0000

Epochs Epochs

(blue: loss, red: accuracy (on training data); 20 epochs, 10 restarts with random parameter
initializations)

Accuracy

ADVML, Trento, 2024 S ssra2



GNN-2-RBN

Learning the a4 target.

Example: learning curves

Training data: 5000 random graphs of size N € 40..50 (data from [Barcel6 et al.]).

Pytorch geometric implementation

of ACR-GNN:

160000

140000

20000

100000

Loss

w00

a0

0000

Accuracy

Epochs

Primula implementation of
RBN encoding:

150000

120000

Epochs

(blue: loss, red: accuracy (on training data); 20 epochs, 10 restarts with random parameter
initializations)

But: Primula takes much longer ...

ADVML, Trento, 2024
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GNN-2-RBN Mix-and-match integration

Building a conditional generative model:

Determine relational dependencies and in-
put relations
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GNN-2-RBN Mix-and-match integration

Building a conditional generative model:

ADVML, Trento, 2024

Determine relational dependencies and in-
put relations

Rich data, little knowledge: use GNN mod-
ules (many parameters, little structure) to de-
fine conditional distributions



GNN-2-RBN Mix-and-match integration

Building a conditional generative model:

Determine relational dependencies and in-
put relations

Rich data, little knowledge: use GNN mod-
ules (many parameters, little structure) to de-
fine conditional distributions
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GNN-2-RBN Mix-and-match integration

Building a conditional generative model:

Determine relational dependencies and in-
put relations

Rich data, little knowledge: use GNN mod-
ules (many parameters, little structure) to de-
fine conditional distributions

Sparse data, expert knowledge, constraints:
use customized probability formula (few pa-
rameters, highly structured) to define condi-
tional distributions

= No a-priori distinction of low-level perceptual vs. high-level cognitive reasoning (cf.
DeepProbLog)

= The resulting neuro-symbolic model supports all types of model checking reasoning.
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GNN-2-RBN Example: MPE with o4

Making the oy model generative:

yellow blue  red green purple edge
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Making the oy model generative:

yellow blue  red green purple edge
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yellow blue  red green purple edge
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Conditional (prediction) model for «;
given all other relations as input.

Generative model for node attributes
and label, given edge as input

Fyeliowxy = 0-18;
Fpiuex) = 0-26;
Fred(X) =0.18;
Fgreen(x) = 0.18;

Fpurplecx = 0-18;



GNN-2-RBN Example: MPE with o4

Making the oy model generative:

yellow blue  red green purple edge

Conditional (prediction) model for «;
given all other relations as input.

o]
Generative model for node attributes
yellow blue  red  green purple edge and label, given edge as input
Fyeliowxy = 0-18;
FbIUe(X) = 0.26;
Fred(x) = 018,
Fgreen(x) = 0.18;
o] Fourplexy = 0-18;

MPE task: given observed a4 labels, what is the most probable configuration of the blue attribute?
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GNN-2-RBN MPE inference

» Graph with observed a4 relation (21
nodes)

s nis

[R. Pojer, A. Passerini, M. Jaeger: Generalized Reasoning with Graph Neural Networks by Relational Bayesian
Network Encodings. In Learning on Graphs Conference (2023)].
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GNN-2-RBN MPE inference

» Graph with observed a4 relation (21
nodes)

»> MAP for blue with RBN-GNN
manually set parameters (exactly
implementing logical definition of
«q; test accuracy: 1.0).

[R. Pojer, A. Passerini, M. Jaeger: Generalized Reasoning with Graph Neural Networks by Relational Bayesian
Network Encodings. In Learning on Graphs Conference (2023)].
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GNN-2-RBN MPE inference

» Graph with observed a4 relation (21
nodes)

» MAP for blue with RBN-GNN
manually set parameters (exactly
implementing logical definition of
aq; test accuracy: 1.0).

> MAP for blue with RBN-GNN
learned parameters (approximately
implementing logical definition of
«q; test accuracy: 1.0).

g

[R. Pojer, A. Passerini, M. Jaeger: Generalized Reasoning with Graph Neural Networks by Relational Bayesian
Network Encodings. In Learning on Graphs Conference (2023)].
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GNN-2-RBN MPE inference

» Graph with observed a4 relation (21
nodes)

» MAP for blue with RBN-GNN
manually set parameters (exactly
implementing logical definition of
aq; test accuracy: 1.0).

> MAP for blue with RBN-GNN
learned parameters (approximately
implementing logical definition of
«q; test accuracy: 1.0).
= perfect accuracy on primary prediction

task does not guarantee perfect accuracy
for other reasoning tasks.

[R. Pojer, A. Passerini, M. Jaeger: Generalized Reasoning with Graph Neural Networks by Relational Bayesian
Network Encodings. In Learning on Graphs Conference (2023)].
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GNN-2-RBN Take away messages

» There is more to reasoning than prediction!

» GNNSs: good at learning accurate predictors from data

»> SRL: good at flexible reasoning

» RBNSs: the SRL framework most closely related to GNNs

> RBN-+GNN: seamless integration of GNN prediction models into SRL model

ADVML, Trento, 2024 S a2ia2
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