Unsupervised Learning

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Unsupervised Learning



Unsupervised Learning

@ Supervised learning requires the availability of labelled
examples

@ Labelling examples can be an extremely expensive
process

@ Sometimes we don’t even know how to label examples

@ Unsupervised techniques can be employed to group
examples into clusters

.
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k-means clustering

@ Assumes examples should be grouped into k clusters
@ Each cluster i is represented by its mean p;

@ Initialize cluster means pq, ..., py

© lterate until no mean changes:

@ Assign each example to cluster with nearest mean
@ Update cluster means according to assigned examples
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How can we define (dis)similarity between examples ?

(Dis)similarity measures

@ Standard Euclidean distance in R?:

d
dx,x') = | > (% — X))
i=1

@ Generic Minkowski metric for p > 1:

d 1/p
d(x,x') = (Z |X; — x,.’yp>

i=1
@ Cosine similarity (cosine of the angle between vectors):

xTx

s(x,x') = ————
(X = Tl
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How can we define quality of obtained clusters ?

Sum-of-squared error criterion

@ Let n; be the number of samples in cluster D;
@ Let p; be the cluster sample mean:

1
Hi= > X
XeD;
@ The sum-of-squared errors is defined as:
k
2
E=) > llx—ul
i=1 XeD;

@ Measures the squared error incurred in representing each
example with its cluster mean
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Gaussian Mixture Model (GMM)

spherical diag
Train accuracy: 90.2 Train accuracy: 93.8
Test accuracy: 86.8 Test accuracy: 86.8

full tied
Train accuracy: 87.5 Train accuracy: 99.1
Test accuracy: 94.7 Test accuracy: 94.7

- . setosa
-+ versicolor
- . virginica

@ Cluster examples using a mixture of Gaussian distributions
@ Assume number of Gaussians is given
@ Estimate mean and possibly variance of each Gaussian
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Gaussian Mixture Model (GMM)

Parameter Estimation

@ Maximum likelihood estimation cannot be applied as
cluster assignment of examples is unknown

@ Expectation-Maximization approach:
@ Compute expected cluster assignment given current
parameter setting
©Q Estimate parameters given cluster assignment
© lterate
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Example: estimating means of k univariate Gaussians

@ A dataset of x4, ..., x, examples is observed

@ For each example x;, cluster assignment is modelled as
Zi1, - - -, Zik binary latent (i.e. unknown) variables

@ z; =1 if Gaussian j generated x;, 0 otherwise.

@ Parameters to be estimated are the uq, ..., ux Gaussians
means

@ All Gaussians are assumed to have the same (known)
variance o2
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Example: estimating means of k univariate Gaussians

Q Initialize h = (1, ..., pk)
Q lterate until difference in maximum likelihood (ML) is below
a certain threshold:
E-step Calculate expected value E[z;] of each latent
variable assuming current hypothesis
h= </L1,...,Mk> holds
M-step Calculate a new ML hypothesis
H = (i, ..., ) assuming values of latent
variables are their expected values just
computed. Replace h + H
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Example: estimating means of k univariate Gaussians

E-step The expected value of z; is the probability that x;
is generated by Gaussian j assuming hypothesis
h= <,LL1 pooog Mk> holds:

pxilry) P —ga(Xi— )
Sy p(li) il exp— iz (X — )2
M-step The maximum-likelihood mean .; is the weighted

sample mean, each instance being weighted by its
probability of being generated by Gaussian j:

= Ciss Elzilxi
T YL Elzjl

E[zj] =
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Expectation-Maximization (EM)

Formal setting

@ We are given a dataset made of an observed part X and
an unobserved part Z

@ We wish to estimate the hypothesis maximizing the

expected log-likelihood for the data, with expectation taken
over unobserved data:

h* = argmax,Ez[Inp(X, Z|h)]

Problem

The unobserved data Z should be treated as random variables
governed by the distribution depending on X and h
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Expectation-Maximization (EM)

Generic algorithm

@ Initialize hypothesis h
Q lterate until convergence
E-step Compute the expected likelihood of an
hypothesis H’ for the full data, where the
unobserved data distribution is modelled
according to the current hypothesis h and the
observed data:

Q(H'; h) = Ez[Inp(X, Z|H)|h, X]

M-step replace the current hypothesis with the one
maximizing Q(H'; h)

h < argmax,, Q(H'; h)
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Example: estimating means of k univariate Gaussians

Derivation
@ the likelihood of an example is:

k IAYA
p(X,‘,Z,'1,...,Zik|h/) = \/EO' €xp |:ZZI]I&"2]]

@ the dataset log-likelihood is:

N o 1 6 — p))?

i=1
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Example: estimating means of k univariate Gaussians

@ the expected log-likelihood (remember linearity of the
expectation operator):

/ n 1 i)
Ef{inp(X, Z|)] = E7 {21 (ln\/% 23 2’1202/”
n 2
Z( -y e 205’))
i—1

@ The expectation given current hypothesis h and observed
data X is computed as:

pxil)  exp—z= (G — py)?
K = ok
S P(Xilp) g exp =gz (Xi — 1)
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Example: estimating means of k univariate Gaussians

@ The likelihood maximization gives:

n k /

1 (Xi — 1

argmax, Q(H; h) = argmaxy, (ln Vors 2o El e
=1

I
~ —

n k
= argminy, Z Z Elzj](xi — uj’-)z
i=1 j=1
@ zeroing the derivative wrt to each mean we get:

6 n
E —22 Elzj](xi — pj) = 0
K i—1

Sl Ely
/T L Elz)
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How to choose the number of clusters?

Elbow method: idea

@ Increasing number of clusters allows for better modeling of
data

@ Needs to trade-off quality of clusters with quantity

@ Stop increasing number of clusters when advantage is
limited

A
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How to choose the number of clusters?

Optimal number of clusters
Elbow method
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Total Within Sum of Square

7334587551
Number of clusters k

Elbow method: approach

@ Run clustering algorithm for increasing number of clusters

©Q Plot clustering evaluation metric (e.g. sum of squared
errors) for different k

© Choose k when there is an angle (making an elbow) in the
plot (drop in gain)

v
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How to choose the number of clusters?

Optimal number of clusters
Elbow method
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Number of clusters k

Elbow method: problem

The Elbow method can be ambiguous, with multiple candidate
points (e.g. k=2 and k=4 in the figure).
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How to choose the number of clusters?

Average silhouette method: idea

@ Increasing the numbers of clusters makes each cluster
more homogeneuous

@ Increasing the number of clusters can make different
clusters more similar

@ Use quality metric that trades-off intra-cluster similarity and
inter-cluster dissimilarity

v
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How to choose the number of clusters?
Silhouette coefficient for example /

@ Compute the average dissimilarity between i and examples
of its cluster C:

: 1 -
aj=d(i,C) = 0l > d(i))
jec

© Compute the average dissimilarity between i and examples
of each cluster C’ # C, take the minimum:

b = g];érb d(i,C)

© The silhouette coefficient is:

b; — a;
max(a;, b;)
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How to choose the number of clusters?

Optimal number of clusters
Silhouette method
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Average silhouette method: approach

@ Run clustering algorithm for increasing number of clusters

© Plot average (over examples) silhouette coefficient for
different k

© Choose k where the average silhouette coefficient is
maximal

v
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Hierarchical clustering

@ Clustering does not need to be flat

@ Natural grouping of data is often hierarchical (e.g.
biological taxonomy, topic taxonomy, etc.)

@ A hierarchy of clusters can be built on examples

@ Top-down approach:

o start from a single cluster with all examples
e recursively split clusters into subclusters

@ Bottom-up approach:

e start with n clusters of individual examples (singletons)
@ recursively aggregate pairs of clusters
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Agglomerative hierarchical clustering

@ Initialize:
e Final cluster number k (e.g. k=1)
o Initial cluster number k = n
o Initial clusters D; = {x;},i€1,...,n
Q while k > k:
Q find pairwise nearest clusters D;, D;
@ merge D; and D;
© update k = k — 1

V

Stopping criterion can be threshold on pairwise similarity
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Measuring cluster similarities

Similarity measures

@ Nearest-neighbour

dmin(Dia Dj) = min, HX = X/H
XeD;, X ED]

@ Farthest-neighbour

dmax(Di, D/) = maxXx HX — XIH
XG'D/,XIG'D/

@ Average distance

davg(Di, D)) 72 Y llx—x|

J XeD; X'eD;

@ Distance between means
dmean(Dj, Dj) = |1 — 1)l

@ dnin and dpax are more sensitive to outliers
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Stepwise optimal hierachical clustering

@ Initialize:

e Final cluster number k (e.g. k=1)
o Initial cluster number k = n

o Initial clusters D; = {x;},i€1,...,n
Q while k > k:
© find best clusters D;, D; to merge according to evaluation
criterion

@ merge D; and D;
© update k = k — 1
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