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Discrete random variables

Probability mass function
Given a discrete random variable X taking values in
X = {v1, . . . , vm}, its probability mass function P : X → [0,1] is
defined as:

P(vi) = Pr[X = vi ]

and satisfies the following conditions:
P(x) ≥ 0∑

x∈X P(x) = 1
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Discrete random variables
Expected value

The expected value, mean or average of a random variable
x is:

E[x ] = µ =
∑
x∈X

xP(x) =
m∑

i=1

viP(vi)

The expectation operator is linear:

E[λx + λ′y ] = λE[x ] + λ′E[y ]

Variance
The variance of a random variable is the moment of inertia
of its probability mass function:

Var[x ] = σ2 = E[(x − µ)2] =
∑
x∈X

(x − µ)2P(x)

The standard deviation σ indicates the typical amount of
deviation from the mean one should expect for a randomly
drawn value for x .
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Properties of mean and variance

second moment
E[x2] =

∑
x∈X

x2P(x)

variance in terms of expectation

Var[x ] = E[x2]− E[x ]2

variance and scalar multiplication

Var[λx ] = λ2Var[x ]

variance of uncorrelated variables

Var[x + y ] = Var[x ] + Var[y ]
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Probability distributions

Bernoulli distribution
Two possible values (outcomes): 1 (success), 0 (failure).
Parameters: p probability of success.
Probability mass function:

P(x ;p) =
{

p if x = 1
1 − p if x = 0

E[x ] = p
Var[x ] = p(1 − p)

Example: tossing a coin
Head (success) and tail (failure) possible outcomes
p is probability of head
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Bernoulli distribution

Proof of mean

E[x ] =
∑
x∈X

xP(x)

=
∑

x∈{0,1}

xP(x)

= 0 · (1 − p) + 1 · p = p
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Bernoulli distribution

Proof of variance

Var[x ] =
∑
x∈X

(x − µ)2P(x)

=
∑

x∈{0,1}

(x − p)2P(x)

= (0 − p)2 · (1 − p) + (1 − p)2 · p
= p2 · (1 − p) + (1 − p) · (1 − p) · p
= (1 − p) · (p2 + p − p2)

= (1 − p) · p
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Probability distributions

Binomial distribution
Probability of a certain number of successes in n
independent Bernoulli trials
Parameters: p probability of success, n number of trials.
Probability mass function:

P(x ;p,n) =
(

n
x

)
px(1 − p)n−x

E[x ] = np
Var[x ] = np(1 − p)

Example: tossing a coin
n number of coin tosses
probability of obtaining x heads
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Pairs of discrete random variables

Probability mass function
Given a pair of discrete random variables X and Y taking
values X = {v1, . . . , vm} Y = {w1, . . . ,wn}, the joint probability
mass function is defined as:

P(vi ,wj) = Pr[X = vi ,Y = wj ]

with properties:
P(x , y) ≥ 0∑

x∈X
∑

y∈Y P(x , y) = 1
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Properties
Expected value

µx = E[x ] =
∑
x∈X

∑
y∈Y

xP(x , y)

µy = E[y ] =
∑
x∈X

∑
y∈Y

yP(x , y)

Variance
σ2

x = Var[(x − µx)
2] =

∑
x∈X

∑
y∈Y

(x − µx)
2P(x , y)

σ2
y = Var[(y − µy )

2] =
∑
x∈X

∑
y∈Y

(y − µy )
2P(x , y)

Covariance

σxy = E[(x −µx)(y −µy )] =
∑
x∈X

∑
y∈Y

(x −µx)(y −µy )P(x , y)

Correlation coefficient

ρ =
σxy

σxσy
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Probability distributions

Multinomial distribution (one sample)
Models the probability of a certain outcome for an event
with m possible outcomes.
Parameters: p1, . . . ,pm probability of each outcome
Probability mass function:

P(x1, . . . , xm;p1, . . . ,pm) =
m∏

i=1

pxi
i

where x1, . . . , xm is a vector with xi = 1 for outcome i and
xj = 0 for all j ̸= i .
E[xi ] = pi

Var[xi ] = pi(1 − pi)

Cov[xi , xj ] = −pipj
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Probability distributions

Multinomial distribution: example
Tossing a dice with six faces:

m is the number of faces
pi is probability of obtaining face i
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Probability distributions

Multinomial distribution (general case)

Given n samples of an event with m possible outcomes,
models the probability of a certain distribution of outcomes.
Parameters: p1, . . . ,pm probability of each outcome, n
number of samples.
Probability mass function (assumes

∑m
i=1 xi = n):

P(x1, . . . , xm;p1, . . . ,pm,n) =
n!∏m

i=1 xi !

m∏
i=1

pxi
i

E[xi ] = npi

Var[xi ] = npi(1 − pi)

Cov[xi , xj ] = −npipj
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Probability distributions

Multinomial distribution: example
Tossing a dice

n number of times a dice is tossed
xi number of times face i is obtained
pi probability of obtaining face i
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Conditional probabilities

conditional probability probability of x once y is observed

P(x |y) = P(x , y)
P(y)

statistical independence variables X and Y are statistical
independent iff

P(x , y) = P(x)P(y)

implying:

P(x |y) = P(x) P(y |x) = P(y)
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Basic rules

law of total probability The marginal distribution of a variable is
obtained from a joint distribution summing over all
possible values of the other variable (sum rule)

P(x) =
∑
y∈Y

P(x , y) P(y) =
∑
x∈X

P(x , y)

product rule conditional probability definition implies that

P(x , y) = P(x |y)P(y) = P(y |x)P(x)

Bayes’ rule

P(y |x) = P(x |y)P(y)
P(x)
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Bayes’ rule

Significance

P(y |x) = P(x |y)P(y)
P(x)

allows to “invert” statistical connections between effect (x)
and cause (y):

posterior =
likelihood × prior

evidence

evidence can be obtained using the sum rule from
likelihood and prior:

P(x) =
∑

y

P(x , y) =
∑

y

P(x |y)P(y)
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Playing with probabilities

Use rules!
Basic rules allow to model a certain probability (e.g. cause
given effect) given knowledge of some related ones (e.g.
likelihood, prior)
All our manipulations will be applications of the three basic
rules
Basic rules apply to any number of varables:

P(y) =
∑

x

∑
z

P(x , y , z) (sum rule)

=
∑

x

∑
z

P(y |x , z)P(x , z) (product rule)

=
∑

x

∑
z

P(x |y , z)P(y |z)P(x , z)
P(x |z)

(Bayes rule)
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Playing with probabilities

Example

P(y |x , z) =
P(x , z|y)P(y)

P(x , z)
(Bayes rule)

=
P(x , z|y)P(y)
P(x |z)P(z)

(product rule)

=
P(x |z, y)P(z|y)P(y)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(z, y)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(y |z)P(z)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(y |z)

P(x |z)
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Playing with probabilities
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Continuous random variables

Cumulative distribution function
How to generalize probability mass function to continuous
domains?
Consider probability of intervals, e.g.

W = (a < X ≤ b) A = (X ≤ a) B = (X ≤ b)

W and A are mutually exclusive, thus:

P(B) = P(A) + P(W ) P(W ) = P(B)− P(A)

We call F (q) = P(X ≤ q) the cumulative distribution
function (cdf) of X (monotonic function)
The probability of an interval is the difference of two cdf:

P(a < X ≤ b) = F (b)− F (a)
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Continuous random variables

Probability density function
The derivative of the cdf is called probability density
function (pdf):

p(x) =
d
dx

F (x)

The cdf can be computed integrating the pdf:

F (q) = P(X ≤ q) =
∫ q

−∞
p(x)dx

Properties:
p(x) ≥ 0∫∞
−∞ p(x)dx = 1
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Continuous random variables

Note
The pdf of a value x can be greater than one, provided the
integral is one.
E.g. let p(x) be a uniform distribution over [a,b]:

p(x) = Unif (x ;a,b) =
1

b − a
(a ≤ x ≤ b)

For a = 0 and b = 1/2, p(x) = 2 for all x ∈ [0,1/2] (but the
integral is one)
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Properties

expected value

E[x ] = µ =

∫ ∞

−∞
xp(x)dx

variance
Var[x ] = σ2 =

∫ ∞

−∞
(x − µ)2p(x)dx

Note
Definitions and formulas for discrete random variables carry
over to continuous random variables with sums replaced by
integrals
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Probability distributions

Gaussian (or normal) distribution
Bell-shaped curve.
Parameters: µ mean, σ2

variance.
Probability density
function:

p(x ;µ, σ) =
1√
2πσ

exp−(x − µ)2

2σ2

E[x ] = µ

Var[x ] = σ2

Standard normal distribution: N(0,1)
Standardization of a normal distribution N(µ, σ2)

z =
x − µ

σ
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Probability distributions

Beta distribution
Defined in the interval [0,1]
Parameters: α, β
Probability density function:

p(x ;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1−x)β−1

E[x ] = α
α+β Γ(x + 1) = xΓ(x), Γ(1) = 1

Var[x ] = αβ
(α+β)2(α+β+1)

Note
It models the posterior distribution of parameter p of a binomial
distribution after observing α− 1 independent events with
probability p and β − 1 with probability 1 − p.
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Probability distributions

Multivariate normal distribution
normal distribution for
d-dimensional vectorial data.
Parameters: µ mean vector, Σ
covariance matrix.
Probability density function:

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2 exp−1
2
(x − µ)TΣ−1(x − µ)

E[x ] = µ

Var[x ] = Σ

squared Mahalanobis distance from x to µ is
standard measure of distance to mean:

r2 = (x − µ)TΣ−1(x − µ)
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Probability distributions

Dirichlet distribution
Defined: x ∈ [0,1]m,

∑m
i=1 xi = 1

Parameters: α = α1, . . . , αm

Probability density function:

p(x1, . . . , xm;α) =
Γ(α0)∏m
i=1 Γ(αi)

m∏
i=1

xαi−1
i

E[xi ] =
αi
α0

where α0 =
∑m

j=1 αj

Var[xi ] =
αi (α0−αi )

α2
0(α0+1) Cov[xi , xj ] =

−αiαj

α2
0(α0+1)

Note
It models the posterior distribution of parameters p of a
multinomial distribution after observing αi − 1 times each
mutually exclusive event
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APPENDIX

Appendix
Additional reference material
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Probability laws

Expectation and variance of an average

Consider a sample of X1, . . . ,Xn i.i.d instances drawn from a
distribution with mean µ and variance σ2.

Consider the random variable X̄n measuring the sample
average:

X̄n =
X1 + · · ·+ Xn

n
Its expectation is computed as
(E[a(X + Y )] = a(E[X ] + E[Y ])):

E[X̄n] =
1
n
(E[X1] + · · ·+ E[Xn]) = µ

Its variance is computed as:

Var[X̄n] =
1
n2 (Var[X1] + · · ·+ Var[Xn]) =

σ2

n
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Probability laws
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Probability laws

variance of an average

Consider the random variable X̄n measuring the sample
average:

X̄n =
X1 + · · ·+ Xn

n
Its variance is computed as
(Var[a(X + Y )] = a2(Var[X ] + Var[Y ]) for X and Y
independent):

Var[X̄n] =
1
n2 (Var[X1] + · · ·+ Var[Xn]) =

σ2

n

i.e. the variance of the average decreases with the number
of observations (the more examples you see, the more
likely you are to estimate the correct average)
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Probability laws

Chebyshev’s inequality

Consider a random variable X with mean µ and variance σ2.
Chebyshev’s inequality states that for all a > 0:

Pr[|X − µ| ≥ a] ≤ σ2

a2

Replacing a = kσ for k > 0 we obtain:

Pr[|X − µ| ≥ kσ] ≤ 1
k2

Note
Chebyshev’s inequality shows that most of the probability mass
of a random variable stays within few standard deviations from
its mean
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Probability laws

The law of large numbers

Consider a sample of X1, . . . ,Xn i.i.d instances drawn from a
distribution with mean µ and variance σ2.

For any ϵ > 0, its sample average X̄n obeys:

lim
n→∞

Pr[|X̄n − µ| > ϵ] = 0

It can be shown using Chebyshev’s inequality and the facts
that E[X̄n] = µ,Var[X̄n] = σ2/n:

Pr[|X̄n − E[X̄n]| ≥ ϵ] ≤ σ2

nϵ2

Interpretation
The accuracy of an empirical statistic increases with the
number of samples
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Probability laws

Central Limit theorem
Consider a sample of X1, . . . ,Xn i.i.d instances drawn from a
distribution with mean µ and variance σ2.

1 Regardless of the distribution of Xi , for n → ∞, the
distribution of the sample average X̄n approaches a
Normal distribution

2 Its mean approaches µ and its variance approaches σ2/n
3 Thus the normalized sample average:

z =
X̄n − µ

σ√
n

approaches a standard Normal distribution N(0,1).
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Central Limit theorem

Interpretation
The sum of a sufficiently large sample of i.i.d. random
measurements is approximately normally distributed
We don’t need to know the form of their distribution (it can
be arbitrary)
Justifies the importance of Normal distribution in real world
applications
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Information theory

Entropy

Consider a discrete set of symbols V = {v1, . . . , vn} with
mutually exclusive probabilities P(vi).
We aim a designing a binary code for each symbol,
minimizing the average length of messages
Shannon and Weaver (1949) proved that the optimal code
assigns to each symbol vi a number of bits equal to

− logP(vi)

The entropy of the set of symbols is the expected length of
a message encoding a symbol assuming such optimal
coding:

H[V] = E[− logP(v)] = −
n∑

i=1

P(vi) logP(vi)
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Information theory

Cross entropy
Consider two distributions P and Q over variable X
The cross entropy between P and Q measures the
expected number of bits needed to code a symbol sampled
from P using Q instead

H(P;Q) = EP [− logQ(v)] = −
n∑

i=1

P(vi) logQ(vi)

Note
It is often used as a loss for binary classification, with P
(empirical) true distribution and Q (empirical) predicted
distribution.
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Information theory

Relative entropy
Consider two distributions P and Q over variable X
The relative entropy or Kullback-Leibler (KL) divergence
measures the expected length difference when coding
instances sampled from P using Q instead:

DKL(p||q) = H(P;Q)− H(P)

= −
n∑

i=1

P(vi) logQ(vi) +
n∑

i=1

P(vi) logP(vi)

=
n∑

i=1

P(vi) log
P(vi)

Q(vi)

Note
The KL-divergence is not a distance (metric) as it is not
necessarily symmetric
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Information theory

Conditional entropy
Consider two variables V ,W with (possibly different)
distributions P
The conditional entropy is the entropy remaining for
variable W once V is known:

H(W |V ) =
∑

v

P(v)H(W |V = v)

= −
∑

v

P(v)
∑

w

P(w |v) logP(w |v)
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Information theory

Mutual information
Consider two variables V ,W with (possibly different)
distributions P
The mutual information (or information gain) is the
reduction in entropy for W once V is known:

I(W ;V ) = H(W )− H(W |V )

= −
∑

w

p(w) log p(w) +
∑

v

P(v)
∑

w

P(w |v) logP(w |v)

Note
It is used e.g. in selecting the best attribute to use in building a
decision tree, where V is the attribute and W is the label.
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