Kernel Machines

Andrea Passerini passerini@disi.unitn.it

Machine Learning

Non-linear Support Vector Machines

Non-linearly separable problems

- Hard-margin SVM can address linearly separable problems
- Soft-margin SVM can address linearly separable problems with outliers
- Non-linearly separable problems need a higher expressive power (i.e. more complex feature combinations)
- We do not want to loose the advantages of linear separators (i.e. large margin, theoretical guarantees)

Solution

- Map input examples in a higher dimensional feature space
- Perform linear classification in this higher dimensional space

Non-linear Support Vector Machines

feature map

$$\Phi: \mathcal{X} \to \mathcal{H}$$

- Φ is a function mapping each example to a higher dimensional space ${\cal H}$
- Examples \mathbf{x} are replaced with their feature mapping $\Phi(\mathbf{x})$
- The feature mapping should increase the expressive power of the representation (e.g. introducing features which are combinations of input features)
- Examples should be (approximately) linearly separable in the mapped space

Feature map

Homogeneous
$$(d = 2)$$

Inhomogeneous
$$(d=2)$$

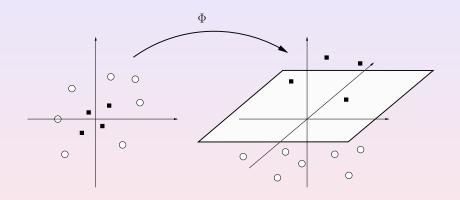
$$\Phi\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{array}\right)$$

$$\Phi\left(\begin{array}{c} X_1 \\ X_2 \\ X_2 \end{array}\right) = \left(\begin{array}{c} X_1 \\ X_2 \\ X_1^2 \\ X_1 X_2 \\ X_2^2 \end{array}\right)$$

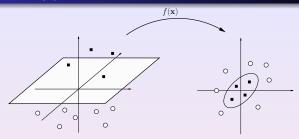
Polynomial mapping

- Maps features to all possible conjunctions (i.e. products) of features:
 - of a certain degree d (homogeneous mapping)
 - 2 up to a certain degree (inhomogeneous mapping)

Feature map



Non-linear Support Vector Machines



Linear separation in feature space

• SVM algorithm is applied just replacing x with $\Phi(x)$:

$$f(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) + w_0$$

 A linear separation (i.e. hyperplane) in feature space corresponds to a non-linear separation in input space, e.g.:

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \operatorname{sgn}(w_1x_1^2 + w_2x_1x_2 + w_3x_2^2 + w_0)$$

Kernel Machines

Kernel trick

- Feature mapping $\Phi(\cdot)$ can be very high dimensional (e.g. think of polynomial mapping)
- It can be highly expensive to explicitly compute it
- Feature mappings appear only in dot products in dual formulations
- The kernel trick consists in replacing these dot products with an equivalent kernel function:

$$k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$$

 The kernel function uses examples in input (not feature) space

Kernel trick

Support vector classification

Dual optimization problem

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \underbrace{\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)}$$
subject to
$$0 \le \alpha_i \le C \quad i = 1, \dots, m$$
$$\sum_{i=1}^m \alpha_i y_i = 0$$

Dual decision function

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i y_i \underbrace{\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})}_{k(\mathbf{x}_i, \mathbf{x})}$$

Kernel trick

Polynomial kernel

Homogeneous:

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^d$$

• E.g. (*d* = 2)

$$k(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}) = (x_1x'_1 + x_2x'_2)^2$$

$$= (x_1x'_1)^2 + (x_2x'_2)^2 + 2x_1x'_1x_2x'_2$$

$$= \underbrace{\begin{pmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{pmatrix}}_{\Phi(\mathbf{x})^T} \underbrace{\begin{pmatrix} x'_1^2 \\ \sqrt{2}x'_1x'_2 \\ x'_2^2 \end{pmatrix}}_{\Phi(\mathbf{x}')}$$

Kernel trick

Polynomial kernel

• Inhomogeneous:

$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^d$$

$$k\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}\right) = (1 + x_1 x_1' + x_2 x_2')^2$$

$$= 1 + (x_1 x_1')^2 + (x_2 x_2')^2 + 2x_1 x_1' + 2x_2 x_2' + 2x_1 x_1' x_2 x_2'$$

$$= \underbrace{\begin{pmatrix} 1 & \sqrt{2}x_1 & \sqrt{2}x_2 & x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{pmatrix}}_{\Phi(\mathbf{x})^T} \underbrace{\begin{pmatrix} 1 & \sqrt{2}x_1' & \sqrt{2}x_2' & \sqrt{2}x_2' & x_1'^2 & \sqrt{2}x_1'x_2' & x_2'^2 &$$

Dot product in feature space

 A valid kernel is a (similarity) function defined in cartesian product of input space:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

corresponding to a dot product in a (certain) feature space:

$$k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$$

Note

- The kernel generalizes the notion of dot product to arbitrary input space (e.g. protein sequences)
- It can be seen as a measure of similarity between objects

Gram matrix

- Given examples $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ and kernel function k
- The Gram matrix K is the (symmetric) matrix of pairwise kernels between examples:

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) \quad \forall i, j$$

Positive definite matrix

• A symmetric $m \times m$ matrix K is positive definite (p.d.) if

$$\sum_{i,j=1}^m c_i c_j K_{ij} \geq 0, \quad orall \mathbf{c} \in \mathbb{R}^m$$

If equality only holds for c = 0, the matrix is *strictly positive definite* (s.p.d)

Alternative conditions

- All eigenvalues are non-negative (positive for s.p.d.)
- There exists a matrix B such that

$$K = B^T B$$

Positive definite kernels

- A positive definite kernel is a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ giving rise to a p.d. Gram matrix for any m and $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$
- Positive definiteness is necessary and sufficient condition for a kernel to correspond to a dot product of some feature map Φ

How to verify kernel validity

- Prove its positive definiteness (difficult)
- Find out a corresponding feature map (see polynomial example)
- Use kernel combination properties (we'll see)

Kernel machines

Support vector regression

• Dual problem:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \quad -\frac{1}{2} \sum_{i,j=1}^m (\alpha_i^* - \alpha_i) (\alpha_j^* - \alpha_j) \underbrace{\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)}$$

$$-\epsilon \sum_{i=1}^m (\alpha_i^* + \alpha_i) + \sum_{i=1}^m y_i (\alpha_i^* - \alpha_i)$$
subject to
$$\sum_{i=1}^m (\alpha_i - \alpha_i^*) = 0 \quad \alpha_i, \alpha_i^* \in [0, C] \quad \forall i \in [1, m]$$

Regression function:

$$f(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) + w_0 = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \underbrace{\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})}_{k(\mathbf{x}_i, \mathbf{x})} + w_0$$

Kernel machines

(Stochastic) Perceptron: $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

- $\mathbf{0}$ Initialize $\mathbf{w} = \mathbf{0}$
- Iterate until all examples correctly classified:
 - For each incorrectly classified training example (x_i, y_i) :

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \mathbf{y}_i \mathbf{x}_i$$

Kernel Perceptron: $f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i, \mathbf{x})$

- **1** Initialize $\alpha_i = 0 \ \forall i$
- Iterate until all examples correctly classified:
 - For each incorrectly classified training example (x_i, y_i) :

$$\alpha_i \leftarrow \alpha_i + \eta y_i$$

Basic kernels

linear kernel:

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

polynomial kernel:

$$k_{d,c}(\mathbf{x},\mathbf{x}') = (\mathbf{x}^T\mathbf{x}'+c)^d$$

Gaussian kernel

$$k_{\sigma}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}\right) = \exp\left(-\frac{\mathbf{x}^T\mathbf{x} - 2\mathbf{x}^T\mathbf{x}' + \mathbf{x}'^T\mathbf{x}'}{2\sigma^2}\right)$$

- Depends on a width parameter σ
- The smaller the width, the more prediction on a point only depends on its nearest neighbours
- Example of *Universal* kernel: they can uniformly approximate any arbitrary continuous target function (pb of number of training examples and choice of σ)

Kernels on structured data

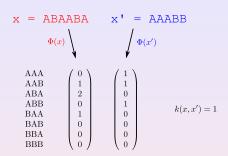
- Kernels are generalization of dot products to arbitrary domains
- It is possible to design kernels over structured objects like sequences, trees or graphs
- The idea is designing a pairwise function measuring the similarity of two objects
- This measure has to satisfy the p.d. conditions to be a valid kernel

Match (or delta) kernel

$$k_{\delta}(x, x') = \delta(x, x') = \begin{cases} 1 & \text{if } x = x' \\ 0 & \text{otherwise.} \end{cases}$$

- Simplest kernel on structures
- x does not need to be a vector! (no boldface to stress it)

Kernels on sequences



Spectrum kernel

- Feature space is space of all possible k-grams (subsequences)
- An efficient procedure based on suffix trees allows to compute kernel without explicitly building feature maps

Kernel combination

- Simpler kernels can combined using certain operators (e.g. sum, product)
- Kernel combination allows to design complex kernels on structures from simpler ones
- Correctly using combination operators guarantees that complex kernels are p.d.

Note

Simplest constructive approach to build valid kernels

Kernel Sum

 The sum of two kernels corresponds to the concatenation of their respective feature spaces:

$$(k_1 + k_2)(x, x') = k_1(x, x') + k_2(x, x')$$

$$= \Phi_1(x)^T \Phi_1(x') + \Phi_2(x)^T \Phi_2(x')$$

$$= (\Phi_1(x) \Phi_2(x)) \begin{pmatrix} \Phi_1(x') \\ \Phi_2(x') \end{pmatrix}$$

 The two kernels can be defined on different spaces (direct sum, e.g. string spectrum kernel plus string length)

Kernel Product

 The product of two kernels corresponds to the Cartesian products of their features:

$$(k_{1} \times k_{2})(x, x') = k_{1}(x, x')k_{2}(x, x')$$

$$= \sum_{i=1}^{n} \Phi_{1i}(x)\Phi_{1i}(x') \sum_{j=1}^{m} \Phi_{2j}(x)\Phi_{2j}(x')$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (\Phi_{1i}(x)\Phi_{2j}(x))(\Phi_{1i}(x')\Phi_{2j}(x'))$$

$$= \sum_{k=1}^{nm} \Phi_{12k}(x)\Phi_{12k}(x') = \Phi_{12}(x)^{T}\Phi_{12}(x')$$

- where $\Phi_{12}(x) = \Phi_1(x) \times \Phi_2(x)$ is the Cartesian product
- the product can be between kernels in different spaces (tensor product)

Linear combination

- A kernel can be rescaled by an arbitrary positive constant: $k_{\beta}(x, x') = \beta k(x, x')$
- We can e.g. define linear combinations of kernels (each rescaled by the desired weight):

$$k_{sum}(x, x') = \sum_{k=1}^{K} \beta_k k_k(x, x')$$

Note

- The weights of the linear combination can be learned simultaneously to the predictor weights (the alphas)
- This amounts at performing kernel learning

Kernel normalization

- Kernel values can often be influenced by the dimension of objects
- ullet E.g. a longer string has more substrings \to higher kernel value
- This effect can be reduced normalizing the kernel

Cosine normalization

 Cosine normalization computes the cosine of the dot product in feature space:

$$\hat{k}(x,x') = \frac{k(x,x')}{\sqrt{k(x,x)k(x',x')}}$$

Kernel composition

- Given a kernel over structured data k(x, x')
- it is always possible to use a basic kernel on top of it, e.g.:

$$(k_{d,c} \circ k))(x,x') = (k(x,x')+c)^d$$

 $(k_{\sigma} \circ k)(x,x') = \exp\left(-\frac{k(x,x)-2k(x,x')+k(x',x')}{2\sigma^2}\right)$

- it corresponds to the composition of the mappings associated with the two kernels
- E.g. all possible conjunctions of up to d k-grams for string kernels

Kernels on graphs

Weistfeiler-Lehman graph kernel

- Efficient graph kernel for large graphs
- Relies on (approximation of) Weistfeiler-Lehman test of graph isomorphism
- Defines a family of graph kernels

Kernels on graphs

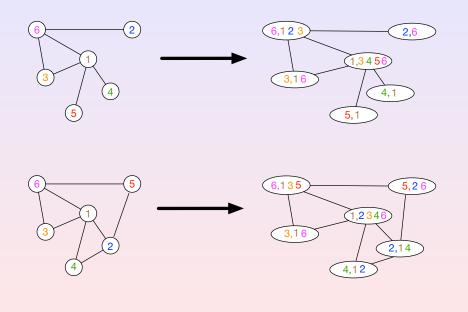
Weistfeiler-Lehman (WL) isomorphism test

Given $G = (\mathcal{V}, \mathcal{E})$ and $G' = (\mathcal{V}', \mathcal{E}')$, with $n = |\mathcal{V}| = |\mathcal{V}'|$. Let $L(G) = \{l(v)|v \in \mathcal{V}\}$ be the set of labels in G, and let L(G) == L(G'). Let label(s) be a function assigning a unique label to a string.

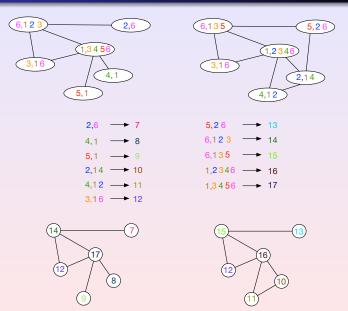
- Set $I_0(v) = I(v)$ for all v.
- For $i \in [1, n-1]$
 - **1** For each node v in G and G'
 - 2 Let $M_i(v) = \{I_{i-1}(u) | u \in neigh(v)\}$
 - Oncatenate the sorted labels of $M_i(v)$ into $s_i(v)$
 - Let $I_i(v) = label(I_{i-1}(v) \circ s_i(v))$ (\circ is concatenation)

 - Return Fail
- Return Pass

WL isomorphism test: string determination



WL isomorphism test: relabeling



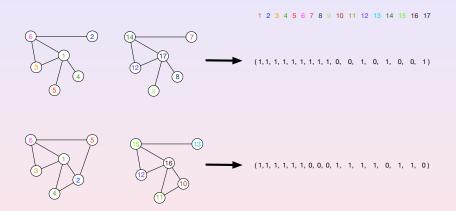
Kernels on graphs

Weistfeiler-Lehman graph kernel

- Let $\{G_0, G_1, \ldots, G_h\} = \{(\mathcal{V}, \mathcal{E}, I_0), (\mathcal{V}, \mathcal{E}, I_1), \ldots, (\mathcal{V}, \mathcal{E}, I_h)\}$ be a sequence of graphs made from G, where I_i is the node labeling of the i-th WL iteration.
- Let $k: G \times G' \to \mathbb{R}$ be any kernel on graphs.
- The Weistfeiler-Lehman graph kernel is defined as:

$$k_{WL}^{h}(G, G') = \sum_{i=0}^{h} k(G_i, G'_i)$$

Example: WL subtree kernel



References

- kernel trick C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 121-167, 1998.
- kernel properties J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004 (Section 3)
 - kernels J.Shawe-Taylor and N. Cristianini, *Kernel Methods* for Pattern Analysis, Cambridge University Press, 2004 (Section 9)
- graph kernels N. Shervashidze, P. Schweitzer, E. Jan van Leeuwen, K. Mehlhorn, and K. Borgwardt. Weisfeiler-Lehman Graph Kernels. J. Mach. Learn. Res., 2011.