## **Ensemble Methods**

## Andrea Passerini andrea.passerini@unitn.it

Machine Learning

**Ensemble Methods** 

### The rationale

- Groups of individuals can make better decisions than individuals (if they don't all think the same)
- Combining multiple ML models can produce better predictions than those of any single model
- Training ensembles can (often) be parallelized, with substantial computational savings

#### Note

Models should be diverse enough for the ensemble to work

### **Ensembling strategies**

bagging diversify the training sets
stacking diversify the models being trained
boosting (progressively) diversify the importance of examples

### In a nutshell

- Take a learning algorithm  $\mathcal{A}$  (e.g. decision tree learning)
- Extract *m* different datasets D<sup>(i)</sup> from the original training set D
- Train one base model per dataset

$$f^{(i)} = \mathcal{A}(\mathcal{D}^{(i)})$$

Combine predictions of different base models

$$\hat{y} = \text{COMBINE}(f^{(1)}(x), \dots, f^{(m)}(x))$$

# Bagging: Bootstrap aggregation



### Extracting datasets: boostrap resampling

- Simply partitioning D into m subsets produces very small training sets
- Bootstrap resampling extracts N = |D| samples from D with replacement (i.e., same example can be selected multiple times)
- Repeating the procedure *m* times to get diverse datasets of the same size as D

### **Diversity of Datasets**

- Each example has probability (1 1/N) of not being selected at each draw
- Each example has probability  $(1 1/N)^N$  of not being selected after *N* draws
- For large enough *N*, this is 37%, i.e., 37% of the dataset are not part of a given training set (*out-of-bag instances*, oob)
- oob instances can be used to estimate test performance of the base model

### Combination strategies

Majority voting predict the class with most votes (classification)

$$\hat{y} = argmax_y \sum_{i=1}^m \delta(y, \hat{y}^{(i)})$$

Soft voting predict the class with largest sum of predicted probability (classification). Assumes base classifier outputs a confidence/probability

$$\hat{y} = argmax_y \sum_{i=1}^m f_y^{(i)}(x)$$

Mean predict the mean (or median) of the base model outputs (regression)

$$\hat{y} = \sum_{i=1}^{m} f^{(i)}(x)$$

## Bagging example: Random forests

### Bagging + model decorrelation

- Use decision trees as the base models
- Even if D<sup>(i)</sup> ≠ D<sup>(j)</sup>, the learned DTs can be too much correlated
- Introduce additional stochasticity in the DT training process
- At each node, choose the best feature to split from a random selection of the set of features (instead of using them all)

# Stacking: stacked generalization

## In a nutshell

Train *m* base models *f*<sup>(i)</sup> on *D* with *m* different learning algorithms *A*<sup>(i)</sup>

 $f^{(i)} = \mathcal{A}^{(i)}(\mathcal{D})$ 

• Use a *meta-learner* to learn to combine base models (e.g., linear combination)

$$g = \mathcal{A}_{META}([f^{(1)}, \ldots, f^{(m)}], \mathcal{D}')$$

Use the meta-model to output ensemble predictions

$$\hat{y} = g\left([f^{(1)}(x),\ldots,f^{(m)}(x)]\right)$$

### Note

The meta-model should be trained on a dataset  $\mathcal{D}' \neq \mathcal{D}$ , or it will learn to focus on the best performing model on  $\mathcal{D}$ .

Ensemble Methods

# Stacking: stacked generalization



**Ensemble Methods** 

## In a nutshell

- Take a learner  ${\cal A}$  and train it on  ${\cal D}$
- Reweight examples in D based on their accuracy according to the trained model (harder examples get larger weights)
- Train  $\mathcal{A}$  again on the reweighted dataset
- Repeat the procedure *m* times
- Combine the learned models into the final model

### From weak learners to strong learners

- A *weak learner* learns models with accuracy slightly better than random.
- A weak learner is easy to implement and train.
- Applying boosting with weak learners as the base learning algorithm allows to turn them into *strong learners*
- This can be easier than designing a strong learner directly.

# Boosting example: AdaBoost

1: procedure ADABOOST  $\mathbf{d}^{(0)} \leftarrow \langle \frac{1}{N}, \ldots, \frac{1}{N} \rangle$ 2: ▷ initialize importance weights uniformly 3: for i = 1, ..., m do  $f^{(i)} \leftarrow \mathcal{A}(\mathcal{D}, \mathbf{d}^{(i-1)})$ 4:  $\triangleright$  train *i*<sup>th</sup> model on weighted data  $\hat{y}_n \leftarrow f^{(i)}(x_n), \forall n$ 5: ▷ collect model predictions  $\hat{\epsilon}^{(i)} \leftarrow \sum_{n} d_{n}^{(i-1)} \mathbb{1}[\gamma_{n} \neq \hat{\gamma}_{n}]$ ▷ compute weighted training error 6:  $\alpha^{(i)} \leftarrow \frac{1}{2} \log \left( \frac{1 - \hat{\epsilon}^{(i)}}{\hat{\epsilon}^{(i)}} \right)$ 7: ▷ compute adaptive parameter  $d_n^{(i)} \leftarrow \frac{1}{2} d_n^{(i-1)} \exp(-\alpha^{(i)} y_n \hat{y}_n), \forall n \quad \triangleright \text{ re-weight examples}$ 8: 9: end for return  $f(\mathbf{x}) = \operatorname{sgn}(\sum_{i} \alpha^{(i)} f^{(i)}(\mathbf{x}))$ 10: ▷ return ensemble model 11: end procedure

$$\boldsymbol{d}_n^{(i)} \leftarrow \frac{1}{Z} \boldsymbol{d}_n^{(i-1)} \exp(-\alpha^{(i)} \boldsymbol{y}_n \hat{\boldsymbol{y}}_n)$$

### Example re-weighting

- correctly classified examples  $y_n \hat{y}_n = +1$  are multiplicatively downweighted
- incorrectly classified examples  $y_n \hat{y}_n = -1$  are multiplicatively upweighted
- *Z* is a normalization constant making weights sum to one (importance as probability distribution over examples)

## Role of adaptive parameter (1)

- Let  ${\mathcal D}$  have 80 positive and 20 negative examples
- Assume the first classifier f<sup>(1)</sup> simply returns the majority class (i.e., f<sup>(1)</sup>(**x**<sub>n</sub>) = +1 for all n)
- It's weighted error rate is 0.2 (all negative examples are incorrectly predicted)
- The adaptive parameter is

$$\alpha^{(1)} = \frac{1}{2} \log \left( \frac{1 - \hat{\epsilon}^{(i)}}{\hat{\epsilon}^{(i)}} \right) = 1/2 \log(4)$$

- The multiplicative weight for positive (correct) examples is  $\exp(-\alpha^{(i)}y_n\hat{y}_n) = \exp(-1/2\log(4)) = 1/2.$
- The multiplicative weight for negative (incorrect) examples is  $\exp(-\alpha^{(i)}y_n\hat{y}_n) = \exp(1/2\log(4)) = 2.$

## Role of adaptive parameter (2)

- The normalization Z (ignoring  $d_n^{(i-1)}$  for simplicity) is 80 \* 1/2 + 20 \* 2 = 80
- the normalized weights for positive and negative examples are 1/2 \* 1/80 = 1/160 and 2 \* 1/80 = 1/40
- The overall weight of positive and negative examples is now 1/160 \* 80 = 1/2 and 1/40 \* 20 = 1/2
- The reweighted dataset is thus fully balanced, and a majority class predictor is not a weak learner any more (accuracy exactly 50%).

- H. Daume. A Course in Machine Learning, http://ciml.info/
- K. Murphy, Probabilistic Machine Learning: An Introduction, The MIT Press, 2021 (online version at https:

//probml.github.io/pml-book/book1.html)