Bayesian networks

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Graphical models

Why

- All probabilistic inference and learning amount at repeated applications of the sum and product rules
- Probabilistic graphical models are graphical representations of the qualitative aspects of probability distributions allowing to:
- visualize the structure of a probabilistic model in a simple and intuitive way
- discover properties of the model, such as conditional independencies, by inspecting the graph
- express complex computations for inference and learning in terms of graphical manipulations
- represent multiple probability distributions with the same graph, abstracting from their quantitative aspects (e.g. discrete vs continuous distributions)

Bayesian Networks (BN)

BN Semantics

- A BN structure (\mathcal{G}) is a directed graphical model
- Each node represents a random variable x_{i}
- Each edge represents a direct dependency between two variables

The structure encodes these independence assumptions:

$$
\mathcal{I}_{\ell}(\mathcal{G})=\left\{\forall i x_{i} \perp \text { NonDescendants }_{x_{i}} \mid \text { Parents }_{x_{i}}\right\}
$$

each variable is independent of its non-descendants given its parents

Bayesian Networks

Graphs and Distributions

- Let p be a joint distribution over variables \mathcal{X}
- Let $\mathcal{I}(p)$ be the set of independence assertions holding in p
- \mathcal{G} in as independency map (l-map) for p if p satisfies the local independences in \mathcal{G} :

$$
\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(p)
$$

Note

The reverse is not necessarily true: there can be independences in p that are not modelled by \mathcal{G}.

Bayesian Networks

Factorization

- We say that p factorizes according to \mathcal{G} if:

$$
p\left(x_{1}, \ldots, x_{m}\right)=\prod_{i=1}^{m} p\left(x_{i} \mid P a_{x_{i}}\right)
$$

- If \mathcal{G} is an I-map for p, then p factorizes according to \mathcal{G}
- If p factorizes according to \mathcal{G}, then \mathcal{G} is an I-map for p

Example

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{7}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(x_{5} \mid x_{1}, x_{3}\right) p\left(x_{6} \mid x_{4}\right) p\left(x_{7} \mid x_{4}, x_{5}\right)
\end{aligned}
$$

Bayesian Networks

Proof: I-map \Rightarrow factorization

(1) If \mathcal{G} is an I-map for p, then p satisfies (at least) these (local) independences:

$$
\left\{\forall i x_{i} \perp \text { NonDescendants }_{x_{i}} \mid \text { Parents }_{x_{i}}\right\}
$$

(2) Let us order variables in a topological order relative to \mathcal{G}, i.e.:

$$
x_{i} \rightarrow x_{j} \Rightarrow i<j
$$

(3) Let us decompose the joint probability using the chain rule as:

$$
p\left(x_{1}, \ldots, x_{m}\right)=\prod_{i=1}^{m} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

(4) Local independences imply that for each x_{i} :

$$
p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid P a_{x_{i}}\right)
$$

Bayesian Networks

Proof: factorization \Rightarrow I-map

(1) If p factorizes according to \mathcal{G}, the joint probability can be written as:

$$
p\left(x_{1}, \ldots, x_{m}\right)=\prod_{i=1}^{m} p\left(x_{i} \mid P a_{x_{i}}\right)
$$

(2) Let us consider the last variable x_{m} (repeat steps for the other variables). By the product and sum rules:

$$
p\left(x_{m} \mid x_{1}, \ldots, x_{m-1}\right)=\frac{p\left(x_{1}, \ldots, x_{m}\right)}{p\left(x_{1}, \ldots, x_{m-1}\right)}=\frac{p\left(x_{1}, \ldots, x_{m}\right)}{\sum_{x_{m}} p\left(x_{1}, \ldots, x_{m}\right)}
$$

(3) Applying factorization and isolating the only term containing x_{m} we get:

$$
=\frac{\prod_{i=1}^{m} p\left(x_{i} \mid P a_{x_{i}}\right)}{\sum_{x_{m}} \prod_{i=1}^{m} p\left(x_{i} \mid P a_{x_{i}}\right)}=\frac{p\left(x_{m} \mid P a_{x_{m}}\right) \prod_{i=1}^{m-1} p\left(x_{i} \mid P a_{x_{i}}\right)}{\prod_{i=1}^{m-1} p\left(x_{i} \mid P a_{x_{i}}\right) \sum_{x_{m}} p\left(x_{m} \mid P a_{x_{m}}\right)}
$$

Bayesian Networks

Definition

A Bayesian Network is a pair (\mathcal{G}, p) where p factorizes over \mathcal{G} and it is represented as a set of conditional probability distributions (cpd) associated with the nodes of \mathcal{G}.

Factorized Probability

$$
p\left(x_{1}, \ldots, x_{m}\right)=\prod_{i=1}^{m} p\left(x_{i} \mid P a_{x_{i}}\right)
$$

Bayesian Networks

Example: toy regulatory network

- Genes A and B have independent prior probabilities
- Gene C can be enhanced by both A and B

gene	value	P (value)
A	active	0.3
A	inactive	0.7
gene	value	P (value)
B	active	0.3
B	inactive	0.7

A

	A			
	active		inactive	
	B		B	
	active	inactive	active	inactive
C active	0.9	0.6	0.7	0.1
C inactive	0.1	0.4	0.3	0.9

Conditional independence

Introduction

- Two variables a, b are independent (written $a \perp b \mid \emptyset$) if:

$$
p(a, b)=p(a) p(b)
$$

- Two variables a, b are conditionally independent given c (written $a \perp b \mid c$) if:

$$
p(a, b \mid c)=p(a \mid c) p(b \mid c)
$$

- Independence assumptions can be verified by repeated applications of sum and product rules
- Graphical models allow to directly verify them through the d-separation criterion

d-separation

Tail-to-tail

- Joint distribution:

$$
p(a, b, c)=p(a \mid c) p(b \mid c) p(c)
$$

- a and b are not independent
 (written $a \Pi b \mid \emptyset$):
$p(a, b)=\sum_{c} p(a \mid c) p(b \mid c) p(c) \neq p(a) p(b)$
- a and b are conditionally independent given c :

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=p(a \mid c) p(b \mid c)
$$

- c is tail-to-tail wrt to the path $a \rightarrow b$ as it is connected to the tails of the two arrows

d-separation

Head-to-tail

- Joint distribution:

$$
p(a, b, c)=p(b \mid c) p(c \mid a) p(a)=p(b \mid c) p(a \mid c) p(c)
$$

- a and b are not independent:

$$
p(a, b)=p(a) \sum_{c} p(b \mid c) p(c \mid a) \neq p(a) p(b)
$$

- a and b are conditionally independent given c :

$$
p(a, b \mid c)=\frac{p(b \mid c) p(a \mid c) p(c)}{p(c)}=p(b \mid c) p(a \mid c)
$$

- c is head-to-tail wrt to the path $a \rightarrow b$ as it is connected to the head of an arrow and to the tail of the other one

d-separation

Head-to-head

- Joint distribution:

$$
p(a, b, c)=p(c \mid a, b) p(a) p(b)
$$

- a and b are independent:

$p(a, b)=\sum_{c} p(c \mid a, b) p(a) p(b)=p(a) p(b)$
- a and b are not conditionally independent given c :

$$
p(a, b \mid c)=\frac{p(c \mid a, b) p(a) p(b)}{p(c)} \neq p(a \mid c) p(b \mid c)
$$

- c is head-to-head wrt to the path $a \rightarrow b$ as it is connected to the heads of the two arrows

d-separation: basic rules summary

Bayesian networks

Example of head-to-head connection

Setting

- A fuel system in a car:
battery B, either charged $(B=1)$ or flat $(B=0)$ fuel tank F, either full $(F=1)$ or empty $(F=0)$ electric fuel gauge G, either full $(G=1)$ or empty $(G=0)$

Conditional probability tables (CPT)

- Battery and tank have independent prior probabilities:

$$
P(B=1)=0.9 \quad P(F=1)=0.9
$$

- The fuel gauge is conditioned on
 both (unreliable!):

$$
\begin{array}{ll}
P(G=1 \mid B=1, F=1)=0.8 & P(G=1 \mid B=1, F=0)=0.2 \\
P(G=1 \mid B=0, F=1)=0.2 & P(G=1 \mid B=0, F=0)=0.1
\end{array}
$$

Example of head-to-head connection

Probability of empty tank

- Prior:

$$
P(F=0)=1-P(F=1)=0.1
$$

- Posterior after observing empty
 fuel gauge:

$$
P(F=0 \mid G=0)=\frac{P(G=0 \mid F=0) P(F=0)}{P(G=0)} \simeq 0.257
$$

Note

The probability that the tank is empty increases from observing that the fuel gauge reads empty (not as much as expected because of strong prior and unreliable gauge)

Example of head-to-head connection

Derivation

$$
\begin{aligned}
P(G=0 \mid F=0) & =\sum_{B \in\{0,1\}} P(G=0, B \mid F=0) \\
& =\sum_{B \in\{0,1\}} P(G=0 \mid B, F=0) P(B \mid F=0) \\
& =\sum_{B \in\{0,1\}} P(G=0 \mid B, F=0) P(B)=0.81 \\
P(G=0) & =\sum_{B \in\{0,1\}} \sum_{F \in\{0,1\}} P(G=0, B, F) \\
& =\sum_{B \in\{0,1\}} \sum_{F \in\{0,1\}} P(G=0 \mid B, F) P(B) P(F)
\end{aligned}
$$

Example of head-to-head connection

Probability of empty tank

- Posterior after observing that the battery is also flat:

$$
\begin{aligned}
& P(F=0 \mid G=0, B=0)= \\
& \quad \frac{P(G=0 \mid F=0, B=0) P(F=0 \mid B=0)}{P(G=0 \mid B=0)} \simeq 0.111
\end{aligned}
$$

Note

- The probability that the tank is empty decreases after observing that the battery is also flat
- The battery condition explains away the observation that the fuel gauge reads empty
- The probability is still greater than the prior one, because the fuel gauge observation still gives some evidence in favour of an empty tank

d-separation

General Head-to-head

- Let a descendant of a node x be any node which can be reached from x with a path following the direction of the arrows
- A head-to-head node c unblocks the dependency path between its parents if either itself or any of its descendants receives evidence

General d-separation criterion

d-separation definition

- Given a generic Bayesian network
- Given A, B, C arbitrary nonintersecting sets of nodes
- The sets A and B are d-separated by $C(d \operatorname{sep}(A ; B \mid C))$ if:
- All paths from any node in A to any node in B are blocked
- A path is blocked if it includes at least one node s.t. either:
- the arrows on the path meet tail-to-tail or head-to-tail at the node and it is in C, or
- the arrows on the path meet head-to-head at the node and neither it nor any of its descendants is in C
d-separation implies conditional independence
The sets A and B are independent given $C(A \perp B \mid C)$ if they are d-separated by C.

Example of general d-separation

$a \Pi b \mid c$

- Nodes a and b are not d-separated by c :
- Node f is tail-to-tail and not observed
- Node e is head-to-head and its child c is observed

$a \perp b \mid f$
- Nodes a and b are d-separated by f :
- Node f is tail-to-tail and observed

BN independences revisited

Independence assumptions

- A BN structure \mathcal{G} encodes a set of local independence assumptions:

$$
\mathcal{I}_{\ell}(\mathcal{G})=\left\{\forall i x_{i} \perp \text { NonDescendants }_{x_{i}} \mid \text { Parents }_{x_{i}}\right\}
$$

- A BN structure \mathcal{G} encodes a set of global (Markov) independence assumptions:

$$
\mathcal{I}(\mathcal{G})=\{(A \perp B \mid C): d \operatorname{sep}(A ; B \mid C)\}
$$

BN equivalence classes

I-equivalence

- Quite different BN structures can actually encode the exact same set of independence assumptions
- Two BN structures \mathcal{G} and \mathcal{G}^{\prime} are I-equivalent if $\mathcal{I}(\mathcal{G})=\mathcal{I}\left(\mathcal{G}^{\prime}\right)$
- The space of BN structures over \mathcal{X} is partitioned into a set of mutually exclusive and exhaustive l-equivalence classes

\qquad

I-maps vs Distributions

Minimal l-maps

- For a structure \mathcal{G} to be an I-map for p, it does not need to encode all its independences (e.g. a fully connected graph is an I-map of any p defined over its variables)
- A minimal I-map for p is an I-map \mathcal{G} which can't be "reduced" into a $\mathcal{G}^{\prime} \subset \mathcal{G}$ (by removing edges) that is also an I-map for p.

Problem

A minimal I-map for p does not necessarily capture all the independences in p.

I-maps vs Distributions

Perfect Maps (P-maps)

- A structure \mathcal{G} is a perfect map (P-map) for p if is captures all (and only) its independences:

$$
\mathcal{I}(\mathcal{G})=\mathcal{I}(p)
$$

- There exists an algorithm for finding a P-map of a distribution which is exponential in the in-degree of the P-map.
- The algorithm returns an equivalence class rather than a single structure

Problem

Not all distributions have a P-map. Some cannot be modelled exactly by the BN formalism.

Building Bayesian Networks

Practical Suggestions

- Get together with a domain expert
- Define variables for entities that can be observed or that you can be interested in predicting (latent variables can also be sometimes useful)
- Try following causality considerations in adding edges (more interpretable and sparser networks)
- In defining probabilities for configurations (almost) never assign zero probabilities
- If data are available, use them to help in learning parameters and structure (we'll see how)

APPENDIX

Appendix
Additional reference material

I-equivalence

skeleton

Sufficient conditions

If two structures \mathcal{G} and \mathcal{G}^{\prime} have the same skeleton and the same set of v-structures then they are Iequivalent

I-equivalence

skeleton

Necessary and sufficient conditions
Two structures \mathcal{G} and \mathcal{G}^{\prime} are l-equivalent if and only if they have the same skeleton and the same set of immoralities

Equivalence class

Partially directed acyclic graph (PDAG)
A PDAG is an acyclic graph with both directed and undirected edges

Representing an equivalence class

- An equivalence class for a structure \mathcal{G} can be represented by a PDAG \mathcal{K} such that:
- If $x \rightarrow y \in \mathcal{K}$ then $x \rightarrow y$ should appear in all structures which are l-equivalent to \mathcal{G}
- If $x-y \in \mathcal{K}$ then we can find a structure \mathcal{G}^{\prime} that is I-equivalent to \mathcal{G} such that $x \rightarrow y \in \mathcal{G}^{\prime}$

Equivalence class members

not a member!

Generating members

- Representatives from \mathcal{K} can be obtained by adding directions to undirected edges
- One needs to check that the resulting structure has the same set of immoralities as \mathcal{K} (otherwise it's not in the equivalence class)

Markov blanket (or boundary)

Definition

- Given a directed graph with m nodes
- The markov blanket of node x_{i} is the minimal set of nodes making it x_{i} independent on the rest of the graph:

$$
\begin{aligned}
p\left(x_{i} \mid x_{j \neq i}\right)=\frac{p\left(x_{1}, \ldots, x_{m}\right)}{p\left(x_{j \neq i}\right)} & =\frac{p\left(x_{1}, \ldots, x_{m}\right)}{\int p\left(x_{1}, \ldots, x_{m}\right) d x_{i}} \\
& =\frac{\prod_{k=1}^{m} p\left(x_{k} \mid \mathrm{pa}_{k}\right)}{\int \prod_{k=1}^{m} p\left(x_{k} \mid \mathrm{pa}_{k}\right) d x_{i}}
\end{aligned}
$$

- All components which do not include x_{i} will cancel between numerator and denominator
- The only remaining components are:
- $p\left(x_{i} \mid p a_{i}\right)$ the probability of x_{i} given its parents
- $p\left(x_{j} \mid \mathrm{pa}_{j}\right)$ where pa_{j} includes $x_{i} \Rightarrow$ the children of x_{i} with their co-parents

Markov blanket (or boundary)

d-separation

- Each parent x_{j} of x_{i} will be head-to-tail or tail-to-tail in the path btw x_{i} and any of x_{j} other neighbours \Rightarrow blocked
- Each child x_{j} of x_{i} will be head-to-tail
 in the path btw x_{i} and any of x_{j} children \Rightarrow blocked
- Each co-parent x_{k} of a child x_{j} of x_{i} be head-to-tail or tail-to-tail in the path btw x_{j} and any of x_{k} other neighbours \Rightarrow blocked

Example of i.i.d. samples

Maximum-likelihood

- We are given a set of instances $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$ drawn from an univariate Gaussian with unknown mean μ

- All paths between x_{i} and x_{j} are blocked if we condition on μ
- The examples are independent of each other given μ :

$$
p(\mathcal{D} \mid \mu)=\prod_{i=1}^{N} p\left(x_{i} \mid \mu\right)
$$

- A set of nodes with the same variable type and connections can be compactly represented using the plate notation

